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ON A FUNCTIONAL EQUATION CONNECTED TO GAUSS
QUADRATURE RULE

Barbara Koclęga-Kulpa, Tomasz Szostok

Abstract. We consider the functional equation

F (y)− F (x) = (y − x)[f(αx + βy) + f(βx + αy)]

stemming from Gauss quadrature rule. In previous results equations of this
type with rational only coefficients α and β were considered. In this paper we
allow these numbers to be irrational. We find all solutions of this equation
for functions acting on R. However, some results are valid also on integral
domains.

1. Introduction

Functional equations connected to well known quadrature rules were stud-
ied by many authors. In the monograph [7] the equation stemming from
Simpson quadrature rule

F (y)− F (x) = (y − x)
[
1
6
f(x) +

2
3
f

(
x+ y

2

)
+

1
6
f(y)

]
was considered for functions acting on R. This equation, in a bit more gen-
eral form, for functions transforming an integral domain into itself has been
solved in [3].
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On the other hand, M. Sablik [9] during the 7th Katowice-Debrecen Win-
ter Seminar on Functional Equations and Inequalities presented the general
solution of the equation

(1) g(x)− f(y) = (x− y)[h(x) + k(sx+ ty) + k(tx+ sy) + h(y)]

in the case s, t ∈ Q without any regularity assumptions concerning the func-
tions considered. Some other equations of this type were solved in [4]. How-
ever, these results are valid only for equations with rational coefficients on the
right-hand side.

In the current paper we are going to consider an equation connected to
the simplest quadrature rule with irrational coefficient - the Gauss quadrature
rule with two nodes. Thus we shall find the solutions of

(2) F (y)− F (x) = (y − x)[f(αx+ βy) + f(βx+ αy)].

In our method we shall need a lemma, which was established by M. Sablik
([8, Lemma 2.3]) and improved by I. Pawlikowska (cf. [6]).

By a polynomial function of order n in this paper we mean a solution of the
functional equation ∆n+1

h f(x) = 0, where ∆n
h stands for the n–th iterate of

the difference operator ∆hf(x) = f(x+h)− f(x). Observe that a continuous
polynomial function of order n is a polynomial of degree at most n (see [5,
Theorem 4, p. 398]).

Let us now quote Sablik’s result. First we need some notations. Let
G,H be Abelian groups and SA0(G,H) := H, SA1(G,H) := Hom(G,H)
(i.e. the group of all homomorphisms from G into H), and for i ∈ N, i ≥ 2,
let SAi(G,H) be the group of all i–additive and symmetric mappings from
Gi into H. Furthermore, let P :=

{
(α, β) ∈ Hom(G,G)2 : α(G) ⊂ β(G)

}
.

Finally, for x ∈ G let xi = (x, . . . , x)︸ ︷︷ ︸
i

, i ∈ N.

Lemma 1. Fix N ∈ N ∪ {0} and let I0, . . . , IN be finite subsets of P.
Suppose that H is uniquely divisible by N ! and that the functions ϕi : G →
SAi(G,H) and ψi,(α,β) : G→ SAi(G,H), (α, β) ∈ Ii, i = 0, . . . , N , satisfy

(3) ϕN (x)(yN ) +
N−1∑
i=0

ϕi(x)(yi) =
N∑

i=0

∑
(α,β)∈Ii

ψi,(α,β)

(
α(x) + β(y)

)
(yi)



On a functional equation connected to Gauss quadrature rule 29

for every x, y ∈ G. Then ϕN is a polynomial function of order at most k− 1,
where

k =
N∑

i=0

card
( N⋃

s=i

Is
)
.

2. Results

First we need some auxiliary lemma.

Lemma 2. Let P be an integral domain with a unit element 1 such that
2 = 1 + 1 6= 0 and 3 = 1 + 1 + 1 6= 0. Let the functions f, F : P → P satisfy
the equation

(4) F (x)− F (y) = (x− y)[b1f(α1x+ β1y) + · · ·+ bnf(αnx+ βny)]

for all x, y ∈ P and some b1, . . . , bn, α1, . . . , αn, β1, . . . , βn ∈ P. Further, let f
be a function of the form

(5) f(x) = a3(x) + a2(x) + a1(x) + a0, x ∈ P,

where ai, i ∈ {1, 2, 3} is a diagonalization of some i−additivie and symmetric
function and a0 ∈ P is a constant.

Then all functions ai, i ∈ {1, 2, 3} also satisfy (4) with some Fi.

Proof. We may assume that F (0) = 0, so substituting y = 0 in (4) we
obtain

F (x) = x[b1f(α1x) + · · ·+ bnf(αnx)], x ∈ P.

Using this formula in (4) we get

(6) x[b1f(α1x) + · · ·+ bnf(αnx)]− y[b1f(α1y) + · · ·+ bnf(αny)]

= (x− y)[b1f(α1x+ β1y) + · · ·+ bnf(αnx+ βny)], x, y ∈ P.

It is easy to see that if f, g are solutions to this equation, then also f + g
satisfies this equation. Moreover, if f satisfies (6) and α ∈ P is given, then
also αf is a solution. On the other hand, if αf satisfies (6) and α 6= 0, then f
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is a solution of this equation. Now take a 6= 0 and substitute ax, ay in place
of x and y, We obtain (after canceling by a) that

x[b1f(α1ax) + · · ·+ bnf(αnax)]− y[b1f(α1ay) + · · ·+ bnf(αnay)]

= (x− y)[b1f(α1ax+ β1ay) + · · ·+ bnf(αnax+ βnay)], x, y ∈ P,

which means that the function x 7→ f(ax) also satisfies our equation (if f
does).

Now consider f of the form (5), and put

g1(x) := 8f(x)− f(2x), x ∈ P.

Then g1 is a solution of (6) and on the other hand

(7) g1(x) = 4a2(x) + 6a1(x) + 7a0.

Define g2 by the formula

g2(x) := 4g1(x)− g1(2x) = 12a1(x) + 21a0.

Similarly as before g2 satisfies (6), constant function 21a0 is clearly a solution
of (6), which means that also 12a1 satisfies this equation thus also a1 satisfies
(6) since 2, 3 6= 0. Further, in view of (7) we easily obtain that also a2 is a
solution of (6). Finally, from (5) it follows that a3 satisfies our equation. �

Remark 1. Let P be an integral domain such that 2, 3 6= 0. If functions
Ai, Bi : P → P, i = 1, 2, 3, satisfy

(8) A3(x) +A2(x) +A1(x) = B3(x) +B2(x) +B1(x), x ∈ P,

and Ai, Bi are i-homogeneous, then

Ai = Bi, i = 1, 2, 3.

Indeed, if we take −x in place of x, in (8), then we obtain

(9) −A3(x) +A2(x)−A1(x) = −B3(x) +B2(x)−B1(x), x ∈ P.

This, together with (8) means that A2 = B2 and, consequently

(10) A3(x) +A1(x) = B3(x) +B1(x), x ∈ P.
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Moreover, taking here 2x instead of x, we get

(11) 8A3(x) + 2A1(x) = 8B3(x) + 2B1(x), x ∈ P.

Multiplying (10) by 2 and substracting it from (11) we arrive at

6A3(x) = 6B3(x), x ∈ P,

which means that A3 = B3 and obviously also A1 = B1.

Now we shall prove some lemmas concerning solutions of a simplified ver-
sion of equation (2). However, at this moment we are concerned only with
solutions, which are diagonalizations of symmetric and i−additive functions.

Lemma 3. Let P be a integral domain with a unit element 1 such that
2, 3 6= 0. If functions G, f : P → P satisfy the equation

(12) G(y)−G(x) = (y − x)[f(x+ γy) + f(γx+ y)], x, y ∈ P,

and f(x) := C(x, x, x) for some 3−additive and symmetric function C : P →
P, then

f((γ + 1)x) = 2cx3

for some c ∈ P and all x ∈ P.

Proof. Let f be given by the formula f(x) = C(x, x, x), x ∈ P , where C
is 3-additive and symmetric.

We may assume that G(0) = 0, so substituting x = 0 in (12) we get

(13) G(y) = y[f(γy) + f(y)], y ∈ P.

Using this formula in (12), we obtain for all x, y ∈ P

(14) y[f(γy) +f(y)]− x[f(γx) +f(x)] = (y − x)[f(x+ γy) + f(γx+ y)].

On the other hand, using here the form of f after some calculation we
arrive at

(15) x[f(γy) + f(y)]− y[f(γx) + f(x)] = 3(y − x)[C(x, x, γy)

+ C(x, γy, γy) + C(y, y, γx) + C(y, γx, γx)]

for all x, y ∈ P.
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Now we define a new function g(x) := f(x) + f(γx), x ∈ P. Then in view
of (15) we have

xg(y)− yg(x) = 3(y − x)[C(x, x, γy) + C(x, γy, γy)(16)

+ C(y, y, γx) + C(y, γx, γx)].

Further, taking here x = 1 we obtain the following formula

(17) g(y)−yg(1) = 3(y−1)[C(1, 1, γy)+C(1, γy, γy)+C(y, y, γ)+C(y, γ, γ)].

Using Remark 1, we may compare here the terms of order one and we
obtain that

(18) yg(1) = 3C(y, γ, γ) + 3C(1, 1, γy), y ∈ P,

further comparing expressions of order two in (17) we get

(19) 3y[C(y, γ, γ) + C(1, 1, γy)] = 3[C(1, γy, γy) + C(y, y, γ)], y ∈ P,

thus, using here (18), we may write

(20) y2g(1) = 3[C(1, γy, γy) + C(y, y, γ)], y ∈ P.

Finally, comparing terms of order three in (17), we obtain

g(y) = 3y[C(1, γy, γy) + C(y, y, γ)], y ∈ P,

which, in view of (20), gives us

(21) g(y) = y3g(1), y ∈ P,

so we may write that

f(x) + f(γx) = cx3, x ∈ P,

(where c = g(1)) and, more precisely,

(22) C(x, x, x) + C(γx, γx, γx) = cx3, x ∈ P.

Now, putting 2x in place of y in (16), we obtain

6cx4 = 3x[2C(x, x, γx) + 4C(x, γx, γx) + 4C(x, x, γx) + 2C(x, γx, γx)],
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thus

(23) 3C(x, x, γx) + 3C(x, γx, γx) = cx3, x ∈ P.

Adding equations (22) and (23), we may write

C(x, x, x) + 3C(x, x, γx) + 3C(x, γx, γx) + C(γx, γx, γx) = 2cx3, x ∈ P,

i.e.

f((1 + γ)x) = 2cx3, x ∈ P. �

Lemma 4. Let P be an integral domain with a unit element 1 such that
2 6= 0. If functions G, f : P → P satisfy the equation (12) and f(x) := B(x, x)
for some 2−additive and symmetric function B : P 2 → P, then

2f((γ + 1)x) = 3bx2

for some b ∈ P and all x ∈ P.

Proof. Let f(x) = B(x, x), x ∈ P, where B is biadditive and symmetric.
We may assume, without loss of generality, that G(0) = 0 and putting x = 0
in (12) we obtain

(24) G(y) = y [f(y) + f(γy)] , y ∈ P.

Consequently, equation (12) takes form

y [f(y) + f(γy)]−x [f(x) + f(γx)] = (y−x)[f(x+γy)+f(γx+y)], x, y ∈ P.

Further, using here the form of f, we may write for all x, y ∈ P

y [f(y) + f(γy)]− x [f(x) + f(γx)] = (y − x)
[
f(x) + 2B(x, γy) + f(γy)

+ f(γx) + 2B(γx, y) + f(y)
]
.

Now we define a new function g(x) := f(x) + f(γx), x ∈ P, then we obtain

yg(y)− xg(x) = (y − x)[g(x) + g(y) + 2B(x, γy) + 2B(γx, y)], x, y ∈ P,

and, after some simple calculations,

(25) xg(y)− yg(x) = 2(y − x)[B(x, γy) +B(γx, y)], x, y ∈ P.
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Putting here x = 1 we get

g(y)− yg(1) = 2(y − 1)[B(1, γy) +B(γ, y)], x, y ∈ P.

Similarly as in the proof of the previous lemma we compare now the terms
of the same order. Thus we get

g(y) = 2y[B(1, γy) +B(γ, y)], y ∈ P,

and

yg(1) = 2[B(1, γy) +B(γ, y)], y ∈ P,

which means that

g(y) = by2, y ∈ P,

where b := g(1). Further, from the obtained form of g we have

f(x) + f(γx) = bx2, x ∈ P,

i.e.

(26) 2B(x, x) + 2B(γx, γx) = 2bx2, x ∈ P.

On the other hand, taking in (25) 2x in place of y, and using form of g,
we get

4B(x, γx) = bx2, x ∈ P.

Adding this equality to (26), we may write

2B(x, x) + 2B(γx, γx) + 4B(γx, x) = 3bx2,

thus

2f((1 + γ)x) = 3bx2, x ∈ P. �

Lemma 5. Let P be an integral domain and let f,G : P → P be solutions
of (12) such that f is an additive function. Then

f((γ + 1)x) = ax

for some a ∈ P and all x ∈ P.
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Proof. Similarly as before we easily obtain that f satisfies (14). Since f
is additive, we get

y[f(γy) + f(y)]− x[f(γx) + f(x)] = (y − x)[f(x) + f(γy) + f(γx) + f(y)]

for all x, y ∈ P and, consequently,

x[f(γy) + f(y)] = y[f(γx) + f(x)], x, y ∈ P.

Taking here y = 1 we arrive at

x[f(γ) + f(1)] = f(γx) + f(x), x ∈ P,

thus putting a := f(γ) + f(1) we have

f(γx) + f(x) = ax.

Using here the additivity of f we obtain f((γ + 1)x) = ax for all x ∈ P. �

Now we are in position to obtain the result concerning the form of solutions
of equation (2) for functions acting on an integral domain.

Theorem 1. Let P be an integral domain divisible by 6. If functions f, F :
P → P satisfy (12) with some γ ∈ P, such that P is divisible by γ, γ + 1 and
γ − 1, then

f(x) = cx3 + bx2 + ax+ d, x ∈ P,

for some a, b, c, d ∈ P.

Proof. Substituting in (12) x−y
γ+1 in place of x and x+γy

γ+1 in place of y, we
obtain

G

(
x+ γy

γ + 1

)
−G

(
x− y

γ + 1

)
= y[f((x+ (γ − 1)y) + f(x)], x, y ∈ P,

and, consequently,

yf(x) = G

(
x+ γy

γ + 1

)
−G

(
x− y

γ + 1

)
− yf((x+ (γ − 1)y), x, y ∈ P.
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Using here Lemma 1 with N = 1, I0 :=
{(

1
γ+1 id, γ

γ+1 id
)
,
(

1
γ+1 id, −1

γ+1 id
)}

and I1 = {(id, (γ− 1)id)} we obtain that f is a polynomial function of degree
at most 3. Now, since P is divisible by 6, we have

f(x) = C(x, x, x) +B(x, x) +A(x) + d, x ∈ P,

where C : P 3 → P,B : P 2 → P , and A : P → P are symmetric and 3, 2, 1–
additive, respectively (see for example [5]).

Now using Lemma 2 we obtain that functions f3(x) := C(x, x, x), f2(x) :=
B(x, x), and f1(x) := A(x) also satisfy (12), which in view of Lemmas 3, 4
and 5 means that f3((γ+1)x) = c0x

3, f2((γ+1)x) = b0x
2, and f1((γ+1)x) =

a0x for some a0, b0, c0 ∈ P. However, P is divisible by γ+1 and, consequently,
taking c := c0

(γ+1)3 , b := b0
(γ+1)2 and a := a0

γ+1 , we arrive at

f(x) = cx3 + bx2 + ax+ d, x ∈ P. �

Now we shall deal with functions defined and taking values in R. In this
case we shall obtain a general solution of equation (2).

Theorem 2. Let functions f, F : R → R satisfy (2) with some constants
α, β ∈ R.
(i) If α = β 6= 0, then f(x) = ax+ d, x ∈ R.
(ii) If α = β = 0, then f may be any function.
(iii) If α = 0, β 6= 0 or α 6= 0, β = 0, then f(x) = ax+ d, x ∈ R.
(iv) If α = −β 6= 0, then f(x) = h(x)+ A(x)

x for all x 6= 0 and some functions
h,A : R → R which are odd and additive, respectively.

(v) If α 6= −β and α2 + β2 6= 4αβ, then f(x) = ax+ d, x ∈ R.
(vi) If α 6= −β and α2 + β2 = 4αβ, then f(x) = cx3 + bx2 + ax+ d, x ∈ R.

In each case, function F is expressed by formula

F (x) = x[f(αx) + f(βx)] + F (0), x ∈ R.

Conversely, in each case functions given by the above formulas satisfy
equation (2).

Proof. Let us first consider the case α = β 6= 0. Then equation (2) takes
the form

F (y)− F (x) = 2(y − x)f(α(x+ y)).
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Put f̃(t) := 2f(αt), t ∈ R. Then we get the equation solved by J. Aczél in [1]
and consequently we obtain f̃(x) = ãx+ d̃, which means that f(x) = ax+ d

where a := ã
2α and d := d̃

2 .
In the case (iii) we get (after a simple substitution)

F (y)− F (x) = (y − x)[h(x) + h(y)]

and we obtain our result from the paper of Sh. Haruki [2].
Now we consider the case α = −β 6= 0, this means that equation (2) takes

the form

F (y)− F (x) = (y − x)[f(α(x− y)) + f(α(y − x))].

Define a new function f1 : R → R by

f1(x) := f(αx).

We obtain the equation

(27) F (y)− F (x) = (y − x)[f1(x− y) + f1(y − x)], x, y ∈ R.

Take in (27) x = 0 to obtain

(28) F (y) = y[f1(−y) + f1(y)] + F (0), y ∈ R,

which used in (27) gives us

F (y)− F (x) = F (y − x)− F (0), x, y ∈ R.

Substituting here x+ y in place of y we get

F (x+ y)− F (x) = F (y)− F (0), x, y ∈ R.

This means that function A1 := F−F (0) is additive, thus from (28) we obtain

x[f1(−x) + f1(x)] = A1(x)

and further

f1(−x) + f1(x) =
A1(x)
x

, x 6= 0.
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Now we put H(x) := f1(x)−f1(−x)
2 , which gives us

f1(x) =
f1(x)− f1(−x)

2
+
f1(x) + f1(−x)

2
= H(x) +

A1(x)
2x

for all x ∈ R \ {0}. And from the definition of f we get

f(x) = f1

(
x

α

)
= H

(
x

α

)
+
αA1

(
x
α

)
2x

.

To finish this part of the proof it suffices to take h(x) := H
(

x
α

)
and A(x) :=

α
2A1

(
x
α

)
.

Finally we consider the case α 6= −β. Note that both numbers α, β are
different from zero. Now we put in (2) 1

αx and 1
αy instead of x and y, respec-

tively. Thus

F

(
1
α
y

)
− F

(
1
α
x

)
=

1
α

(y − x)
[
f

(
x+

β

α
y

)
+ f

(
β

α
x+ y

)]
.

Multiplying this equation by α and taking G(x) := αF
(

1
αx

)
, γ := β

α we obtain
that f satisfies

G(y)−G(x) = (y − x)[f(x+ γy) + f(γx+ y)].

Thus we have got the equation (12) which in view of Theorem 1 means that

f(x) = cx3 + bx2 + ax+ d, x ∈ R.

To finish this part of the proof we assume that c 6= 0 and we are going to
show that

α2 + β2 = 4αβ.

Indeed, if function f(x) = cx3 + bx2 + ax+ d satisfies (2) then from Lemma
2 we know that also f3(x) := cx3 satisfies (2). Thus we have

G3(y)−G3(x) = (y − x)[f3(αx+ βy) + f3(βx+ αy)], x, y ∈ R

for some function G3. Using the form of f and equality

G3(y) = y[f3(βy) + f3(αy)], y ∈ R,
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we get after some simple calculations

(β3 + α3)(y4 − x4) = (y − x)[(α3 + β3)(x3 + y3) + 3αβ(α+ β)(xy2 + x2y)],

i.e.

(β3 +α3)(y3 +x3 +xy2 +x2y) = (α3 +β3)(x3 + y3)+3αβ(α+β)(xy2 +x2y),

and further

(β3 + α3) = 3αβ(α+ β),

thus

4αβ = α2 + β2.

Similarly, if we assume that b 6= 0 we obtain the same equality for α and β.
On the other hand, it is easy to show that in every of the above cases

obtained functions satisfy equation (2). �

Remark 2. Let us consider the following quadrature rule with two nodes∫ y

x
f(t)dt ≈ 1

2
(y − x)[f(αx+ (1− α)y) + f((1− α)x+ αy)],

which leads to a functional equation

F (y)− F (x) = (y − x)[f(αx+ (1− α)y) + f((1− α)x+ αy)].

If we addititionally assume that this equation is satisfied by f(x) = x3

then

α =
3−

√
3

6
.

This means that from our result we obtain that the only two-nodes quadrature
rule satisfied exactly by polynomials of degree 3 (or 2) is the well known Gauss
quadrature rule. One should emphasize that we assume here no regularity of
functions f, F .
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