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Report of Meeting

The Tenth Debrecen–Katowice Winter Seminar
on Functional Equations and Inequalities,
Zamárdi (Hungary), February 3–6, 2010

The Tenth Debrecen–Katowice Winter Seminar on Functional Equations
and Inequalities was held in Művész Üdülő, Zamárdi, Hungary, from February
3 to 6, 2010. It was organized by the Department of Analysis of the Institute
of Mathematics of the University of Debrecen.

24 participants came from the University of Debrecen (Hungary) and the
Silesian University of Katowice (Poland) at 12 from each of both cities.

Professor Zsolt Páles opened the Seminar and welcomed the participants
to Zamárdi.

The scientific talks presented at the Seminar focused on the following top-
ics: equations in a single variable and in several variables, iterative equations,
equations on algebraic structures, regularity properties of the solutions of cer-
tain functional equations, functional inequalities, Hyers–Ulam stability, func-
tional equations and inequalities involving mean values, generalized convexity.
Interesting discussions were generated by the talks.

There was a profitable Problem Session.
The social program included a banquet and an excursion which consisted

of visiting the thermal lake in Hévíz. The closing address was given by Pro-
fessor Roman Ger. His invitation to the Eleventh Katowice–Debrecen Winter
Seminar on Functional Equations and Inequalities in February 2011 in Poland
was gratefully accepted.

Summaries of the talks in alphabetic order of the authors follow in Sec-
tion 1, problems and remarks in chronological order in Section 2, and the list
of participants in the final section.
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1. Abstracts of talks

Roman Badora: Stability and separation theorems

In this talk we discuss the problem of connections between stability results
and separation theorems.

Szabolcs Baják: Invariance equations involving Gini and Stolarsky means
(Joint work with Zsolt Páles)

Given three strict means M,N,K : R2
+ → R+, we say that the triple

(M,N,K) satisfies the invariance equation if

K
(
M(x, y), N(x, y)

)
= K(x, y), x, y ∈ R+,

holds. It is well known that K is uniquely determined by M and N , and it is
called the Gauss composition K =M ⊗N of M and N .

Our aim is to solve the invariance equation when each of the means
M,N,K is either a Gini or a Stolarsky mean with possibly different para-
meters. This means that we have to consider six different equations. With
the help of the computer algebra system Maple V Release 9, we give the
general solutions of these equations.

Zoltán Boros: Weakly affine functions

We call a function f : R → R weakly affine if, for every x, y ∈ R, there
exists a real number t (depending on x and y) such that 0 < t < 1 and

(1) f (tx+ (1− t)y) = tf(x) + (1− t)f(y).

We call f affine if (1) holds for every t ∈ [0, 1] and x, y ∈ R. If (1) is satisfied
by t = 1/2 and every x, y ∈ R, we say that f is a midpoint-affine function.

Clearly, every midpoint-affine function is also weakly affine. It is well
known ([1, Theorem 89, sec. 3.7, p. 73]) that every continuous, weakly affine
function has to be affine as well. We present an example for a measurable,
weakly affine function which is not midpoint-affine. Further regularity as-
sumptions for weakly affine functions are also investigated.

Reference

[1] Hardy G.H., Littlewood J.E., Pólya G., Inequalities, University Press, Cambridge, 1934.
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Pál Burai: On approximately h-convex functions (Joint work with Attila
Házy)

A real valued function f : D → R defined on an open convex subset D of
a normed space X is called rationally (h, d)-convex if it satisfies

f (tx+ (1− t)y) ≤ h(t)f(x) + h(1− t)f(y) + d(x, y)

for all x, y ∈ D and t ∈ Q∩ [0, 1], where d : X ×X → R and h : [0, 1] → R are
given functions.

Our main result is of a Bernstein–Doetsch type. Namely, we prove that if
f is locally bounded from above at a point of D and rationally (h, d)-convex
then it is continuous and (h, d)-convex.

Judita Dascăl: On the equality of conjugate means of n variables (Joint
work with Zoltán Daróczy)

Let I ⊂ R be a nonvoid open interval and let n ≥ 3 be a fixed natural
number. The question is which conjugate means of n variables generated by
the arithmetic mean M : In → I are weighted quasi-arithmetic means of n
variables at the same time? This question is a functional equation problem:

Characterize the real valued continuous and strictly monotone functions
ϕ,ψ defined on I and the parameters p1, . . . , pn, q1, . . . , qn for which the equa-
tion

ϕ−1
( n∑
i=1

piϕ(xi) +
(
1−

n∑
i=1

pi
)
ϕ
(
M(x1, . . . , xn)

))
= ψ−1

( n∑
i=1

qiψ(xi)
)

holds for all x1, ..., xn ∈ I, where

qi ≥ 0, i = 1, . . . , n,
n∑

i=1

qi = 1,

pj ≥ 0 and
n∑

i=1

pi − pj ≤ 1, j = 1, . . . , n.

Włodzimierz Fechner: On some composite functional inequalities

We will deal with the following composite functional inequalities

f(f(x)− f(y)) ≤ f(x+ y) + f(f(x− y))− f(x)− f(y),

f(f(x)− f(y)) ≤ f(f(x+ y)) + f(x− y)− f(x)− f(y),

f(f(x)− f(y)) ≤ f(f(x+ y)) + f(f(x− y))− f(f(x))− f(y),
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in the class of real-to-real mappings which enjoy certain regularity properties.
These inequalities are motivated by some recent studies of Tomasz Kochanek
and of the author concerning the following composite functional equation:

f(f(x)− f(y)) = f(x+ y) + f(x− y)− f(x)− f(y).

Roman Ger: Abstract Pythagorean Law and the corresponding functional
equations

We simplify and generalize the results of Lucio R. Berrone (cf. [1]) con-
nected with the addition formula of the form

f(x+ y) = f(x) + f(y) + 2f(ϕ(x, y)) .

Reference

[1] Berrone L.R. The associativity of the Pythagorean Law, Amer. Math. Monthly 116
(2009), no. 10, 936–939.

Eszter Gselmann: A characterization of the relative entropies (Joint
work with Gyula Maksa)

For a fixed α ∈ R, the sequence of functions Dα
n(·|·) : Γ◦

n × Γ◦
n → R de-

fined by

Dα
n(p1, . . . , pn|q1, . . . , qn) = −

n∑
i=1

pi lnα

(
pi
qi

)
,

where

lnα(x) =

{
x1−α−1
1−α , if α 6= 1,

ln(x), if α = 1.

is called the Shannon relative entropy (or Kullback–Leibler entropy or Kull-
back’s directed divergence) if α = 1, and the Tsallis relative entropy if α 6= 1,
respectively.

Following the method of the basic references Aczél–Daróczy [1] and Ebanks–
Sahoo–Sander [2] of investigating characterization problems of information
measures, we prove a characterization theorem similar to that of [3] and
[4], and we point out that the regularity conditions (say, continuity) can be
avoided if α /∈ {0, 1}, and can essentially be weakened if α ∈ {0, 1}.
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Michał Lewicki: A remark on non-symmetric t-affine functions

Let t ∈ (0, 1) be fixed. We give a solution of the functional equation

(1) f(tx+ (1− t)y) = tf(x) + (1− t)f(y),

where x, y ∈ R are such that x 6 y.
Furthermore, we discuss an application of the proven result in the inequal-

ity corresponding to equation (1).

Judit Makó: Approximate convexity of Takagi type functions (Joint work
with Zsolt Páles)

Given a bounded function Φ: R → R, we define the Takagi type function
TΦ : R → R by

TΦ(x) :=
∞∑

n=0

Φ(2nx)

2n
.

In this talk we give a sufficient conditions on Φ such that TΦ is approxi-
mately Jensen-convex in the following sense

TΦ
(x+ y

2

)
≤ TΦ(x) + TΦ(y)

2
+ Φ

(x− y

2

)
− Φ(0), x, y ∈ R.

Applications to the theory of approximately convex functions are also given.

Gyula Maksa: Remarks on associativity

If I is a set and F : I × I → I is an associative binary operation then

F (F (x, y), F (u, v)) = F (x, F (y, F (u, v))) = F (x, F (F (y, u), v))

= F (F (x, F (y, u)), v) = F (F (F (x, y), u), v)

for all x, y, u, v ∈ I. In this talk we present the following result.
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Theorem. Let I ⊂ R be an interval and F : I × I → I be a continuous
function which is strictly monotonic in both variables. Then any of the above
ten equations, with the exception of F (x, F (F (y, u), v)) = F (F (x, F (y, u)), v),
implies that F is associative.

In the talk, some remarks concerning vector associativity are also formu-
lated.

Janusz Matkowski: A mean-value theorem

For a function f defined in an interval I and satisfying the conditions
ensuring the existence and uniqueness of the Lagrange mean L[f ], we prove
that there exists a unique two variable mean M [f ] such that

f(x)− f(y)

x− y
=M [f ](f ′(x), f ′(y))

for all x, y ∈ I, x 6= y. The mean M [f ] is closely related L[f ]. Necessary
and sufficient condition for the equality M [f ] = M [g] is given. A family of
means

{
M[t] : t ∈ R

}
relevant to the logarithmic means is introduced. The

invariance of geometric mean with respect to mean-type mappings of this type
is considered. A result on convergence of the sequences of iterates of some
mean-type mappings and its application in solving some functional equations
is given.

A counterpart of the Cauchy mean value theorem is presented. Some
relations between Stolarsky means and M[t] means are discussed.

Fruzsina Mészáros: A generalized Steinhaus-type theorem in solving a
functional equation (Joint work with Károly Lajkó)

We give the general solution (without any regularity assumption) of equa-
tion

h1

(
x

λ1 (α+ y)

)
1

λ1 (α+ y)
fY (y) = h2

(
y

λ2 (β + x)

)
1

λ2 (β + x)
fX (x)

for all (x, y) ∈ R2
+ with nonnegative functions h1, h2, fX , fY : R+ → R, such

that there exist sets A1, A2, A3, A4 ⊂ R+ with positive Lebesgue measure,
on which these functions are positive, respectively.

We use the following generalization of Steinhaus’ theorem: Let U be an
open subset of R2 and F : U → R be a continuously differentiable function
with nonvanishing partial derivatives, moreover let A, B ⊂ R (A×B ⊂ U) be
measurable sets with positive Lebesgue measure, then the set F (A,B) has an
interior point, i.e. F (A,B) contains a nonvoid open interval.
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Lajos Molnár: Isometries and affine automorphisms of spaces of prob-
ability distribution functions

In the paper [1] we have determined the so-called Kolmogorov–Smirnov
isometries of the space D(R) of all probability distribution functions on the
real line. In this talk we present new results on the isometries of certain
important subspaces of D(R) such as the spaces of all absolute continuous,
singular or discrete distribution functions. A few results on the structure of
affine automorphisms of D(R) will also be given.

Reference

[1] Dolinar G., Molnár L., Isometries of the space of distribution functions with respect to
the Kolmogorov–Smirnov metric, J. Math. Anal. Appl. 348 (2008), 494–498.

Janusz Morawiec: Integrable solutions of a matrix refinement equation
(Joint work with Rafał Kapica)

Assume that (Ω,A, P ) is a complete probability space, L : Ω → Rn is a
random vector, K : Ω → Rn×n and M : Ω → Rm×m are random matrices. We
investigate the existence of non-trivial integrable solutions ϕ : Rn → Rm of
the following matrix refinement equation

ϕ(x) =

∫
Ω
|detK(ω)|M(ω)ϕ(K(ω)x− L(ω))P (dω).

Andrzej Olbryś: On a separation for Wright convexity

Let X will be a real linear topological space and let D ⊂ X be an open
and convex set. A function f : D → R is said to be a Wright-convex, if∧

x,y∈D

∧
λ∈[0,1]

f(λx+ (1− λ)y) + f((1− λ)x+ λy) ≤ f(x) + f(y).

In our talk we give sufficient and necessary conditions for separating functions
g and h by a Wright convex function.

Zsolt Páles: Regularity, monotonicity, and convexity consequences of
linear functional inequalities

Let I ⊆ R be a nonempty interval and denote

Fk(I) := {f : Ik → R}, k ∈ N.
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Assume that we are given a certain class of functions E ⊆ F1(I), a mapping
Φ: E → Fk, and a subset D ⊆ Ik. Then the inequality

(FI) Φ(f)(x1, . . . , xk) ≥ 0, (x1, . . . , xk) ∈ D,

is called a k-variable functional inequality.
The general problem is to describe all f ∈ E that satisfies (FI). Another

(less general) problem is to study the common properties, for instance, the
regularity, monotonicity and convexity properties of the solutions of (FI).

Barbara Przebieracz: The stability of some functional equation

I will prove a theorem concerning the stability of the equation

min{f(x+ y), f(x− y)} = |f(x)− f(y)|

in the class of continuous functions f : R → R.

Maciej Sablik: On functional equations connected with MVTs

We consider different aspects of characterizations, with use of functional
equations, of some classes of mappings. Usually functional equations are
stemming from Mean Value Theorems, or at least are connected to them.

Justyna Sikorska: Stability of the Drygas functional equation

We study the stability of the Drygas functional equation

f(x+ y) + f(x− y) = 2f(x) + f(y) + f(−y),

where f maps a group into a Banach space. In our considerations we use both
the direct method and the method of the invariant means.

László Székelyhidi: Spectral analysis on commutative hypergroups (Joint
work with László Vajday)

The problem of spectral analysis is formulated on commutative hyper-
groups and is solved for finite dimensional varieties.

Tomasz Szostok: Regularity of functions satisfying equations connected
to quadrature rules

Motivated by quadrature rules used in numerical analysis we consider
equations of the type

(1) F (y)− F (x) = (y − x)
n∑

k=1

fk(αkx+ βky).
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However a quick look at the sets of the solutions of (1) in some special cases
convinces us that it is hopeless to expect a full description of the solutions
in the general case. The situtation changes rapidly if we know that functions
fk are continuous. In such case they are just polynomials of some degree.
Therefore it is important to ask for cases where the continuity is implied by
the equation itself.

Answering a problem posed by M. Sablik we prove that if equation (1) has
discontinuous solutions then also equation

n∑
k=1

fk(αkx+ βky) = 0

has discontinuous solutions. Using this result it is easy to show that in many
cases equation (1) has only continuous solutions.

Wirginia Wyrobek-Kochanek: Almost orthogonally additive functions
(Joint work with Tomasz Kochanek)

If a function f , acting on a Euclidean space Rn, is “almost” orthogonally
additive in the sense that f(x+ y) = f(x) + f(y) for all (x, y) ∈ ⊥ \Z, where
Z is a “negligible” subset of the (2n− 1)-dimensional manifold ⊥ ⊂ R2n, then
f coincides almost everywhere with some orthogonally additive mapping.

2. Problems and Remarks

1. Remark to Roman Ger’s talk. For the functional equation

(1) f(x+ y) = f(x) + f(y) + 2f(ϕ(x, y))

we can obtain the following regularity result:

Theorem. Let ϕ : R2
+ → R+ be monotone increasing in each of its vari-

ables and f : R+ → R be a monotone increasing function. Then f is convex
(and hence it is continuous everywhere and also differentiable everywhere but
at countably many points).

Proof. Let y ∈ R+ be fixed. Then, by (1),

f(x+ y)− f(x) = f(y) + 2f(ϕ(x, y)), x ∈ R+.
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The right hand side is a monotone increasing function of x, hence, for all fixed
y ∈ R+, the function

x 7→ f(x+ y)− f(x)

is also increasing on R+. This immediately implies that f is Jensen convex.
This, with the monotonicity of f , yields that f is convex on R+. �

Zsolt Páles

2. Remark on the subadditivity of the Takagi function. Motivated by
the discussion of Makó’s talk, we may establish the following

Theorem. The Takagi function

(∗) T (x) =
∞∑

n=0

d(2nx,Z)
2n

, x ∈ R,

is subadditive.

Proof. It is quite easy to verify that the mapping x 7→ d(x,Z), which
expresses the distance of x from the closest integer, is subadditive on R. It is
also clear that the mapping ψ(x) = aϕ(bx) (x ∈ R) is subadditive if ϕ : R → R
is subadditive and a, b are fixed positive real numbers. Hence, each summand
on the right hand side of (∗) is subadditive. Moreover, it is also clear that
the finite sum of subadditive functions is subadditive as well. Finally, since
the pointwise limit of a sequence of subadditive functions is subadditive, we
conclude that the Takagi function, defined by the expression (∗), has to be
subadditive. �

Roman Ger

3. Problems concerning the generalized Takagi functions.

Problem 1. Describe all functions ϕ : R → R such that the mapping

x 7→
∞∑

n=0

ϕ(d(2nx,Z))
2n

is smooth (i.e., continuously differentiable). We know that ϕ(x) = ax2+b has
this property for any real numbers a and b.
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Problem 2. Find all real sequences (cn) such that the mapping

x 7→
∞∑

n=0

cnd(2
nx,Z)

is smooth. We mention cn =
1

22n+1
as an example.

Zsolt Páles

4. Remark on the first ten Debrecen–Katowice Winter Seminars on Func-
tional Equations and Inequalities. The 10th Winter Seminar seems an appro-
priate occasion to list a short survey of these events:
1st: Cieszyn, Poland, February 7–10, 2001
2nd: Hajdúszoboszló, Hungary, January 30 – February 2, 2002
3rd: Będlewo, Poland, January 29 – February 1, 2003
4th: Mátraháza, Hungary, February 4-7, 2004
5th: Będlewo, Poland, February 2–5, 2005
6th: Berekfürdő, Hungary, February 1–4, 2006
7th: Będlewo, Poland, January 31 – February 3, 2007
8th: Poroszló, Hungary, January 30 – February 2, 2008
9th: Będlewo, Poland, February 4–7, 2009
10th: Zamárdi, Hungary, February 3–6, 2010

Participation statistics is presented in the table:

Name 1 2 3 4 5 6 7 8 9 10 Total
Roman Badora × × × × × × × × × × 10
Zoltán Boros × × × × × × × × × × 10
Roman Ger × × × × × × × × × × 10
Attila Gilányi × × × × × × × × × × 10
Gyula Maksa × × × × × × × × × × 10
Janusz Matkowski × × × × × × × × × × 10
Tomasz Szostok × × × × × × × × × × 10
Mihály Bessenyei × × × × × × × × × 9
Zsolt Páles × × × × × × × × × 9
Maciej Sablik × × × × × × × × × 9
Justyna Sikorska × × × × × × × 7
Zoltán Daróczy × × × × × × 6
Attila Házy × × × × × × 6
László Székelyhidi × × × × × × 6
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Name 1 2 3 4 5 6 7 8 9 10 Total
Pál Burai × × × × × × 6
Włodzimierz Fechner × × × × × × 6
Janusz Morawiec × × × × × × 6
Karol Baron × × × × × 5
Zoltán Kaiser × × × × × 5
Barbara Koclęga-Kulpa × × × × × 5
Károly Lajkóó × × × × × 5
Zygfryd Kominek × × × × × 5
Fruzsina Mészáros × × × × × 5
Lech Bartłomiejczyk × × × × 4
Andrzej Olbryś × × × × 4
Barbara Przebieracz × × × × 4
Szabolcs Baják × × × × 4
Eszter Gselmann × × × × 4
László Losonczi × × × 3
Grażyna Łydzińska × × × 3
Wirginia Wyrobek-Kochanek × × × 3
Witold Jarczyk × × 2
Rafał Kapica × × 2
Iwona Pawlikowska × × 2
Péter Czinder × × 2
Antal Járai × × 2
Ágota Orosz × × 2
Janusz Walorski × × 2
Gabriella Hajdu × × 2
Dariusz Sokołowski × × 2
Adrienn Varga × × 2
Lajos Molnár × × 2
Michał Lewicki × × 2
Tomasz Powierza × 1
Borbála Fazekas × 1
Zita Makó × 1
Rezső Lovas × 1
Agata Nowak × 1
Tomasz Kochanek × 1
Judit Makó × 1
Judita Dascăl × 1
Gergő Nagy × 1
Peter Volkmann × 1

Szabolcs Baják and Attila Gilányi
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