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THE GROUP OF BALANCED AUTOMORPHISMS
OF A SPHERICALLY HOMOGENEOUS ROOTED TREE

Adam Woryna

Abstract. Let X∗ be a tree of words over the changing alphabet (X0, X1, . . .)
with Xi = {0, 1, . . . ,mi − 1}, mi > 1. We consider the group Aut(X∗) of
automorphisms of a tree X∗. A cyclic automorphism of X∗ is called constant
if its root permutations at any two words from the same level of X∗ coincide.
In this paper we introduce the notion of a balanced automorphism which is
obtained from a constant automorphism by changing root permutations at all
words ending with an odd letter for their inverses. We show that the set of all
balanced automorphisms forms a subgroup of Aut(X∗) if and only if 2 - mi

implies mi+1 = 2 for i = 0, 1, . . . . We study, depending on a branch index of
a tree, the algebraic properties of this subgroup.

1. Introduction

Nowadays, the groups of automorphisms of a spherically, homogeneous
rooted tree are the subject of intensive investigations. In the majority of
cases these works are concentrated on groups of automorphisms of a regular
tree (see [2, 4, 5] for example) with their self-similar, branch and other ex-
otic subgroups with recursive properties ([1, 3, 4]). These constructions are
usually based on several important types of automorphisms like rooted auto-
morphisms, directed automorphisms or automorphisms defined by finite state
automata (see [3] for example).
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In this paper we introduce a new type of automorphisms of an arbitrary
spherically, homogeneous rooted tree X∗, which we call as balanced auto-
morphisms. The original approach suggested in the paper does not use the
language of wreath products of groups or a wreath recursion, which is common
in describing groups of automorphisms of a spherically homogeneous rooted
tree. Nevertheless, ideas presented in the paper allows to study the structure
based on balanced automorphisms effectively. Among others, we provide gen-
eral condition on a branch index m of the tree X∗ which yields the set Bm of
all balanced automorphisms ofX∗ forms a subgroup of Aut(X∗). We describe,
depending on m, the algebraic properties of the group Bm. In particular, this
construction provides a new concrete realization of an uncountable family of
uncountable metabelian groups.

The structure of the paper is the following. Section 2 recalls only necessary
definitions concerning automorphisms of a spherically, homogeneous rooted
tree, which will be used in our considerations. We define the notions of a tree
of words over the changing alphabet, a branch index and an automorphism of
such a tree, sections, root permutations and a portrait of an automorphism.
We recall some formulas useful in computations over automorphisms of a tree.

In Section 3 we provide the definition of a balanced automorphism as well
as we define the auxiliary group Z± useful in the computation over balanced
automorphisms. In Theorem 3.1 we characterize all branch indexes m which
yield the set Bm is a group and we present Bm as a quotient of Z±. We describe
the case in which Bm is an infinite cartesian product of finite dihedral groups
(Corollary 3.2). In particular, for suitable m the group Bm has the universal
embedding property for finite dihedral groups.

The last section contains our main Theorem 4.1 describing, depending on
m, the algebraic properties of Bm. For instance we characterize the lower and
the upper central series of Bm. We show that Bm is metabelian for each m.
Moreover, Bm is either of finite exponent or contains a free abelian group of
uncountable rank. We prove that Bm is a product of its abelian subgroups
but, in general, it is not a product of its abelian subgroups one of which is
normal.

In the text we denote by (n)m the rest from dividing of n by m. By ≡m

we denote the congruence relation modulo m.

2. Tree of words and its automorphisms

An infinite, spherically homogeneous one-rooted tree of finite valency may
be defined as a tree of words over the so-called changing alphabet, namely
over the infinite sequence
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X = (Xi)i∈N0

of finite, nonempty sets Xi (sets of letters) indexed by the set N0 = N ∪ {0}
of nonnegative integers. A word over X is an empty (denoted by ε) or a finite
sequence of letters x0x1 . . . xn, where xi ∈ Xi for i = 0, 1, . . . , n, n ∈ N0. Then
the set X∗ of all words over X has the structure of a spherically homogeneous
rooted tree which we denote also by X∗. Namely, the root of X∗ is the empty
word ε and the children of any w ∈ X∗ constitute words of the form wx,
where x ∈ Xn and n = |w| denotes the length of w. The set Xn of all words
of a given length n ∈ N0 forms the n-th level of a tree X∗. In particular, the
number of children of any vertex from the n-th level is equal to mn = |Xn|.
The sequence m = (mi)i∈N0

is called the branch index of the tree X∗.
We write Aut(X∗) for the group of automorphisms of the tree X∗. This

is the set of bijections

g : X∗ → X∗, w 7→ wg,

that fix the root vertex ε and preserve the vertex-adjacency. For g ∈ Aut(X∗)
we have |wg| = |w| and, if v is a prefix of w, then vg is a prefix of wg.

From an arbitrary changing alphabet X = (Xi)i∈N0 we may build for any
n ∈ N0 the changing alphabet X(n), where

X(n) = (Xn+i)i∈N0 .

By X∗
(n) we denote a tree of words over X(n) and by Xm

(n) - the m-th level of
X∗

(n), m ∈ N0. Let g ∈ Aut(X∗) and n ∈ N0. For any w ∈ Xn the mapping

g|w : X∗
(n) → X∗

(n), u 7→ ug|w ,

defined by the equality

(wu)g = wgug|w

is called a section of g at w or simply a w-section of g. It is worth to see
that g|w ∈ Aut(X∗

(n)) and g|w|v = g|wv for any v ∈ X∗
(n). Let πg,w be the

restriction of g|w to the set of one letter words. We may treat πg,w as an
element of the symmetric group S(Xn) of the set Xn

πg,w : Xn → Xn, πg,w(x) = xg|w .
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The permutation πg,w is called a root permutation of g at w. Let us put the
set X∗ in a lexicographical order

X∗ = {w0 = ε, w1, w2, . . .}.

The sequence (πg,wi)i∈N0 of root permutations of g ∈ Aut(X∗) is called
a portrait of g. The automorphism g is characterized by its portrait. Namely,
if w = x0x1 . . . xn then

wg = πg,ε(x0)πg,x0
(x1) . . . πg,x0...xn−1

(xn).

In reverse, any sequence (πwi
)i∈N0

∈ S(X|w0|) × S(X|w1|) × . . . constitutes
a portrait of a unique automorphism g ∈ Aut(X∗).

If g, g′ ∈ Aut(X∗) and w ∈ X∗ then one may verify (see for example [3])
the following equalities

(1) gg′|w = g|wg′|wg , g−1|w =
(
g|wg−1

)−1
.

In particular for the root permutation of the product gg′ and the root per-
mutation of the inverse g−1 at w we obtain formulas

(2) πgg′,w = πg,wπg′,wg , πg−1,w =
(
πg,wg−1

)−1
.

3. The group Bm of balanced automorphisms

From now we will consider the changing alphabet X = (Xi)i∈N0 in which

(3) Xi = {0, 1, . . . ,mi − 1},

where mi > 1 for every i ∈ N0. Further we will consider the so called cyclic
automorphisms of a tree X∗. An automorphism g ∈ Aut(X∗) is called cyclic
if for every i ∈ N0 all its root permutations at words from the i-th level of X∗

are powers of the cycle

σi = (0, 1, . . . ,mi − 1).

By formulas (2) we see that the product of cyclic automorphisms as well as an
inverse to a cyclic automorphism is cyclic. Thus the set CAut(X∗) of cyclic
automorphisms is a subgroup of the group Aut(X∗). Obviously, this subgroup
is proper and uncountable. In the subgroup CAut(X∗) we consider the set of
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constant automorphisms; namely g ∈ CAut(X∗) is constant if πg,w = πg,w′

for any w,w′ from the same level of X∗. Thus for every i ∈ N0 the restriction
of the portrait of any constant automorphism g to the i-th level of X∗ is
uniquely defined by a number αi ∈ {0, 1, . . . ,mi − 1} for which we have
πg,w = σαi

i for every w ∈ Xi. One easily checks that the set of constant
automorphisms is a proper, uncountable subgroup of CAut(X∗) isomorphic,
via g 7→ (α0, α1, α2, . . .), to the infinite cartesian product

∏
i∈N0

Zmi of cyclic

groups.
The main idea of this paper is based on the following generalization of the

above concept of a constant automorphism.

Definition 3.1. An automorphism g ∈ CAut(X∗) is called balanced if the
root permutations of g at any words w, w′ from the same level of X∗ depend
merely on the parity of last letters of w and w′ in the following way: if the
last letters of w and w′ are of the same parity then πg,w′ = πg,w and if these
letters are of different parity then πg,w′ = π−1

g,w.

In other ways every balanced automorphism may be obtained from the
corresponding constant automorphism by replacing all its root permutations
at words ending with an odd letter with their inverses.

The set of all balanced automorphisms of a tree X∗ is defined uniquely by
the branch index m = (mi)i∈N0 of X∗. We denote this set by Bm.

Let ZN0 be the set of all mappings α : N0 → Z. According to the above
definition g ∈ Bm if and only if there exists α ∈ ZN0 such that the root
permutation of g at any w ∈ Xi (i ∈ N0) is equal to

πg,w =

{
σ
α(0)
0 , if i = 0,

σ
α(i)·(−1)x

i , if i > 0,

where x ∈ Xi−1 is the last letter of w. We denote by gα the balanced auto-
morphism defined by α ∈ ZN0 .

For any α, β ∈ ZN0 we define a product αβ ∈ ZN0 as follows

(4) (αβ)(i) = α(i) + β(i) · (−1)α(i−1), i ∈ N0.

In the above formula we assume α(−1) = 0.

Proposition 3.1. The set ZN0 with the product (4) forms a group, which
we denote by Z±. The zero-mapping θ(i) ≡ 0 is a neutral element in Z± and
for the inverse to α we have

α−1(i) = −α(i) · (−1)α(i−1), i ∈ N0.
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Proof. We directly verify that αθ = θα = α and α−1α = θ for any
α ∈ ZN0 . Moreover, for any α, β, γ ∈ ZN0 and any i ∈ N0 we have

((αβ)γ)(i) = (α(βγ))(i)

= α(i) + (−1)α(i−1) · β(i) + (−1)α(i−1)+β(i−1) · γ(i).

Thus (αβ)γ = α(βγ) and ZN0 forms a group with the product (4). �

Theorem 3.1. The set Bm of all balanced automorphisms forms a sub-
group in Aut(X∗) if and only if the branch index m satisfies

(5) 2 - mi−1 ⇒ mi = 2 for i > 0.

In case of (5) the following equalities hold for any α, β ∈ Z±

(6) gαgβ = gαβ, (gα)
−1 = gα−1 .

Proof. Suppose that Bm is a group and 2 - mi−1 for some fixed i > 0.
Let α, β ∈ Z± be such that α(i− 1) = 1, α(i) = 0, β(i) = 1. Let g = gα and
g′ = gβ. Let w ∈ Xi and let x ∈ Xi−1 be the last letter of w. Then the root
permutations of g and g′ at w are equal to

πg,w = σ
α(i)·(−1)x

i = IdXi ,

πg′,w = σ
β(i)·(−1)x

i = σ
(−1)x

i .

Thus from the equality πgg′,w = πg,wπg′,wg we obtain

πgg′,w = σ
(−1)z

i ,

where z is the last letter of wg. But w = vx for some v ∈ Xi−1 and thus
wg = vgxg|v = vgπg,v(x). Hence z = πg,v(x). For πg,v we have two possibilities

πg,v = σ
α(i−1)
i−1 = σi−1 or πg,v = σ

−α(i−1)
i−1 = σ−1

i−1.

In consequence z = (x+ 1)mi−1 or z = (x− 1)mi−1 . Thus

πgg′,w = σ
(−1)

(x+1)mi−1

i or πgg′,w = σ
(−1)

(x−1)mi−1

i .
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Since Bm is a group there is γ ∈ Z± defining gg′. Hence πgg′,w = σ
γ(i)·(−1)x

i .
Since w was chosen arbitrarily and the order of σi ∈ S(Xi) is mi we obtain

γ(i) · (−1)x ≡mi (−1)(x+1)mi−1 for all x ∈ Xi−1

or

γ(i) · (−1)x ≡mi (−1)(x−1)mi−1 for all x ∈ Xi−1.

In the first case by substitution x = 0 and x = mi−1 − 1 we have respectively
γ(i) ≡mi

−1 and γ(i) ≡mi
1. In the second case by substitution x = 0 and

x = mi−1− 1 we have respectively γ(i) ≡mi
1 and γ(i) ≡mi

−1. Thus in each
case we obtain 0 ≡mi

2. In consequence mi = 2.
Now, we show that the condition (5) implies the equalities (6). In con-

sequence we obtain that Bm is a group. So, let α, β ∈ Z± and let g = gα,
g′ = gβ, g′′ = gγ , where γ = αβ. Let w be any word of the length i > 0 and
let x be the last letter of w. Then the root permutations of g, g′ and g′′ at w
are equal to

πg,w = σ
α(i)·(−1)x

i , πg′,w = σ
β(i)·(−1)x

i , πg′′,w = σ
γ(i)·(−1)x

i ,

where γ(i) = (αβ)(i) = α(i) + β(i) · (−1)α(i−1). As before, we compute the
root permutation of gg′ at w

πgg′,w = πg,wπg′,wg = σ
α(i)·(−1)x

i σ
β(i)·(−1)z

i = σ
α(i)·(−1)x+β(i)·(−1)z

i ,

where z is the last letter of the word wg. As before, we obtain z = σ
±α(i−1)
i−1 (x).

Hence, if mi−1 is even we have z ≡2 x+ α(i− 1). In consequence in this case

πgg′,w = σ
α(i)·(−1)x+β(i)·(−1)z

i = σ
γ(i)·(−1)x

i = πg′′,w.

If mi−1 is odd then mi = 2 and σi = (0, 1). From the congruence

α(i) · (−1)x + β(i) · (−1)z ≡2 γ(i) · (−1)x,

we have in this case πgg′,w = σ
γ(i)·(−1)x

i = πg′′,w. The root permutations of
g′′ and gg′ at the empty word coincide and are equal to σα(0)+β(0)

0 . Thus the
portraits of g′′ and gg′ coincide and g′′ = gg′. Now, since gθ = IdX∗ we have
gαgα−1 = gαα−1 = gθ = IdX∗ . �
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Since mi is the order of the cycle σi ∈ S(Xi) we obtain for any α, β ∈ Z±

gα = gβ iff α(i) ≡mi β(i) for i ∈ N0.

In particular,

gα = IdX∗ iff α(i) ≡mi 0 for i ∈ N0.

The following statement is a direct consequence of Theorem 3.1 and the
above observation.

Corollary 3.1. If the branch index m = (mi)i∈N0
satisfies (5) then the

function

ψ : Z± → Bm, ψ(α) = gα

is a group epimorphism with the kernel

ker(ψ) = {α ∈ Z± : α(i) ≡mi 0 for i ∈ N0}.

If Gi (i ∈ N0) is a group then by
∏
i
Gi we will denote the infinite cartesian

product of Gi’s ∏
i

Gi = G0 ×G1 ×G2 × . . . .

Corollary 3.2. If m = (2,m1, 2,m3, 2,m5, . . .) then Bm is isomorphic
to the product

∏
i
D2ni of finite dihedral groups D2ni , where ni = m2i+1 for

i ∈ N0. In particular, for the branch index of the form m = (2, 3, 2, 4, 2, 5, . . .)
the group Bm has the universal embedding property for finite dihedral groups.

Proof. The finite dihedral group D2n is a group of all symmetries of a
regular polygon with n sides. It is known that D2n is isomorphic to the semi-
direct product Zn o Z2 with the action of Z2 by inverting elements. For any
α ∈ Z± let us denote Λα = (Λα(i))i∈N0 , where

Λα(i) = ((α(2i+ 1))ni
, (α(2i))2), i ∈ N0.

We have Λα(i) ∈ D2ni and Λα ∈
∏
i
D2ni . Moreover, gα = gβ iff Λα = Λβ.

Thus

φ : Bm →
∏
i

D2ni , φ(gα) = Λα
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is a well defined, one-to-one mapping. Obviously, φ is onto. Moreover, for
any α, β ∈ Z± and any i ∈ N0 we compute

Λα(i)Λβ(i) = ((α(2i+ 1))ni , (α(2i))2) · ((β(2i+ 1))ni , (β(2i))2)

= ((α(2i+ 1) + (−1)α(2i) · β(2i+ 1))ni , (α(2i) + β(2i))2)

= ((αβ(2i+ 1))ni , (αβ(2i))2) = Λαβ(i).

In consequence ΛαΛβ = Λαβ and φ is an isomorphism by Theorem 3.1. �

4. Algebraic properties of Bm

The lower central series of any group G we define in a standard way
Γ0(G) = G, Γs+1(G) = [Γs(G), G] for s ∈ N0. We also denote

Γ(G) =
⋂

s∈N0

Γs(G).

It is known that G is residually nilpotent if and only if Γ(G) = {1G}. The
upper central series of G is defined as follows. Z0(G) = {1G} and Zs+1(G) is
the unique subgroup of G such that

Zs+1(G)/Zs(G) = Z(G/Zi(G)),

where Z(G) denotes the center of G. For any group G the following equalities
hold: Z1(G) = Z(G) and

(7) Zs+1(G) = {x ∈ G : [x, y] ∈ Zs(G) for y ∈ G}, s ∈ N0.

The subgroup Zs(G) is called the s-th center of G. One can continue the
upper central series (7) to infinite ordinal numbers via transfinite recursion;
for a limit ordinal λ, define Zλ(G) =

⋃
δ<λ

Zδ(G). The limit of this process

(the union of the higher centers) is called the hypercenter of the group. If the
transfinite upper central series stabilizes at the whole group, then the group
is called hypercentral. Hypercentral groups have many properties of nilpo-
tent groups, such as the normalizer condition (the normalizer of a proper
subgroup properly contains the subgroup), elements of coprime orders com-
mute, and periodic hypercentral groups are the direct product of their Sylow
p-subgroups.
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Proposition 4.1. For s > 0 we have
(i) Γs(Z±) = {α ∈ Z± : α(0) = 0 and α ∈ (2sZ)N0},
(ii) Zs(Z±) = Z(Z±) = {α ∈ Z± : α(0) ∈ 2Z and α(i) = 0 for i > 0}.
In particular Γ(Z±) = {θ} and thus Z± is residually nilpotent.

Proof. (i) Let ∆s be the right side of (i). Directly by definition of Z±

we see that ∆s is a subgroup of Z±. For any α, β ∈ Z± we have

[α, β](i) = −α(i) · (−1)α(i−1) · (1− (−1)β(i−1))(8)

+ β(i) · (−1)β(i−1) · (1− (−1)α(i−1)), i ∈ N0.

In particular [α, β](0) = 0 and [α, β] ∈ (2Z)N0 . Thus [α, β] ∈ ∆1. Since ∆1

is a subgroup of Z± we obtain Γ1(Z±) ⊆ ∆1. Conversely, for any γ ∈ ∆1

we easily verify that [α, β] = γ, where α, β ∈ Z± are defined as follows.
β(i) = 1 for i ∈ N0 and α is defined recursively by α(0) = 0 and α(i) =
(1/2) · (1 − (1 + γ(i)) · (−1)α(i−1)). In consequence ∆1 = Γ1(Z±). Let us
assume that Γs(Z±) = ∆s for some s ≥ 1. Then for any α ∈ ∆s and any
β ∈ Z± we have

[α, β](i) = −α(i) · (1− (−1)β(i−1)) ∈ 2s+1Z.

Thus [α, β] ∈ ∆s+1 and in consequence Γs+1(Z±) ⊆ ∆s+1. Conversely, for
any γ ∈ ∆s+1 we have [α, β] = γ, where α ∈ ∆s and β ∈ Z± are defined as
follows: α(i) = −γ(i)/2 and β(i) = 1 for i ∈ N0. Hence ∆s+1 ⊆ Γs+1(Z±)
and finally ∆s+1 = Γs+1(Z±). The inductive argument finishes the proof.

(ii) Let α ∈ Z1(Z±) and let i > 0. Let β ∈ Z± be such that β(i) = 0 and
β(i− 1) = 1. From

(9) αβ(i) = βα(i)

we obtain α(i) = 0. For β ∈ Z± such that β(i) = 1 and β(i − 1) = 0 we
have (−1)α(i−1) = 1, by (9). Hence α(i− 1) ∈ 2Z. In consequence α(0) ∈ 2Z
and α(i) = 0 for i > 0. Conversely, let α ∈ Z± be such that α(0) ∈ 2Z and
α(i) = 0 for i > 0. We easily verify that (9) holds for any β ∈ Z± and any
i ∈ N0. Thus α ∈ Z1(Z±). Let us assume that the thesis holds for some
s ≥ 1. Let α ∈ Zs+1(Z±). Thus for any β ∈ Z± we have [α, β] ∈ Zs(Z±).
In particular, by induction assumption [α, β](i) = 0 for any i > 0. Let i > 0
and let β ∈ Z± be such that β(i) = 0 and β(i− 1) = 1. By (8) we obtain

[α, β](i) = −2 · α(i) · (−1)α(i−1).
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Hence α(i) = 0. In consequence, for β ∈ Z± with β(i) = 1 and β(i − 1) = 0
we have

[α, β](i) = 1− (−1)α(i−1).

Hence α(i − 1) ∈ 2Z. In consequence α(0) ∈ 2Z and α(i) = 0 for i > 0.
Conversely, let α ∈ Z± be such that α(0) ∈ 2Z and α(i) = 0 for i > 0.
Then, as we have shown above α ∈ Z1(Z±). In consequence α ∈ Zs+1(Z±).
The inductive argument finishes the proof. �

Let us fix the branch index m = (mi)i∈N0
, which satisfies condition (5), so

that the set

B = Bm

is a group. For each s ∈ N we consider the sequence n(s) = (ni(s))i∈N0 , where

n0(s) = 1, ni(s) = mi/ gcd(2
s,mi) for i > 0.

As well as we consider the set

Js = {i ∈ N : mi - 2s}.

We also consider the sequence n = (ni)i∈N0 , where

n0 = 1, ni = mi/max{2l : 2l | mi} for i > 0.

In other words ni for i > 0 constitutes the “odd factor” of mi.

Proposition 4.2. For α ∈ Z± and s > 0 we have
(i) gα ∈ Γs(B) if and only if α(i) ≡mi/ni(s) 0 for i ∈ N0.
(ii) gα ∈ Γ(B) if and only if α(i) ≡mi/ni

0 for i ∈ N0.
(iii) gα ∈ Zs(B) if and only if α(i− 1) ≡2 0 and 2s · α(i) ≡mi 0 for i ∈ Js.

Proof. (i) By Corollary 3.1 for any α ∈ Z± and any s ∈ N we have
gα ∈ Γs(B) if and only if α(i) ≡mi γ(i) for some γ ∈ Γs(Z±) and any i ∈ N0.
Now, the assertion follows from Proposition 4.1.

(ii) By (i) we have gα ∈ Γ(B) if and only if for each s ∈ N the congruence
α(i) ≡mi/ni(s) 0 holds for any i ∈ N0. Simple calculations give the assertion.

(iii) We use the induction on s. So, let gα ∈ Z1(B) = Z(B) and let i ∈ J1.
Then for any β ∈ Z± we have

(10) αβ(i) ≡mi βα(i).
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Let β ∈ Z± be such that β(i) = 1 and β(i − 1) = 0. From (10) we have
(−1)α(i−1) ≡mi 1. Since mi - 2 we have in consequence α(i − 1) ≡2 0. Let
β ∈ Z± be such that β(i) = 0 and β(i − 1) = 1. From (10) we obtain
2 · α(i) ≡mi 0. Conversely, let α ∈ Z± be such that α(i − 1) ≡2 0 and
2 · α(i) ≡mi 0 for all i ∈ J1. Then (−1)α(i−1) = 1 and 2 · α(i) ≡mi 0 for
all i ∈ N0. In consequence (10) holds for any β ∈ Z± and any i ∈ N0.
Thus gα ∈ Z1(B) and the thesis of the point (iii) is true for s = 1. Let us
assume that the thesis holds fore some s ≥ 1. Let gα ∈ Zs+1(B). Then
[gα, gβ] = g[α,β] ∈ Zs(B) for any β ∈ Z±. By inductive assumption we have
for any β ∈ Z± and any i ∈ Js

2s · [α, β](i) ≡mi
0.

Let i ∈ Js+1 and let β ∈ Z± be such that β(i− 1) = 0 and β(i) = 1. Then

2s · [α, β](i) = 2s · (1− (−1)α(i−1)).

Since Js+1 ⊆ Js we have 2s · (1− (−1)α(i−1)) ≡mi 0. Since mi - 2s+1 we have
in consequence α(i − 1) ≡2 0. Now, let β ∈ Z± be such that β(i − 1) = 1.
Then we compute

2s · [α, β](i) = −2s+1 · α(i).

In consequence 2s+1 · α(i) ≡mi 0. Conversely, let α ∈ Z± be such that
α(i− 1) ≡2 0 and 2s+1 · α(i) ≡mi 0 for any i ∈ Js+1. Let β ∈ Z±. Then

(11) [α, β](i− 1) ≡2 0 and 2s · [α, β](i) ≡mi 0 for i ∈ Js.

The first congruence is obvious. For the second one note that if i ∈ Js+1 then
from α(i− 1) ≡2 0 we obtain

2s · [α, β](i) =
{

0, if β(i− 1) ≡2 0,
−2s+1 · α(i), if β(i− 1) ≡2 1.

Thus 2s · [α, β](i) ≡mi 0. If i /∈ Js+1 then mi | 2s+1 and from [α, β](i) ≡2 0
we have

2s · [α, β](i) ≡2s+1 0.

Thus 2s · [α, β](i) ≡mi
0. By inductive assumption we have from (11)

[gα, gβ] = g[α,β] ∈ Zs(B)

for β ∈ Z±. In consequence gα ∈ Zs+1(B). �
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Proposition 4.3. If N is a normal, abelian subgroup of B and gα ∈ N
then for each i ∈ N0 we have α(i − 1) ≡2 0 or mi ∈ {2, 4}. In particular,
if mi > 4 for each i ∈ N0 then the commutator subgroup B′ = Γ1(B) is
the greatest normal abelian subgroup of B as well as B′ is a maximal abelian
subgroup of B.

Proof. Let us fix i ∈ N0 and let β ∈ Z± be such that β(i − 1) = 0 and
β(i) = 1. Since N is normal, we have gβαβ−1 = gβgαgβ

−1 ∈ N . Since N is
abelian, we have

gα−1βαβ−1 = gα
−1 · (gβαβ−1) = (gβαβ−1) · gα−1 = gβαβ−1α−1 .

In particular (α−1βαβ−1)(i) ≡mi
(βαβ−1α−1)(i). We compute

(α−1βαβ−1)(i) = (−1)α(i−1) − 1

and

(βαβ−1α−1)(i) = 1− (−1)α(i−1).

Hence (−1)α(i−1) − 1 ≡mi 1 − (−1)α(i−1). In consequence α(i − 1) ≡2 0 or
mi ∈ {2, 4}. �

Remark 4.1. If mi = 4 for any i ∈ N0 then the set {gα : α ∈ {0, 2}N0} ∪
{gα : α ∈ {1, 3}N0} is a normal, abelian subgroup of B which contains the
commutator subgroup B′ = {gα : α ∈ {0, 2}N0} properly.

For ε ∈ {0, 1} let us consider the following set

Kε = {gα : α(2N0 + ε) = {0}} .

Proposition 4.4. Kε is a subgroup of B, which is isomorphic to
∏
i
Zmιi

,

where ιi = 2i+ (ε+ 1)2.

Proof. Let gα, gβ ∈ Kε. Then α(2i+ ε) = β(2i+ ε) = 0 and

(αβ−1)(2i+ ε) = α(2i+ ε)− β(2i+ ε) · (−1)α(2i+ε−1)+β(2i+ε−1) = 0

for i ∈ N0. In consequence gα(gβ)−1 = gαβ−1 ∈ Kε. Hence Kε is a subgroup
of B. Moreover, gα = gβ iff α(ιi) ≡mιi

β(ιi) for i ∈ N0. Thus

φ : Kε →
∏
i

Zmιi
, φ(gα) = ((α(ιi))mιi

)i∈N0 , i ∈ N0,
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defines a bijection. Moreover, since α(ιi − 1) = α(2i− ε) = 0, we have for the
i-th coordinate of φ(gαgβ)

φ(gαgβ)(i) = φ(gαβ)(i) = (αβ(ιi))mιi

= (α(ιi) + β(ιi))mιi

= φ(gα)(i)φ(gβ)(i).

Thus φ is an isomorphism. �

Theorem 4.1. (i) For s > 0 the group Γs(B) is isomorphic to
∏
i>0

Zni(s).

The group Γ(B) is isomorphic to
∏
i>0

Zni
.

(ii) B is nilpotent of a class s if and only if mi is a power of two for i > 0
and max{mi : i ∈ N} = 2s; B is residually nilpotent if and only if mi is
a power of two for any i > 0.

(iii) The center Z(B) is trivial if and only if the following conditions hold:
(a) m0 = 2,
(b) mi = 2 ⇒ 2 - mi−1 for i > 0,
(c) 4 - mi for i > 0.

(iv) The hypercenter of B is equal to Zω(B) =
⋃

s∈N0

Zs(B). Moreover, B is

hypercentral if and only if it is a nilpotent group.
(v) B is metabelian with a semigroup law x2y2 = y2x2.
(vi) The abelianization B/B′ is isomorphic to Zm0 ×

∏
i∈I

Z(i)
2 , where Z(i)

2 is

an isomorphic copy of Z2 and I = {i ∈ N : 2 | mi}.
(vii) B = K0K1 and K0 ∩ K1 = {IdX∗}.
(viii) If there is s > 0 such that ms,ms+1 /∈ {2, 4} and 4 | ms then B is not a

product of its abelian subgroups of which one is normal; in particular B
is not a semidirect product of its abelian subgroups.

(ix) Let M = supm. If M < ∞ then B is of finite exponent. If M = ∞
then B contains a free abelian group of an uncountable rank.

Proof. (i) From the point (i) of Proposition 4.2 for any gα, gβ ∈ Γs(B)
we obtain by easy calculations gα = gβ iff

α(i)

mi/ni(s)
≡ni(s)

β(i)

mi/ni(s)
for i > 0.

Thus φs : Γs(B) →
∏
i>0

Zni(s), where

φs(gα) =

(( α(i)

mi/ni(s)

)
ni(s)

)
i>0
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is a well defined, one to one mapping. Moreover, φs is onto. Indeed, since
for i > 0 the numbers ni(s) and ti(s) = 2s · ni(s)/mi are coprime, there are
integers ai, bi such that ai ·ni(s)+bi ·ti(s) = 1. For any k = (ki)i>0 ∈

∏
i>0

Zni(s)

we define α ∈ Z± as follows α(0) = 0 and α(i) = 2s · bi · ki for i > 0. Then
gα ∈ Γs(B) and φs(gα) = k. To show φs is a homomorphism we consider
for any i > 0 two cases: 2 - mi−1 and 2 | mi−1. In the first case mi = 2 by
condition (5) and thus ni(s) = 1. In consequence the i-th coordinate φs(gα)(i)
of φs(gα) is equal to 0 for any gα ∈ Γs(B). In consequence for any gβ ∈ Γs(B)
we have

φs(gαgβ)(i) = φs(gα)(i)φs(gβ)(i) = 0.

In the second case gα ∈ Γs(B) implies α(i− 1) ≡2 0 by the point (i) of Propo-
sition 4.2. Thus (−1)α(i−1) = 1 and for any gβ ∈ Γs(B) the i-th coordinate of
φs(gαgβ) is equal to

φs(gαβ)(i) =
( αβ(i)

mi/ni(s)

)
ni(s)

=
( α(i)

mi/ni(s)
+

β(i)

mi/ni(s)

)
ni(s)

= φs(gα)(i)φs(gβ)(i).

In consequence φs(gαgβ) = φs(gα)φs(gβ) for any gα, gβ ∈ Γs(B). Thus φs is
an isomorphism. In the similar way for any gα, gβ ∈ Γ(B) we obtain gα = gβ iff

α(i)

mi/ni
≡ni

β(i)

mi/ni
for i > 0.

Thus φ : Γ(B) →
∏
i>0

Zni , where

φ(gα) =

(( α(i)

mi/ni

)
ni

)
i>0

is a well defined, one to one mapping. Since for i > 0 the numbers ni and
ti = mi/ni are coprime, there are integers ci, di such that ci · ni + di · ti = 1.
Then for any k = (ki)i>0 ∈

∏
i>0

Zni we take α ∈ Z± such that α(0) = 0 and

α(i) = ki · di · ti for i > 0. Then gα ∈ Γ(B) and φ(gα) = k. In consequence φ
is bijective. As before we show that φ is a homomorphism.

(ii) By (i) the group B is nilpotent of a class s > 0 iff ni(s) = 1 for each
i > 0 and there is i0 such that ni0(s− 1) 6= 1. Equivalently, mi | 2s for i > 0
and mi0 - 2s−1 for some i0 > 0. That is to say mi is a power of two for
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any i > 0 and max{mi : i ∈ N} = 2s. Next, by (i) the group B is residually
nilpotent iff ni = 1 for i > 0. Equivalently, mi is a power of two for each i > 0.

(iii) If m0 6= 2 then Z(B) is not trivial. Indeed, for α ∈ Z± such that
α(0) = 2 and α(i) = 0 for i > 0 we have gα 6= IdX∗ . Moreover, by the
point (iii) of Proposition 4.2 we have gα ∈ Z(B). Similarly, if mi = 2 and
2 | mi−1 for some i > 0 then gα 6= IdX∗ and gα ∈ Z(B) for any α ∈ Z± such
that α(i− 1) = mi−1/2 and α(j) = 0 for j 6= i− 1. If 4 | mi for some i ∈ N0

then for the element gα with α ∈ Z± such that α(i) = mi/2 and α(j) = 0
for j 6= i we have: gα ∈ Z(B) and gα 6= IdX∗ . Thus if Z(B) is trivial then
the conditions (a)-(c) hold. Conversely, let us assume that (a)-(c) hold. Let
gα ∈ Z(B) for some α ∈ Z±. We must show that α(i) ≡mi

0 for all i ∈ N0.
It follows by (a) and (b) that 1 ∈ J1. Thus α(0) ≡2 0 by the point (iii) of
Proposition 4.2. Since m0 = 2 we have α(0) ≡m0

0. Let i > 0. We distinguish
the following cases.

Case 1: 2 - mi. Thus i ∈ J1 and by the point (iii) of Proposition 4.2
we have 2 · α(i) ≡mi 0. Since the numbers 2 and mi are coprime we obtain
α(i) ≡mi 0.

Case 2: mi = 2. Thus i+1 ∈ J1 by (b). By the point (iii) of Proposition 4.2
we have α(i) ≡2 0 and since mi = 2 we have α(i) ≡mi 0.

Case 3: mi 6= 2 and 2 | mi. Thus i ∈ J1 and by the point (iii) of
Proposition 4.2 we have 2 · α(i) ≡mi 0. Since gcd(2,mi) = 2, we obtain from
the last congruence α(i) ≡mi/2 0. Moreover, i+1 ∈ J1 by (b). Thus α(i) ≡2 0
by the point (iii) of Proposition 4.2. By condition (c) the numbers mi/2 and
2 are coprime. Thus α(i) ≡mi 0.

(iv) Let gα ∈ B be such that [gα, gβ] = g[α,β] ∈ Zω(B) for any gβ ∈ B.
Since Zω(B) is a normal subgroup of B, it is sufficient to prove gα ∈ Zω(B).
By the point (iii) of Proposition 4.2, for each β ∈ Z± there is s ∈ N such that

2s · [α, β](i) ≡mi 0 for i ∈ Js.

Let β ∈ Z± be such that β(i) = 2 for any i ∈ N0 and let s0 ∈ N be the
corresponding number. Then we have

2s0 · [α, β](i) = 2s0+1 · (1− (−1)α(i−1)) ≡mi 0 for i ∈ Js0 .

Since Js0+2 ⊆ Js0 we obtain α(i− 1) ≡2 0 for any i ∈ Js0+2. Let β′ ∈ Z± be
such that β′(i) = 1 for any i ∈ N0 and let s1 be the corresponding number for
β′. Then we have

2s1 · [α, β′](i) = 2s1 · ((−1)α(i−1) · (1− 2 · α(i))− 1) ≡mi 0 for i ∈ Js1 .

For s = max(s0 + 2, s1 + 1) we have Js ⊆ Js1 and Js ⊆ Js0+2. Hence from
the last congruence we obtain 2s1+1 · α(i) ≡mi

0 for i ∈ Js. In consequence
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α(i − 1) ≡2 0 and 2s · α(i) ≡mi 0 for i ∈ Js. Thus gα ∈ Zs(B) by the
point (iii) of Proposition 4.2. In consequence gα ∈ Zω(B). To prove the
second part of (iv) let us assume that Zω(B) = B. Let α ∈ Z± be such that
α(i) = 1 for any i ∈ N0. There is s ∈ N such that gα ∈ Zs(B). By the
point (iii) of Proposition 4.2 we have in particular 2s · α(i) ≡mi 0 for any
i ∈ Js. Since α(i) = 1 the set Js must be empty. In consequence Zs(B) = B
and B is nilpotent.

(v) For any α, β ∈ Z± we have [α, β] ∈ (2Z)N0 . Hence for any α, β, γ, δ ∈
Z± we have

[α, β][γ, δ](i) = [γ, δ][α, β](i) = [α, β](i) + [γ, δ](i).

In consequence Z±′′
= [Z±′

,Z±′
] = {θ}. Moreover, α2 ∈ (2Z)N0 for any

α ∈ Z±. Thus α2β2 = β2α2 for any α, β ∈ Z±. Now, the assertion follows
from Corollary 3.1.

(vi) By the point (i) of Proposition 4.2 we have gαB′ = gβB′ iff

(12) αβ−1(i) ≡mi/ni(1) 0 for i ∈ N0.

Since n0(1) = 1, ni(1) = mi/2 for i ∈ I and ni(1) = mi for i /∈ I ∪ {0} we
obtain that (12) is equivalent to the following set of congruences

α(0) ≡m0 β(0), α(i) ≡2 β(i) for i ∈ I.

Thus

φ : B/B′ → Zm0 ×
∏
i∈I

Z(i)
2 , φ(gαB′)(i) =

{
(α(0))m0 , for i = 0,

(α(i))2, for i ∈ I

is a well defined bijection. Moreover, for any i ∈ I ∪ {0} one easily verifies

φ(gαgβB′)(i) = φ(gαβB′)(i) = φ(gαB′)(i)φ(gβB′)(i).

Thus φ is an isomorphism.
(vii) Obviously K0 ∩ K1 = {gθ} = {IdX∗}. Now, for any α ∈ Z± and

ε ∈ {0, 1} we define the element αε ∈ Z± as follows

αε(i) = α(i) · ((i)2 − ε)α(i−1), i ∈ N0.

In the right side of the above formula we assume 00 = 1. Then gαε ∈ Kε and
α = α0α1. Thus gα = gα0gα1 and B = K0K1.

(viii) Suppose not and let B = NK, where N and K are abelian subgroups
and N is normal. For each γ ∈ Z± there are gα ∈ N , gβ ∈ K such that
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gγ = gαgβ = gαβ. In particular γ(s−1) ≡ms−1 αβ(s−1) and γ(s) ≡ms αβ(s).
Thus

(13) γ(s− 1) ≡ms−1 α(s− 1) + β(s− 1) · (−1)α(s−2)

and

(14) γ(s) ≡ms
α(s) + β(s) · (−1)α(s−1).

Both ms−1 and ms are even (otherwise ms = 2 or ms+1 = 2 by Theorem 3.1).
Moreover, by Proposition 4.3 we have α(s− 1) ≡2 α(s) ≡2 0. Thus from (13)
and (14) we obtain γ(s− 1) ≡2 β(s− 1) and γ(s) ≡2 β(s). Now, let γ ∈ Z±

be such that γ(s− 1) = 0 and γ(s) = 1. Then there is gβ ∈ K such that

0 ≡2 β(s− 1),(15)

1 ≡2 β(s).(16)

Similarly, let γ′ ∈ Z± be such that γ′(s − 1) = 1. Then there is gβ′ ∈ K
such that

(17) 1 ≡2 β
′(s− 1).

Since K is abelian we have gββ′ = gβgβ′ = gβ′gβ = gβ′β. In particular,
ββ′(s) ≡ms β

′β(s) or equivalently

β(s) + (−1)β(s−1) · β′(s) ≡ms β
′(s) + (−1)β

′(s−1) · β(s).

By using (15) and (17) the last congruence we may rewrite as

β(s) + β′(s) ≡ms β
′(s)− β(s).

Thus 2β(s) ≡ms 0. Since 4 | ms we obtain β(s) ≡2 0 contrary to (16).
(ix) For any integer n and any α ∈ Z± the n-th power of α is equal to

(αn)(i) = α(i) ·
(
n+

[n
2

]
·
(
(−1)α(i−1) − 1

))
, i ∈ N0.

The proof of the above formula is straightforward or by induction on n. Now,
if M <∞ then for the M !-th power of α we have

(αM !)(i) =M ! · α(i) · (1 + (−1)α(i−1))

2
≡mi 0 for i ∈ N0.
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Thus (gα)
M ! = IdX∗ . On the other hand, if M = ∞ then for any s > 0 the

sequence n(s) = (ni(s))i∈N0 is unbounded. It is known that in this case the
product

∏
i>0

Zni(s) contains a free abelian group of an uncountable rank. Thus

by (i) the subgroup Γs(B) and in consequence the whole group B contains
such a free abelian group. �

Corollary 4.1. There are uncountable many pairwise non-isomorphic
groups in the set {Bm : m ∈ (2N)N0}.

Proof. Let P = {p1, p2, . . .} and P ′ = {p′1, p′2, . . .} be two infinite subsets
of the set of all primes such that P 6= P ′. Let us consider the following branch
indexes

mP = (2, 2p1, 2p2, . . .), mP ′ = (2, 2p′1, 2p
′
2, . . .).

As a direct consequence of the point (i) of Theorem 4.1 we obtain that the
groups Γ1(BmP

) and Γ1(BmP ′ ) are not isomorphic. In consequence BmP
and

BmP ′ are not isomorphic. �
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