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JENSEN CONVEX FUNCTIONS BOUNDED ABOVE
ON NONZERO CHRISTENSEN MEASURABLE SETS

Eliza Jabłońska

Abstract. We prove that every Jensen convex function mapping a real linear
Polish space into R bounded above on a nonzero Christensen measurable set
is convex.

Functions satisfying

(1) f

(
x+ y

2

)
≤ f(x) + f(y)

2

for x, y from the domain being a convex set are called Jensen convex and they
play very important role in many branches of mathematics (more information
on such functions can be find in [5]). A lot of authors were interested in find-
ing conditions which implies the continuity of f satisfying (1). Among others,
W. Sierpiński, A. Ostrowski and M.R. Mehdi showed that every Jensen convex
function which is Lebesgue measurable, or bounded above on a set of positive
Lebesgue measure, or bounded above on a set of second category with the
Baire property, has to be continuous (see [5, Theorems 9.3.1, 9.3.2, p.232 and
Theorem 9.4.2, p.241]. P. Fischer and Z. Słodkowski generalized the result
of Sierpiński; they proved that each Christensen measurable Jensen convex
function mapping a real linear Polish space into R is continuous and convex
(see [4, Theorem 2]). However the following problem seems to be open: does
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each Jensen convex function bounded above on a nonzero Christensen mea-
surable set have to be continuous? This problem was formulated by K. Baron
and R. Ger at the 21st International Symposium on Functional Equations
(1983, Konolfingen, Switzerland) (see [6, 44, Problem (P239),pp. 285–286]).

We prove that each Jensen convex function f : X → R mapping a real
linear Polish space X into R bounded above on a nonzero Christensen mea-
surable set is convex.

First, let us recall some basic definitions (cf. [2]–[4]) concerning Christensen
measurability.

Let X be a real linear Polish space and let M be the σ–algebra of all uni-
versally measurable subsets of X; i.e. M is the intersection of all completions
of the Borel σ–algebra of X with respect to probability Borel measures. In the
following by a measure we mean a countable additive Borel measure extended
to M.

Definition 1. A set B ∈ M is a Haar zero set iff there exists a probability
measure u on X such that u(B + x) = 0 for each x ∈ X. A set P ⊂ X is
a Christensen zero set iff P is a subset of a Haar zero set. A set D ⊂ X
is a Christensen measurable set iff there are B ∈ M and a Christensen zero
set P such that D = B ∪ P . Finally, a function f : X → R is said to be
Christensen measurable iff f−1(U) is a Christensen measurable set for each
open set U ⊂ R.

Lemma 1 ([1, Lemma 14]). Let D ⊂ X be a nonzero Christensen measur-
able set and x ∈ X \ {0}. Then there exist a Borel set Dx ⊂ D and yx ∈ X
such that the set k−1

x (yx + Dx) ⊂ R has positive Lebesgue measure, where
kx : R → X is given by kx(a) = ax.

Now we prove the announced result.

Theorem 1. Assume f : X → R is Jensen convex. If

(2) sup f(C) < ∞

for a nonzero Christensen measurable C ⊂ X, then f is convex.

Proof. Fix x ∈ X \ {0} and z ∈ X, define ϕ : R → R by

(3) ϕ(α) = f(αx+ z) for α ∈ R

and note that it is Jensen convex. According to Lemma 1 there are a Borel
set B ⊂ R of positive Lebesgue measure and a y ∈ X such that

αx− y ∈ C for α ∈ B.
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Consequently, for α ∈ B we have

ϕ

(
α

2

)
= f

(
(αx− y) + (y + 2z)

2

)
≤ f(αx− y) + f(y + 2z)

2
≤ sup f(C) + f(y + 2z)

2

This shows that supϕ
(
1
2B

)
< ∞ and, according to theorem of Ostrowski [5,

Theorem 9.3.1, p.232], ϕ is continuous. Hence, by [5, Theorem 5.3.5, p.133],
ϕ is convex and to finish the proof it is enough to apply the following simple
remark:

If X is a real linear space, then f : X → R is convex if and only if for every
x ∈ X \ {0}, z ∈ X the function (3) is convex. �

Corollary 1. Assume X is a real linear Polish space and f : X → R is
additive. If (2) holds for a nonzero Christensen measurable set C ⊂ X, then
f is linear.
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