ON REPRESENTATION BY EXIT LAWS FOR SOME BOCHNER SUBORDINATED SEMIGROUPS

Mohamed Hmissi, Hassen Mejri

Abstract. This paper is devoted to the integral representation of potentials by exit laws in the framework of sub-Markovian semigroups of kernels acting on $L^2(m)$. We mainly investigate subordinated semigroups in Bochner sense by means of subordinators with complete Bernstein functions. As application, we give a representation for the original semigroup.

1. Introduction

Let $\mathbb{P} = (\mathbb{P}_t)_{t\geq 0}$ be a sub-Markovian semigroup of kernels on $L^2(m)$. A \mathbb{P} -exit law is a family $\varphi = (\varphi_t)_{t>0}$ of $L^2_+(m)$ satisfying the functional equation

(1.1)
$$P_s\varphi_t = \varphi_{s+t}, \quad s, t > 0.$$

This notion is first introduced by Dynkin [5] in the framework of potential theory without reference measure. Then, the integral representation of potentials by exit laws was investigated in many papers (cf. [1] and [6–14]). As it is known, this allows explicit formulas for the energy and the capacity (cf. [6–8] and the related references).

Now, let $\beta = (\beta_t)_{t>0}$ be a Bochner subordinator, that is a vaguely continuous convolution semigroup of sub-probability measures on $[0, +\infty]$. The present

Received: 14.12.2008. Revised: 25.02.2009.

⁽²⁰⁰⁰⁾ Mathematics Subject Classification: 47D03, 31C15, 39B42, 60J99.

Key words and phrases: sub-Markovian semigroup, potential, exit law, subordinator, complete Bernstein function, one-sided stable subordinator.

paper is devoted to the representation by \mathbb{P}^{β} -exit laws, where \mathbb{P}^{β} is the subordinated semigroup of \mathbb{P} by means of β , i.e

(1.2)
$$P_t^{\beta} f := \int_0^\infty P_s f \beta_t(ds), \quad f \in L^2(m), t > 0.$$

More precisely, we suppose that β admits a complete Bernstein function f of the form

$$f(r) = \int_0^\infty (1 - e^{-sr}) \,\ell(s) \,ds$$

for some function ℓ on $]0, \infty[$ (cf. Section 3.2). This family of subordinators contains many interesting examples and it is considered in [5].

In this context, we prove the following integral representation: Let h be a \mathbb{P}^{β} -potential, i.e $h \geq 0$, $P_t^{\beta}h \leq h$, $\lim_{t \to 0} P_t^{\beta}h = h$ and $P_t^{\beta}h \in D(A^{\beta})$ the domain of the generator A^{β} of \mathbb{P}^{β} . Then there exists a unique \mathbb{P}^{β} -exit law $\psi = (\psi_t)_{t>0}$ such that

(1.3)
$$h = \int_0^\infty \psi_s \, ds.$$

If f is bounded then ψ_t is explicitly given by

$$\psi_t = \int_0^\infty (P_t^\beta h - P_s P_t^\beta h) \ell(s) ds.$$

By considering the one-sided stable subordinators of order $\alpha \in]0,1[$, we deduce a representation for the original semigroup. Namely, if u is a \mathbb{P} -potential, then there exist a unique \mathbb{P} -exit law φ such that

(1.4)
$$u = \int_0^\infty \varphi_s \, ds.$$

A similar problem is studied in [12] by considering C^1 -subordinators instead of subordinators with complete Bernstein functions.

The integral representation (1.4) is already obtained in many papers, but under an additional hypothesis on \mathbb{P} . For example, \mathbb{P} is supposed to be (almost) symmetric in [6–8], absolutely continuous in [9–10] and lattice in [11,13].

2. Preliminaries

Let (E, \mathcal{E}) be a measurable space and let m be a σ -finite positive measure on (E, \mathcal{E}) . We denote by $L^2(m)$ the Banach space of square integrable (classes of) functions defined on E, by $\|.\|_2$ the associated norm and by $L^2_{\perp}(m)$ the positive elements of $L^2(m)$. Moreover, in the sequel, equality and inequality holds always m-a.e. (i.e. almost everywhere with respect to m).

In this section we summarize some known results (cf. [2], [3] and [15–18]).

2.1. Sub-Markovian semigroup

A kernel on E is a mapping $N: E \times \mathcal{E} \to [0, \infty]$ such that 1. $x \to N(x, A)$ is measurable for each $A \in \mathcal{E}$. 2. $A \to N(x, A)$ is a measure on (E, \mathcal{E}) for each $x \in E$. Let N be a kernel on E. For $f \in L^2(m)$, we define

$$Nf(x) := \int_E f(y) N(x, dy), \quad x \in E.$$

If $N(L^2(m)) \subset L^2(m)$, we say that N is a kernel on $L^2(m)$. If $N_1 < 1$, N is said to be sub-Markovian.

A sub-Markovian semigroup on E is a family $\mathbb{P} := (P_t)_{t>0}$ of sub-Markovian kernels on $L^2(m)$ such that $P_0 = I$,

- 1. $P_s P_t = P_{s+t}$ for all s, t > 0, 2. $\lim_{t \to 0} ||P_t f f||_2 = 0$ for every $f \in L^2(m)$,
- 3. $||P_t f||_2 \le ||f||_2$ for each t > 0 and $f \in L^2(m)$.

Let \mathbb{P} be a sub-Markovian semigroup on E. The associated $L^2(m)$ -generator A is defined by

$$Af := \lim_{t \to 0} \frac{1}{t} (P_t f - f)$$

on its domain D(A) which is the set of all functions $f \in L^2(m)$ for which this limit exists in $L^2(m)$. It is known that:

1. D(A) is dense in $L^2(m)$ and A is closed. 2. If $u \in D(A)$ then $P_t u \in D(A)$ and $A(P_t u) = P_t A u$, for each t > 0.

2.2. Potentials and exit laws

Let \mathbb{P} be a sub-Markovian semigroup on $L^2(m)$. A positive measurable function u is said to be \mathbb{P} -excessive if

(i) $P_t u \leq u$ for each t > 0, (ii) $\lim_{t \to 0} P_t u = u$, *m*-a.e. A \mathbb{P} -excessive function u is called a \mathbb{P} -pseudo-potential if (iii) $P_t u \in L^2(m)$ for every t > 0. A \mathbb{P} -excessive function u is called a \mathbb{P} -potential if (iv) $P_t u \in D(A)$ for every t > 0. A \mathbb{P} -exit law is a family $\varphi := (\varphi_t)_{t>0}$ of elements of $L^2_+(m)$ satisfying the exit equation:

$$(2.1) P_s \varphi_t = \varphi_{s+t}, \quad s, t > 0.$$

In what follows, we consider \mathbb{P} -exit laws satisfying

(2.2)
$$\int_{t}^{\infty} \varphi_s \, ds \in L^2(m), \quad t > 0.$$

As it is discussed in our paper [14], condition (2.2) is in fact not restrictive. The following general results are proved in [12].

THEOREM 1. Let \mathbb{P} be a sub-Markovian semigroup on $L^2(m)$ and let φ be a \mathbb{P} -exit law such that (2.2) holds.

1. The function

(2.3)
$$u := \int_0^\infty \varphi_s \, ds$$

is a \mathbb{P} -potential and

(2.4)
$$\varphi_t = -AP_t u, \quad t > 0.$$

- 2. There exists a unique \mathbb{P} -exit law φ such that (2.3) holds.
- 3. Let u be a \mathbb{P} -potential and for t > 0, let φ_t be defined by (2.4). Then $\varphi = (\varphi_t)_{t>0}$ is a \mathbb{P} -exit law.

3. Representation in the subordinated structure

3.1. Bochner subordination

For the following standard notions, we refer the reader to [2-4] and [15-18]. We consider \mathbb{R} endowed with its Borel field, we denote by λ the Lebesgue measure on $[0, \infty[$ and by ε_t the Dirac measure at point t. Moreover, for each bounded measure μ on $[0, \infty[$, \mathcal{L} denotes its Laplace transform, i.e. $\mathcal{L}(\mu)(r) := \int_0^\infty \exp(-rs) \mu(ds)$ for all r > 0.

A Bochner subordinator is a convolution semigroup $\beta = (\beta_t)_{t>0}$ of subprobability measures on \mathbb{R} such that, for each t > 0, we have $\beta_t \neq \varepsilon_0$ and β_t is supported by $[0, \infty[$.

Let β be a Bochner subordinator.

- 1. The associated potential measure is defined by $\kappa := \int_0^\infty \beta_s \, ds$. Following [2, Proposition 14.1], κ is a Borel measure.
- 2. The associated *Bernstein function* f is defined by the Laplace transform $\mathcal{L}(\beta_t)(r) = \exp(-tf(r))$ for all r, t > 0. It is known that f admits the representation (cf. [2, Theorem 9.8])

(3.1)
$$f(r) = a + br + \int_0^\infty (1 - \exp(-rs)) \nu(ds), \quad r > 0,$$

where $a, b \ge 0$ and ν is a measure on $]0, \infty[$ verifying $\int_0^\infty \frac{s}{s+1} \nu(ds) < \infty$. Moreover, a, b and ν are uniquely determined. They are called *parameters* of β or of f. ν is called Levy measure of β .

Let \mathbb{P} be a sub-Markovian semigroup and let β be a Bochner subordinator. For every t > 0 and for every $u \in L^2(m)$, we may define

(3.2)
$$P_t^{\beta} u := \int_0^\infty P_s u \ \beta_t(ds).$$

Then $\mathbb{P}^{\beta} := (P_t^{\beta})_{t>0}$ is a sub-Markovian semigroup. It is said to be *subordi*nated to \mathbb{P} in the sense of Bochner by means of β .

Let A^{β} be the generator of \mathbb{P}^{β} . The following two remarks will be used throughout this paper.

1. D(A) is a subset of $D(A^{\beta})$ (cf. [15, p. 269]) and

(3.3)
$$A^{\beta}u = -au + bAu + \int_0^\infty (P_t u - u) \nu(dt), \quad u \in D(A),$$

where a, b and ν are given in (3.1).

Each P-potential is a P^β-potential (For the proof, we can adapt the arguments of [3, p. 185]).

3.2. The class \mathcal{H} of subordinators

Let β be a Bochner subordinator with Bernstein function f. The function f is said to be *complete* if the Levy measure ν is absolutely continuous with respect to λ and the density ℓ is of the form $\ell(s) := \int_0^\infty \exp(-ts) \rho(dt)$ for some measure ρ satisfying $\int_0^\infty \frac{1}{t(t+1)} \rho(dt) < \infty$ (cf. [17, Definition 1.4 and Theorem 1.5]). In this case, we write $\nu = \ell \cdot \lambda$ and (3.1) becomes

(3.4)
$$f(r) = a + br + \int_0^\infty (1 - \exp(-rs))\ell(s) \, ds, \quad r > 0.$$

In what follows, we consider the set, denoted by \mathcal{H} , of subordinators with Bernstein function of the form

(3.5)
$$f(r) = \int_0^\infty (1 - e^{-rs})\ell(s) \, ds, \quad r > 0$$

(i.e. a = b = 0 in (3.4)).

Before we continue, let us give some examples:

1. One-sided stable subordinator: For each $\alpha \in]0,1[$ and t > 0, let η_t^{α} be the unique probability measure on $[0,\infty[$ such that the Laplace transform is $\mathcal{L}(\eta_t^{\alpha})(r) = \exp(-tr^{\alpha})$ for r > 0. Then $\eta^{\alpha} := (\eta_t^{\alpha})_{t>0}$ is a convolution semigroup on $[0,\infty[$ called *the one-sided stable (or fractional power) of subordinator of index* α . Following [2, p.71], the associated Bernstein function is given by

$$f(r) = r^{\alpha} = \frac{\alpha}{\Gamma(1-\alpha)} \int_0^\infty (1-e^{-rs}) \frac{ds}{s^{\alpha}+1}, \quad r > 0.$$

In fact $\eta^{\alpha} \in \mathcal{H}$ for each $\alpha \in]0,1[$ (cf. [4] or [17] for more details).

2. Γ -subordinator: For t > 0, let $g_t(s) := 1_{]0,\infty[}(s)(1/\Gamma(t)) s^{t-1} \exp(-s)$ and $\gamma_t := g_t \cdot \lambda$. Then $\gamma := (\gamma_t)_{t>0}$ is a subordinator, called Γ -subordinator. Following [2, p.71], the associated Bernstein function is given by

$$f(r) = \ln(1+r) = \int_0^\infty (1 - e^{-sr}) \frac{e^{-s}}{s} \, ds, \quad r > 0.$$

Moreover $\gamma \in \mathcal{H}$ (cf. [17, p. 373]).

3. Poisson subordinator: For t > 0 and c > 0, let $\tau_t := \exp(-ct) \sum_{n=0}^{\infty} \frac{(ct)^n}{n!} \varepsilon_n$. The semigroup $\tau := (\tau_t)_{t>0}$ is a subordinator called *Poisson subordinator* of jump c. Moreover following [2, p. 71], the associated Bernstein function is given by

$$f(r) = 1 - \exp(-cr), \quad r > 0.$$

Then $\tau \notin \mathcal{H}$ (cf. [17, p. 373]).

4. Let c > 0. Following [17, p. 373] or [15, p. 276], the Bochner subordinator associated to the Bernstein function

$$f(r) := \frac{r}{r+c}, \quad r > 0,$$

belongs to \mathcal{H} .

- 5. Let $\beta \in \mathcal{H}$ with Bernstein function f and let c > 0. Then the subordinator with Bernstein function $\frac{f}{f+c}$, belongs to \mathcal{H} (cf. [15, p. 276]).
- 6. For each subordinator β , the subordinator $(\beta_t * \varepsilon_t)_{t>0} \notin \mathcal{H}$.

3.3. The bounded case

Let β be a subordinator, let $\kappa := \int_0^\infty \beta_t dt$ be the potential measure of β and let ν be the Levy measure of β .

In this subsection, we suppose that the Bernstein function f of β is bounded and is of the form (3.5).

LEMMA 1. We have $\nu([0,\infty[) < \infty \text{ and }$

(3.6)
$$\kappa * (\nu(]0, \infty[)\varepsilon_0 - \nu) = \varepsilon_0.$$

PROOF. By (3.5) and Fatou's Lemma

$$\nu(]0,\infty[) \le \liminf_{r \to \infty} \int_0^\infty (1 - \exp(-rs))\nu(ds) = \sup_{r > 0} f(r) < \infty.$$

Moreover, for r > 0, we have

$$\mathcal{L}(\kappa * (\nu(]0, \infty[)\varepsilon_0 - \nu))(r) = \mathcal{L}(\kappa)(r)\mathcal{L}((\nu(]0, \infty[)\varepsilon_0 - \nu))(r)$$
$$= \frac{1}{f(r)}(\nu(]0, \infty[) - \int_0^\infty \exp(-sr)\nu(ds)$$
$$= \frac{1}{f(r)}f(r) = 1 = \mathcal{L}(\varepsilon_0)(r).$$

We deduce (3.6) by the injectivity of Laplace transform.

PROPOSITION 1. For each $u \in L^2(m)$

(3.7)
$$P_t u = \int_0^\infty P_t \psi_s \, ds, \quad t > 0,$$

where

(3.8)
$$\psi_s := \int_0^\infty (P_s^\beta u - P_r P_s^\beta u) \nu(dr), \quad s > 0.$$

PROOF. Let $u \in L^2(m)$. By Lemma 1, we have

$$\|\int_0^\infty (P_s^\beta u - P_r P_s^\beta u) \nu(dr)\|_2 \le 2(\int_0^\infty \nu(ds)) \|u\|_2 < \infty.$$

Hence, ψ_s is well defined by (3.8). Moreover using (3.6), we get

$$\begin{split} \int_0^\infty P_t \psi_s ds &= \int_0^\infty (\int_0^\infty \int_0^\infty (P_{r+t}u - P_{r+q+t}u)\nu(dq)\beta_s(dr)) \, ds \\ &= \int_0^\infty \int_0^\infty (P_{s+t}u - P_{r+s+t}u)\nu(dr) \, \kappa(ds) \\ &= \int_0^\infty P_{s+t}u \Big((\int_0^\infty \nu(ds))\varepsilon_0 - \nu) * \kappa \Big) (ds) \\ &= \int_0^\infty P_{s+t}u \, \varepsilon_0(ds) = P_t u. \end{split}$$

Hence, (3.7) holds.

PROPOSITION 2. For each \mathbb{P}^{β} -pseudo-potential h, there exist a unique \mathbb{P}^{β} -exit law $\psi := (\psi_t)_{t>0}$ such that

(3.9)
$$h = \int_0^\infty \psi_t \, dt.$$

Moreover, ψ_t is explicitly given by

(3.10)
$$\psi_t := \int_0^\infty (P_t^\beta h - P_s P_t^\beta h) \,\nu(ds),$$

where ν is the Levy measure of β .

PROOF. Let h be a \mathbb{P}^{β} -pseudo-potential. Since $P_t^{\beta}h \in L^2(m)$ for all t > 0, then by Lemma 1, we have

$$\|\int_0^\infty (P_t^\beta h - P_s P_t^\beta h)\nu(ds)\|_2 \le 2(\int_0^\infty \nu(ds))\|P_t^\beta h\|_2 < \infty, \quad t > 0.$$

Hence ψ_t given by (3.10), is well defined. Moreover by (3.10), Fubini's theorem and the semigroup property, we get

(3.11)
$$P_t^{\beta}\psi_s = \int_0^\infty (P_{t+s}^{\beta}h - P_r P_{t+s}^{\beta}h)\nu(dr) = \psi_{t+s}, \quad s, t > 0.$$

By Proposition 1, (3.2), (3.6) and the dominated convergence theorem, we have

$$P_s P_t^{\beta} h = \int_0^\infty P_s \psi_{r+t} \, dr = \int_t^\infty P_s \psi_r \, dr, \quad s, t > 0$$

By integration with respect to β_s , s > 0, Proposition 1 and the dominated convergence theorem imply that

$$P_{s+t}^{\beta}h = \int_t^{\infty} P_s^{\beta}\psi_r \, dr = \int_t^{\infty} \psi_{r+s} \, dr = \int_{s+t}^{\infty} \psi_r \, dr.$$

If we let $s \to 0$, we obtain

(3.12)
$$P_t^{\beta}h = \int_t^{\infty} \psi_r \, dr, \quad t > 0,$$

in $L^2(m)$. We deduce (3.9) *m*-a.e. by letting $t \to 0$ in (3.12).

Since h is a \mathbb{P}^{β} -excessive, then $t \to P_t^{\beta} h$ is decreasing. This implies by (3.12) that

$$\frac{1}{t} \int_{s}^{s+t} \psi_r \, dr = \frac{1}{t} (P_t^\beta h - P_{t+s}^\beta h) \ge 0, \quad s, t > 0.$$

By letting $t \to 0$, we find $\psi_s \ge 0$, *m*-a.e. for s > 0 and therefore $\psi := (\psi_t)_{t>0}$ is a \mathbb{P}^{β} -exit law.

Now, let us prove the uniqueness of ψ . Let $\xi \in \mathbb{P}^{\beta}$ -exit law such that $h = \int_0^\infty \xi_s \, ds$. Then by (3.11) and the dominated convergence theorem, we have

$$P_t^{\beta}h = \int_t^{\infty} \psi_s \, ds = \int_t^{\infty} \xi_s \, ds.$$

Hence for all s, t > 0, we get

$$\frac{1}{t} \int_0^t \psi_{r+s} \, dr = \frac{1}{t} \left(\int_t^\infty \psi_{r+s} \, dr - \int_0^\infty \psi_{r+s} \, dr \right)$$
$$= \frac{1}{t} \left(\int_t^\infty \xi_{r+s} \, dr - \int_0^\infty \xi_{r+s} \, dr \right) = \frac{1}{t} \int_0^t \xi_{r+s} \, dr$$

and, by letting $t \to 0$, we obtain $\psi_s = \xi_s$ for all s > 0.

3.4. The general case

Let β be a subordinator, let $\kappa := \int_0^\infty \beta_t dt$ be the potential measure of β and let ν be the Levy measure of β .

In this subsection, we suppose that $\beta \in \mathcal{H}$ but the Bernstein function f of β is not necessarily bounded. Following [17], we approximate f by a sequence of bounded complete Bernstein functions $(f_n)_{n \in \mathbb{N}}$ as follows

(3.13)
$$f_n(r) := \int_0^\infty (1 - \exp(-tr))\ell_n(t)dt, \quad r > 0, n \in \mathbb{N},$$

where

(3.14)
$$\ell_n(t) := \int_0^n \exp(-st)\varrho(ds), \quad r > 0, n \in \mathbb{N}.$$

Note that $f(r) = \lim_{n \to \infty} f_n(r)$ for all r > 0. Moreover, we index by "n" all entities associated to f_n . In particular κ_n is the potential measure, $\nu_n := \ell_n \lambda$ is the Levy measure and β^n is the associated subordinator.

The proof of the following lemma is given in [17, Lemma 2.3].

LEMMA 2. Let β be in \mathcal{H} with Bernstein function f and let $(f_n)_{n \in \mathbb{N}}$ be defined by (3.13). Then for all $n \in \mathbb{N}$

(3.15)
$$\gamma_n := ((\nu_n(]0,\infty[))\varepsilon_0 - \nu_n) * \kappa$$

is a positive measure on $[0, \infty]$. Moreover,

(3.16)
$$\gamma_n * \kappa_n = \kappa.$$

The next useful lemma can be deduced from [17, Theorem 2.8 and Corollary 2.9]. LEMMA 3. Let \mathbb{P} a sub-Markovian semigroup, let $\beta \in \mathcal{H}$ and let \mathbb{P}^{β} be the subordinated semigroup of \mathbb{P} by means of β . For each $u \in D(A^{\beta})$, we have

$$\int_0^\infty P_s A^\beta u \, \gamma_n(ds) = \int_0^\infty (P_s u - u) \nu_n(ds), \quad n \in \mathbb{N},$$

where γ_n is defined by (3.15).

THEOREM 2. Let \mathbb{P} be a sub-Markovian semigroup, let β be in \mathcal{H} and let \mathbb{P}^{β} be the subordinated semigroup of \mathbb{P} by means of β . Then for each \mathbb{P}^{β} -potential h, there exists a unique \mathbb{P}^{β} -exit law $\psi = (\psi_t)_{t>0}$ such that

$$(3.17) h = \int_0^\infty \psi_s \, ds$$

PROOF. Let h be a \mathbb{P}^{β} -potential, define

(3.18)
$$\psi_t := -A^\beta P_t^\beta h, \quad t > 0.$$

As in Theorem 1, $\psi_t \in L^2(m)$ and $(\psi_t)_{t>0}$ satisfy the \mathbb{P}^{β} -exit equation.

On the other hand, let $n \in \mathbb{N}$, f_n be as in (3.13) and t > 0. Since f_n is bounded, $\beta^n \in \mathcal{H}$ and $P_t^{\beta}h \in L^2(m)$ then by Proposition 1, we have

(3.19)
$$P_s(P_t^{\beta}h) = \int_0^{\infty} P_s \psi_r^{n,t} dr, \quad s > 0,$$

where

(3.20)
$$\psi_r^{n,t} := \int_0^\infty \left(P_r^{\beta^n}(P_t^\beta h) - P_q P_r^{\beta^n}(P_t^\beta h) \right) \nu_n(dq), \quad r > 0.$$

Moreover, since $P_t^{\beta}h \in L^2(m)$ and

$$\|\int_0^\infty (P_t^\beta h - P_s P_t^\beta h) \nu_n(ds)\|_2 \le 2(\int_0^\infty \nu_n(ds)) \|P_t^\beta h\|_2 < \infty,$$

then the following function is well defined and belongs to $L^2(m)$

(3.21)
$$\varphi^{n,t} := \int_0^\infty (P_t^\beta h - P_r P_t^\beta h) \nu_n(dr)$$

By (3.18), (3.21) and Lemma 3, we have

(3.22)
$$\varphi^{n,t} = -\int_0^\infty P_r A^\beta P_t^\beta h \,\gamma_n(dr) = \int_0^\infty P_r \psi_t \,\gamma_n(dr).$$

Using (3.19) and (3.21), it is clear to see that $\psi_r^{n,t} = P_r^{\beta^n} \varphi^{n,t}$ and

(3.23)
$$P_s P_t^{\beta} h = \int_0^\infty P_{s+r} \varphi^{n,t} \kappa_n(dr) dr$$

It follows from (3.16), (3.22) and (3.23), that

$$\begin{split} P_s P_t^{\beta} h &= \int_0^\infty P_{s+r} \varphi^{n,t} \kappa_n(dr) \\ &= \int_0^\infty \int_0^\infty P_{r+s+q} \psi_t \, \gamma_n(dq) \kappa_n(dr) = \int_0^\infty P_{r+s} \psi_t \, (\gamma_n * \kappa_n)(dr) \\ &= \int_0^\infty P_{s+r} \psi_t \, \kappa(dr) = \int_0^\infty \int_0^\infty P_{s+r} \psi_t \, \beta_q(dr) \, dq \\ &= \int_0^\infty P_s P_q^{\beta} \psi_t \, dq = \int_0^\infty P_s \psi_{q+t} \, dq = \int_t^\infty P_s \psi_q \, dq. \end{split}$$

By integration with respect to β_s , s > 0 and by using (3.16) and the dominated convergence theorem, we obtain

$$P_{s+t}^{\beta}h = \int_t^{\infty} P_s^{\beta}\psi_r \, dr = \int_t^{\infty} \psi_{r+s} \, dr = \int_{s+t}^{\infty} \psi_r \, dr.$$

Hence, if we let $s \to 0$, we get

$$P_t^\beta h = \int_t^\infty \psi_r dr, \quad t > 0.$$

and we deduce (3.17) by letting $t \to 0$.

Finally, we complete the proof exactly as the proof of Proposition 2. \Box

COROLLARY 1. Let \mathbb{P} be a sub-Markovian semigroup, let β be in \mathcal{H} with the Levy measure ν and let \mathbb{P}^{β} be the subordinated semigroup of \mathbb{P} by means of β . Then for each \mathbb{P}^{β} -pseudo-potential h such that

(3.24)
$$\int_0^1 \|P_t^\beta h - P_s P_t^\beta h\|_2 \,\nu(ds) < \infty, \quad t > 0,$$

there exist a unique \mathbb{P}^{β} -exit law $\psi = (\psi_t)_{t>0}$ such that

$$(3.25) h = \int_0^\infty \psi_s \, ds$$

Moreover, ψ_t is explicitly given by

(3.26)
$$\psi_t = \int_0^\infty (P_t^\beta h - P_s P_t^\beta h) \nu(ds).$$

PROOF. Let h be a \mathbb{P}^{β} -potential such that (3.24) holds. Fix t > 0 and put

(3.27)
$$Ø_t := \int_0^\infty \|P_t^\beta h - P_s P_t^\beta h\|_2 \nu(ds) = \int_0^\infty \|P_t^\beta h - P_s P_t^\beta h\|_2 \ell(s) \, ds.$$

By the contraction property of \mathbb{P} , we have

$$\int_{1}^{\infty} \|P_{t}^{\beta}h - P_{s}P_{t}^{\beta}h\|_{2}\,\nu(ds) \leq 2\nu([1,\infty[)\|P_{t}^{\beta}h\|_{2} < \infty$$

and by (3.24), we get

$$(3.28) \quad \emptyset_t = \int_0^1 \|P_t^\beta h - P_s P_t^\beta h\|_2 \,\nu(ds) + \int_1^\infty \|P_t^\beta h - P_s P_t^\beta h\|_2 \,\nu(ds) < \infty.$$

Using (3.28), it is easy to see that $\psi = (\psi_t)_{t>0}$ given by (3.26), is well defined and lies in $L^2(m)$. Now, let $n \in \mathbb{N}$ and let $\nu_n := \ell_n \cdot \lambda$ be as in (3.14). Since $\ell_n \uparrow \ell$ then

(3.29)
$$||P_s P_t^{\beta} h - P_t^{\beta} h||_2 (\ell(s) - \ell_n(s)) \le 2||P_s P_t^{\beta} h - P_t^{\beta} h||_2 \ell(s), \quad s > 0.$$

From the definition (3.26) of ψ_t , we have

$$\begin{aligned} \|\psi_t + \int_0^\infty (P_s P_t^\beta h - P_t^\beta h) \nu_n(ds)\|_2 &= \|\int_0^\infty (P_s P_t^\beta h - P_t^\beta h) (\ell_n(s) - \ell(s)) ds\|_2 \\ &\leq \int_0^\infty \|P_s P_t^\beta h - P_t^\beta h\|_2 (\ell(s) - \ell_n(s)) \, ds. \end{aligned}$$

Combining (3.27), (3.28), (3.29) and using the dominated convergence theorem, we obtain

(3.30)
$$\psi_t = -\lim_{n \to \infty} \int_0^\infty (P_s P_t^\beta h - P_t^\beta h) \nu_n(ds) \quad \text{in } L^2(m).$$

Recall from [17, Theorem 2.8 and Corollary 2.10] that

(3.31)
$$D(A^{\beta}) = \{ u \in L^2(m) : \lim_{n \to \infty} \int_0^\infty (P_s u - u) \nu_n(ds) \text{ exists in } L^2(m) \}$$

and

(3.32)
$$A^{\beta}u = \lim_{n \to \infty} \int_0^\infty (P_s u - u) \nu_n(ds), \quad u \in D(A^{\beta}).$$

Hence, we conclude from (3.30) that $P_t^{\beta}h \in D(A^{\beta})$ and $\psi_t = -A^{\beta}P_t^{\beta}h$. So, the remainder of the proof is an immediate consequence of Theorem 2.

4. Application to the initial semigroup

For each $\alpha \in]0,1[$, let η_t^{α} be the one-sided stable subordinator of index α . We denote by κ^{α} (resp. ν^{α}) the associated potential (resp. Levy) measure.

4.1. Representation in terms of the fractional power

PROPOSITION 3. Let \mathbb{P} be a sub-Markovian semigroup and let h be a \mathbb{P} -potential. Then for each $\alpha \in]0,1[$, there exist a unique \mathbb{P} -exit law ϕ^{α} such that

(4.1)
$$P_t h = \int_0^\infty \phi_{s+t}^\alpha \kappa^\alpha(ds), \quad t > 0.$$

PROOF. Let η^{α} be the one-sided stable subordinator of index $\alpha \in]0, 1[$. Since $P_t h \in D(A)$ then by (3.3), the following function is well defined and belongs to $L^2(m)$

(4.2)
$$\phi_t^{\alpha} := -A^{\eta^{\alpha}} P_t h = \int_0^\infty (P_t h - P_{t+r} h) \nu^{\alpha}(dr), \quad t > 0.$$

By Fubini's theorem and (4.2), we have

(4.3)
$$P_t \phi_s^{\alpha} = \int_0^\infty (P_{s+t}h - P_{s+r+t}h)\nu^{\alpha}(dr) = \phi_{s+t}^{\alpha}, \quad s, t > 0.$$

Now since $t \to P_t h$ is decreasing then by (4.2), $\phi^{\alpha} := (\phi_t^{\alpha})_{t>0}$ is positive and by (4.6), ϕ^{α} is a \mathbb{P} -exit law. On the other hand, let t > 0. As $P_t h$ is \mathbb{P} -potential then $P_t h$ is also \mathbb{P}^{β} -potential. Moreover since $P_t h \in D(A) \subset D(A^{\eta^{\alpha}})$ then by Theorem 2, we get

(4.4)
$$P_t h = \int_0^\infty \psi_s^{\alpha, t} \, ds,$$

where

(4.5)
$$\psi_s^{\alpha,t} := -A^{\eta^{\alpha}} P_s^{\eta^{\alpha}}(P_t h), \quad s > 0.$$

Using (4.3) and (4.5), we find

(4.6)
$$\psi_s^{\alpha,t} = -\int_0^\infty A^{\eta^\alpha} P_{r+t} h \, \eta_s^\alpha(dr) = \int_0^\infty \phi_{r+t}^\alpha \, \eta_s^\alpha(dr), \quad s > 0.$$

Finally, (4.1) is immediate from (4.4) and (4.6).

NOTATION. In the following, let $\mathcal{K}(\mathbb{P})$ be the set of all functions $u \in L^2(m)$ such that $\Upsilon(u)$ and $\Upsilon^2(u) := \Upsilon(\Upsilon(u))$ lies in $L^2(m)$, where Υ is defined by

$$\Upsilon(g) := \int_0^1 (P_r g - g) \, r^{-3/2} \, dr, \quad g \in L^2(m).$$

LEMMA 4. Let \mathbb{P} be a sub-Markovian semigroup satisfying $P_t(L^2(m)) \subset D(A)$, then $P_t(L^2(m)) \subset \mathcal{K}(\mathbb{P})$.

PROOF. Let $u \in L^2(m)$ and t > 0. For each $v \in D(A)$, we have

$$\begin{split} \|\Upsilon(v)\|_{2} &\leq \int_{0}^{1} \|P_{s}v - v\|_{2} \, s^{-3/2} \, ds \\ &\leq \int_{0}^{1} \|\int_{0}^{s} P_{r} Av \, dr\|_{2} \, s^{-3/2} \, ds \\ &\leq (\int_{0}^{1} s \, s^{-3/2} \, ds) \|Av\|_{2} \\ &< \infty. \end{split}$$

Hence, $\Upsilon(v) \in L^2(m)$. Now, let $u \in L^2(m)$ and t > 0. For $v = P_t u$, we have $\Upsilon(P_t u) \in L^2(m)$ and for $v = \Upsilon(P_t u) = P_{t/2}\Upsilon(P_{t/2}u) \in D(A)$, we have $\Upsilon^2(P_t u) \in L^2(m)$. So, $P_t u \in \mathcal{K}(\mathbb{P})$ and $P_t(L^2(m)) \subset \mathcal{K}(\mathbb{P})$.

Examples

Let \mathbb{P} be a sub-Markovian semigroup with generator A.

1. If the operator A is bounded, then $\mathcal{K}(\mathbb{P}^{\beta}) = L^2(m)$.

In particular, for each sub-Markovian semigroup \mathbb{Q} and each Bochner subordinator β with bounded Bernstein function, we have $\mathcal{K}(\mathbb{Q}^{\beta}) = L^2(m)$ (cf. [17], Lemma 2.1).

2. Suppose that \mathbb{P} verifies the sector condition, i.e. there exists a constant M > 0 such that for all $f, g \in D(A)$

$$|\langle -Au, v \rangle| \le M \langle -Au, u \rangle^{1/2} \langle -Av, v \rangle^{1/2},$$

(where $\langle ., . \rangle$ is the inner product in $L^2(m)$). According to [7], we have $\mathcal{K}(\mathbb{P}^{\beta}) \subset L^2(m)$. For example, if \mathbb{P} is *m*-symmetric, i.e.

$$\langle P_t u, v \rangle = \langle u, P_t v \rangle, \quad t > 0, u, v \in L^2(m),$$

the sector condition is fulfilled for M = 1.

PROPOSITION 4. Let \mathbb{P} be a sub-Markovian semigroup and let $\eta^{1/2}$ be the one-sided stable subordinator of index $\frac{1}{2}$. Let $u \in \mathcal{K}(\mathbb{P})$ be \mathbb{P} -excessive. Then

(4.7)
$$A^{\eta^{1/2}}u = \frac{1}{2\sqrt{\pi}} \int_0^\infty (P_s u - u) s^{-3/2} \, ds$$

and

(4.8)
$$Au = -\frac{1}{4\pi} \int_0^\infty \int_0^\infty (P_{s+r}u + u - P_ru - P_su)r^{-3/2}s^{-3/2} \, ds \, dr.$$

In particular, we have

$$\mathcal{K}(\mathbb{P}) \subset D(A).$$

PROOF. Let $u \in \mathcal{K}(\mathbb{P})$. Recall that the Levy measure associated to $\eta^{1/2}$ is given by

$$\nu^{\eta^{1/2}}(ds) := \frac{1}{2\sqrt{\pi}} \, s^{-3/2} \, ds.$$

Using the contraction property of \mathbb{P} , we get

$$\begin{split} \|\int_0^\infty (P_s u - u) s^{-3/2} \, ds\|_2 &\leq \|\Upsilon(u)\|_2 + \|\int_1^\infty (P_s u - u) s^{-3/2} \, ds\|_2 \\ &\leq \|\Upsilon(u)\|_2 + \int_1^\infty \|P_s u - u\|_2 s^{-3/2} \, ds \\ &\leq \|\Upsilon(u)\|_2 + 2\|u\|_2 \int_1^\infty s^{-3/2} \, ds \\ &< \infty. \end{split}$$

Hence the following function is well defined and belongs to $L^2(m)$

(4.9)
$$\mathcal{O}(u) := \frac{1}{2\sqrt{\pi}} \int_0^\infty (P_s u - u) s^{-3/2} \, ds$$

Now, let $n \in \mathbb{N}$ and let $\nu_n^{\eta^{1/2}} := \ell_n^{\eta^{1/2}} \cdot \lambda$ be as in (3.14). Since $\ell_n^{\eta^{1/2}} \uparrow \ell^{\eta^{1/2}}$ and $P_t u \leq u$ then

$$0 \le -\int_0^\infty (P_s u - u) \,\nu_n^{\eta^{1/2}}(ds) \le -\mathcal{O}(u), \quad s > 0.$$

Using (3.31), (3.32), and the monotone convergence theorem, we have $u \in D(A^{\eta^{1/2}})$ and

(4.10)
$$A^{\eta^{1/2}}u = \frac{1}{2\sqrt{\pi}} \int_0^\infty (P_s u - u) s^{-3/2} \, ds.$$

On the other hand, by (4.10), Fubini's theorem and the contraction property of \mathbb{P} , we obtain

$$\begin{split} \|\Upsilon(A^{\eta^{1/2}}u)\|_{2} &= \|\int_{0}^{1}(P_{r}A^{\eta^{1/2}}u - A^{\eta^{1/2}}u)r^{-3/2}dr\|_{2} \\ &= \frac{1}{2\sqrt{\pi}}\|\int_{0}^{1}\int_{0}^{1}(P_{s+r}u + u - P_{r}u - P_{s}u)r^{-3/2}s^{-3/2}\,ds\,dr\|_{2} \\ &\quad + \frac{1}{2\sqrt{\pi}}\|\int_{0}^{1}\int_{1}^{\infty}(P_{s+r}u + u - P_{r}u - P_{s}u)r^{-3/2}s^{-3/2}\,ds\,dr\|_{2} \\ &\leq \frac{1}{2\sqrt{\pi}}\|\Upsilon^{2}(u)\|_{2} + \frac{1}{2\sqrt{\pi}}\|\int_{1}^{\infty}(P_{s}\Upsilon(u) - \Upsilon(u))s^{-3/2}\,ds\|_{2} \\ &\leq \frac{1}{2\sqrt{\pi}}\|\Upsilon^{2}(u)\|_{2} + \frac{1}{\sqrt{\pi}}\|\Upsilon(u)\|_{2}\int_{1}^{\infty}s^{-3/2}\,ds\|_{2} \\ &\leq \infty. \end{split}$$

Since $P_t A^{\eta^{1/2}} u \leq A^{\eta^{1/2}} u$ for all t > 0, then by (4.10), we have $A^{\eta^{1/2}} u \in D(A^{\eta^{1/2}})$ and

$$A^{\eta^{1/2}}(A^{\eta^{1/2}}u) = \frac{1}{2\sqrt{\pi}} \int_0^\infty (P_s A^{\eta^{1/2}}u - A^{\eta^{1/2}}u)s^{-3/2} ds$$
$$= \frac{1}{4\pi} \int_0^\infty \int_0^\infty (P_{s+r}u + u - P_ru - P_su)r^{-3/2}s^{-3/2} ds dr.$$

According to [17, Remark 4.2], we have $A = -A^{\eta^{1/2}}A^{\eta^{1/2}}$ and

$$D(A) = D(A^{\eta^{1/2}} A^{\eta^{1/2}}) := \{ u \in D(A^{\eta^{1/2}}) : A^{\eta^{1/2}} u \in D(A^{\eta^{1/2}}) \}.$$

Therefore, $\mathcal{K}(\mathbb{P}) \subset D(A)$ and (4.8) holds.

4.2. Representation for the initial semigroup

THEOREM 3. Let \mathbb{P} be a sub-Markovian semigroup and let h be a \mathbb{P} potential h such that $P_t h \in \mathcal{K}(\mathbb{P})$ for all t > 0. Then, there exist a unique \mathbb{P} -exit law φ such that

(4.11)
$$h = \int_0^\infty \varphi_s \, ds.$$

Moreover, φ_t is explicitly given by

(4.12)
$$\varphi_t := \frac{1}{4\pi} \int_0^\infty \int_0^\infty (P_{s+t+r}h + P_th - P_{r+t}h - P_{s+t}h)r^{-3/2}s^{-3/2}\,ds\,dr.$$

PROOF. Let h be a measurable function such that $P_t h \in \mathcal{K}(\mathbb{P})$ for all t > 0 and let

(4.13)
$$\varphi_t = -AP_t h = -\frac{\partial}{\partial t} P_t h, \quad t > 0.$$

Using Theorem 1 and Proposition 4, we deduce that $\varphi = (\varphi_t)_{t>0}$ is a \mathbb{P} -exit law.

On the other hand, let $\eta^{1/2}$ be the one-sided stable subordinator of index $\frac{1}{2}$. From Proposition 3, we have

(4.14)
$$P_t h = \int_0^\infty \phi_{s+t}^{1/2} \kappa^{\eta^{1/2}} (ds), \quad t > 0.$$

where

(4.15)
$$\phi_s^{1/2} := -A^{\eta^{1/2}} P_s h = \int_0^\infty (P_s h - P_{r+s} h) \nu^{\eta^{1/2}} (dr), \quad s > 0.$$

Therefore, by (4.14), (4.15), Fubini's theorem, and Proposition 4, we get

$$\begin{split} \phi_t^{1/2} &= -A^{\eta^{1/2}} P_t h = -A^{\eta^{1/2}} (\int_0^\infty \phi_{s+t}^{1/2} \kappa \eta^{1/2} (ds)) \\ &= -\int_0^\infty A^{\eta^{1/2}} \phi_{s+t}^{\eta^{1/2}} \kappa^{\eta^{1/2}} (ds) \\ &= -\int_0^\infty A^{\eta^{1/2}} (\phi_{s+t}^{\eta^{1/2}}) \kappa^{\eta^{1/2}} (ds) \\ &= \int_0^\infty A^{\eta^\alpha} (A^{\eta^{1/2}} P_{s+t} h) \kappa^{\eta^{1/2}} (ds) \\ &= \int_0^\infty -A P_{s+t} h \kappa^{\eta^{1/2}} (ds). \end{split}$$

This implies that

(4.16)
$$\phi_t^{\alpha} = \int_0^{\infty} \varphi_{s+t} \, \kappa^{\eta^{1/2}}(ds), \quad t > 0.$$

Now, since $\mathcal{L}(\kappa^{\eta^{1/2}})(r) = r^{-1/2}$, it follows by considering the Laplace transform, that $\kappa^{\eta^{1/2}} * \kappa^{\eta^{1/2}}(ds) = ds$. Hence by (4.14), (4.15), (4.16) and the dominated convergence theorem, we get

$$\begin{split} P_t h &= \int_0^\infty \phi_{s+t}^{1/2} \, \kappa^{\eta^{1/2}}(ds) \\ &= \int_0^\infty \int_0^\infty \varphi_{r+s+t} \, \kappa^{\eta^{1/2}}(dr) \, \kappa^{\eta^{1/2}}(ds) \\ &= \int_0^\infty \varphi_{s+t} \, (\kappa^{\eta^{1/2}} \ast \kappa^{\eta^{1/2}})(ds) \\ &= \int_0^\infty \varphi_{s+t} \, ds = \int_t^\infty \varphi_s \, ds. \end{split}$$

As usually, we deduce (4.11) by letting $t \to 0$.

REMARK. In Theorem 3, we can replace $\mathcal{K}(\mathbb{P})$ by D(A), but we do not have an explicit formula for φ .

Acknowledgments. We want to thank the referee for comments and suggestions on an earlier version of this paper.

References

- Bachar I., On exit laws for semigroups in weak duality, Comment. Math. Univ. Carolinae 42 (2001), no. 4, 711–719.
- [2] Berg C., Forst G., Potential theory on locally compact Abelian Groups, Springer-Verlag, Berlin-Heidelberg-New York, 1975.
- [3] Bliedtner J., Hansen W., Potential Theory, An Analytic and Probabilistic Approach to Balayage, Universitext, Springer-Verlag, Berlin-Heidelberg-New York, 1986.
- [4] Carasso J., Kato W., On subordinated holomorphic semigroups, Trans. Am. Math. Soc. 327 (1991), 867–878.
- [5] Dynkin E.B., Green's and Dirichlet Spaces Associated with Fine Markov Process, J. Funct. Anal. 47 (1982), 381–418.
- [6] Fitzsiommons P.J., Getoor R.K., On the Potential Theory of Symmetric Markov Processes, Math. Ann. 281 (1988), 495–512.
- [7] Fitzsiommons P.J., Markov Process and non Symmetric Dirichlet Forms without Regularity, J. Func. Anal. 85 (1989), 287–306.
- [8] Hmissi F., On Energy Formulas for Symmetric Semigroups, Ann. Math. Silesianae 19 (2005), 7–18.
- [9] Hmissi M., Lois de sortie et semi-groupes basiques, Manuscripta Math. 75 (1992), 293–302.
- [10] Hmissi M., Sur la repréentation par les lois de sortie, Math. Zeischrift 231 (1993), 647–656.
- [11] Hmissi M., On the functional equation of exit laws for lattice semigroups, Rocznik Naukowo-Dydaktyczny WSP w Krakowie, Prace Mat. 196 (1998), 63–72.
- [12] Hmissi M., Mliki E., On exit law for subordinated semigroups by means of C¹subordinators, Preprint 2008.
- [13] Hmissi M., Mejri H., Mliki E., On the fractional powers of semidynamical systems, Grazer Math. Ber. 351 (2007), 66–78.
- [14] Hmissi M., Mejri H., Mliki E., On abstract exit equation, European Conf. on Iteration Theory, Yalta 2008, to appear.
- [15] Jacob N., Pseudo Differential Operators and Markov Process, Vol 2: Generators and their semigroups, Imperial College Press, London, 2003.
- [16] Sato K., Processes and infinitely divisible Distributions, Cambridge University Press, 1999.
- Schilling R., Subordination in the sense of Bochner and a relaited functional calculs, J. Austral. Math. Soc. (Ser. A) 64 (1998), 368–396.
- [18] Yosida K., Functional Analysis, Springer-Verlag, Heidelberg-New York, 1965.

Département de Mathématiques Faculté des Sciences de Tunis TN-2092 El Manar Tunis Tunisia e-mail: Med.Hmissi@fst.rnu.tn e-mail: Hassene.Mejri@fst.rnu.tn