
Annales Mathematicae Silesianae 22 (2008), 45–57

Prace Naukowe Uniwersytetu Śląskiego nr 2703, Katowice

WITT EQUIVALENCE OF RINGS OF REGULAR FUNCTIONS

Przemysław Koprowski

Abstract. In this paper we show that the rings of regular functions on two
real algebraic curves over the same real closed field are Witt equivalent (i.e.
their Witt rings are isomorphic) if and only if the curves have the same number
of semi-algebraically connected components. Moreover, in the second part of
the paper, we prove that every strong isomorphism of Witt rings of rings of
regular functions can be extended to an isomorphism of Witt rings of fields of
rational functions. This extension is not unique, though.

1. Introduction

The set of similarity classes of nonsingular bilinear forms over a fixed
commutative ring A, equipped with operations induced by the orthogonal sum
and the tensor product, has a natural structure of a ring. This ring is called
the Witt ring WA of A. The Witt ring encodes numerous information of its
ground ring. Unfortunately the complete theory of Witt rings is known only
over fields (cf. [9, 15]). The theory of Witt rings over integral domains has
been intensively developed since 1970s by many authors (see e.g. [11]). This
case is far more challenging than the previous one. So far the most progress
has been done for Dedekind domains. The ultimate question in algebraic
theory of quadratic forms is: when the Witt rings of two rings A and B are
isomorphic? If this is the case we say that the rings A, B are Witt equivalent.
This problem is difficult even over fields and has been investigated in more
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than 40 scientific papers. So far it has been solved only in a very few cases.
The three main are: fields having no more than 32 square classes (see [2]),
global fields — this area has been most actively investigated in previous years
(see e.g. [12, 16, 17]) and fields of rational functions on algebraic curves (see
[6, 7, 8]). The pursue for criteria of Witt equivalence of rings has started only
recently (see e.g. [13, 14]).

In this paper we cope with the problem of Witt equivalence of rings of
regular functions on two smooth complete real curves. We prove (see Propo-
sition 4.1) that two such rings are Witt equivalent if and only if the underlying
curves consist of equal numbers of semi-algebraically connected components.
If this is the case, the isomorphism of the Witt rings of rings of regular func-
tions is obtained by restricting the tame Harrison map (see [7] for the defin-
ition) of their fields of fractions. Moreover, we show (see Theorem 4.4) that
every strong isomorphism of Witt rings of two rings of regular functions can
be extended (in a non-unique way) to an isomorphism of Witt rings of fields of
rational functions. The proof of the latter result occupies the subsection 4.1.
The paper is organized as follows. In Section 2 we introduce all the necessary
terminology and gather the needed tools. In Section 3 we present a number
of results concerning the structure of the Witt ring of the ring of regular func-
tions on a real curve. Analogous results have already been presented in [4]
for a Witt ring of a real curve, which is a coarser object. Unfortunately, to
the best of our knowledge, they have never been explicitely formulated for the
Witt ring of a ring of regular functions. Thus, having no convenient source of
reference, wee feel obligated to explicate these results in our setup. However,
as they can hardly be considered new we omit most of the proofs in this sec-
tion. Finally, Section 4 constitutes the kernel of this paper and is completely
devoted to our main results mentioned above.

2. Preliminaries

Let k be a real closed field. It will silently remain fixed throughout this
whole paper. The letters K, L will always denote the formally real algebraic
function fields of one variable over k (in particular tr.degkK = tr.degk L = 1).
Let Ω(K) be a set of all points of K trivial on k. The completion of K with
respect to a point p ∈ Ω(K) is denoted by Kp while its residue field by K(p).
The associated valuation is denoted by ordK

p . Among all the points p ∈ Ω(K)
we select those having the formally real (hence isomorphic to k) residue fields.
Following [3, 4] we call such points real and we write γ(K) for the set of all
the real points of K. It is a real algebraic curve over k. The field K can be
treated as the field of rational functions on this curve.
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On the curve γ(K) we consider Euclidean topology (see [1]) induced by
the unique ordering of k (note that in [3, 4] this topology is called “strong
topology”). The curve γ(K) consists of a finite number of semi-algebraically
connected components γK

1 , . . . , γ
K
N . With every real point p ∈ γ(K) we asso-

ciate two orderings P+(p) and P−(p) of the field K compatible with p:

P+(p) =
{
f ∈ K : ∃p′∈γ(K)∀q∈(p,p′)f(q) > 0

}
,

P−(p) =
{
f ∈ K : ∃p′∈γ(K)∀q∈(p′,p)f(q) > 0

}
.

(Note that the left/right neighborhoods (p′, p) and (p, p′) of p are relative to
an orientation of the curve γ(K), which we assume to be fixed.) This permits
us to introduce the notion of a signature of a square class. Namely for any
square class f ∈ K̇/K̇2 (to simplify the notation we use the same symbol f
to denote both an element of the field and its square class) we define:

sgnK
p f :=


1, if f ∈ P+(p) ∩ P−(p),
0, if either f ∈ P+(p) ∩ −P−(p) or f ∈ −P+(p) ∩ P−(p),
−1, if −f ∈ P+(p) ∩ P−(p).

(In [3, 4] this function is denoted by τp.) The following observation is imme-
diate, anyway we formulate it explicitly for future references.

Observation 2.1. sgnK
p f = 0 if and only if ordK

p f ≡ 1 (mod 2).

Now let RK := {f ∈ K : ordK
p f ≥ 0 for every p ∈ γ(K)} be the subring

of the field K consisting of all the functions regular on γ(K). It is a Dedekind
domain, hence its Witt ring WRK injects into the Witt ring WK of its field
of fractions (see [11, Corollary IV.3.3]). In fact we know more:

Theorem 2.2 ([4, Theorem 11.2]). If the curve γ(K) consists of N semi-
algebraically connected components γK

1 , . . . , γ
K
N , then the following sequence is

exact:

0 →WRK
iK−−−→WK

∂K−−−→
⊕

p∈γ(K)

WK(p) λK−−−→ ZN → 0.

Here iK : WRK ↪→ WK is the canonical injection induced by the inclusion
RK ⊂ K. Next, for every p ∈ γ(K) the map ∂p : WK → WK(p) ∼= Z
is the second residue homomorphism associated with p and ∂K denotes the
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compound map. Finally
⊕
WK(p) ∼= Z(γ(K)) and λK : Z(γ(K)) → ZN is the

epimorphism defined by

λK

(
(ap)p∈γ(K)

)
:=

( ∑
p∈γK

1

ap, . . . ,
∑

p∈γK
N

ap

)
.

In the rest of this paper we tend to identify WRK with its image under
the canonical injection WRK ↪→ WK and so we conveniently treat WRK as
the subring of WK. Define the subgroup EK < K̇/K̇2 by

EK :=
{
f ∈ K̇/K̇2 : ordK

p f ≡ 0 (mod 2) for all p ∈ γ(K)
}
.

Observation 2.1 allows us to rewrite this condition in the following way:

EK :=
{
f ∈ K̇/K̇2 : sgnK

p f 6= 0 for all p ∈ γ(K)
}
.

Consequently, the signature of the square class f belonging to EK is constant
on every semi-algebraically connected component γK

i . We denote it by sgnK
i f

(see also Proposition 3.1 below). Now, by Theorem 2.2, a unary form 〈f〉 lies
in WRK if and only if it belongs to the kernel of ∂K and this is the case if
and only if f is the class of a unit at the completion Kp for every p ∈ γ(K).
This, in turn, means that f belongs to EK . So we have:

Corollary 2.3. Let f ∈ K̇/K̇2 be a square class, then f ∈ EK if and
only if the unary form 〈f〉 belongs to WRK , i.e.

f ∈ EK ⇐⇒ 〈f〉 ∈WRK .

The above corollary suggests that it may be fruitful to investigate the
subset of WRK consisting of all the classes of unary forms. Thus, we define

〈EK〉 :=
{
〈f〉 ∈WK : f ∈ EK

}
⊂WRK .

Notice that 〈EK〉 is closed under multiplication but not under addition hence
it is not a subgroup of the “Witt group” WRK .

Now, fix a single point pi in every component γK
i of γ(K). Recall (cf. [3,

§6]) that for every two distinct points p, q belonging to the same component
γK

i there exists an element χ(p,q) of K such that χ(p,q) is definite on γ \{p, q},
positive definite on γ \ γi and fulfills ∂pχ(p,q) = −1, ∂qχ(p,q) = 1. Following
[3] we call χ(p,q) an interval function for the pair (p, q). An interval function
is unique only upto multiplication by a totally positive element (see [3, §6]).
Hence, in what follows, for every p, pi ∈ γK

i , we assume that χ(p,pi) is an
arbitrarily chosen and fixed interval function associated with the pair (p, pi).
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The group of square classes K̇/K̇2 may be treated as an F2-vector space. The
subgroup EK is its subspace. We identify its completion:

Lemma 2.4. The F2-vector space K̇/K̇2 decomposes into

K̇/K̇2 = EK ⊕ linF2{χ(p,pi) ∈ K̇/K̇
2 : p ∈ γK

i , 1 ≤ i ≤ N}.

Proof. Take any square class f ∈ K̇/K̇2 and let

p1,1, . . . , p1,n1 , p2,1, . . . , p2,n2 , . . . , pN,nN
, pi,j ∈ γK

i ,

be all the points of γ(K) where f has an odd valuation and so changes sign.
Consider now a square class f̂ ∈ linF2{χ(p,pi) ∈ K̇/K̇2 : p ∈ γK

i , 1 ≤ i ≤ N}
given by the condition

f̂ :=
∏

1≤i≤N
1≤j≤ni

pi,j 6=pi

χ(pi,j ,pi).

Then f̂ changes sign precisely at the same points as f does. Hence the product
f · f̂ has the constant sign on every semi-algebraically connected component.
Thus f · f̂ ∈ EK . �

Of course the notion of a real curve, semi-algebraically connected compo-
nents, local signatures, . . . etc. can be—in the same manner as above—defined
over the other field, which we denoted L. Therefore Ω(L), γ(L), γL

i , Lp, L(p),
ordL

p , sgnL
p , WRL, EL are the L-counterparts of the objects defined above for

K. If it is clear from the context which field we discuss, we tend to omit the
letters K and L. All the terminology and notation used in this paper and
not introduced so far is standard and follows the convention established by
[1, 3, 4, 9, 15]. As it was mentioned before, in order to simplify the notation,
we use the same symbol to denote both an element of the field and its square
class. Likewise, we use the same symbol for a quadratic form and its Witt
class. Throughout all this paper an orientation of γ(K) (resp. γ(L)) is ar-
bitrarily chosen and fixed. Intervals on both curves are silently defined with
respect to this fixed orientation.
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3. Structure of the Witt group WR

We discuss here the structure of the Witt groupWR of the ringR of regular
functions on γ. All the results presented in this section are fully analogous to
the ones presented in [4]. In [4], however, they were formulated and proved for
a coarser group. Thus, we feel obligated to state all of the results explicitly
in our different set-up. On the other hand, since the proofs are completely
analogous, we feel free to reduce some of them to only short sketches and to
omit the rest, giving instead the references to the original theorems.

Proposition 3.1 ([4, Proposition 10.3]). Let ϕ be an element of the Witt
ring WK. If ϕ ∈ WR, then ϕ has a constant signature on every semi-alge-
braically connected component of γ.

For ϕ denote by sgni ϕ the signature of ϕ on γi (1 ≤ i ≤ N).

Proposition 3.2 ([4, Theorem 10.4 (i)]). Every element ϕ of WR is uni-
quely determined by its discriminant discϕ and its signatures sgn1, . . . , sgnN

on the components γ1, . . . , γN of γ.

Consider now a subset S ⊆WR defined

S :=
{
〈1,−f〉 : f ∈ ΣK2

}
.

Clearly S is a subgroup of WR. Moreover, 2 · S = {0}. We claim that S is
the nilradical of WR.

Proposition 3.3 ([4, Theorem 10.4 (ii)]). S = NilWR.

Sketch of the proof. The inclusion S ⊆ NilWR follows from the fact
that:

NilWR = WR ∩NilWK =
{
ϕ ∈WR : sgni ϕ = 0 for 1 ≤ i ≤ N

}
.

As for the other inclusion, take any ϕ ∈ NilWR. Let 〈f1, . . . , fn〉 be a diago-
nalization of ϕ over the field K. Let further f be the discriminant of ϕ. For
every 1 ≤ i ≤ N we have sgni ϕ = 0 and hence at almost every point p ∈ γ
exactly half of fj ’s are negative, the other half is positive. Consequently,
sgnp f = 1 at every p ∈ γ. Thus the Witt classes of ϕ and 〈1,−f〉 over R are
equal, but clearly 〈1,−f〉 ∈ S. �
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Fix now z1, . . . , zN ∈ E such that sgni zi = −1 and sgnj zi = 1 for j 6= i.

Proposition 3.4 ([4, Theorem 10.4 (iii)]). The fundamental ideal IR /
WR decomposes into

IR =
N⊕

i=1

Z[〈1,−zi〉]⊕NilWR.

Sketch of the proof. Take any ϕ ∈ IR. If sgni ϕ = 0 for all 1 ≤ i ≤ N
then ϕ ∈ NilWR. Thus, assume that not all of sgni ϕ are null. We have
sgni ϕ ≡ dimϕ (mod 2) and so sgni ϕ is even for 1 ≤ i ≤ N . Take now
ϕ̂1, . . . , ϕ̂N defined by the formula

ϕ̂i := (sgni ϕ/2) · 〈1,−zi〉.

Let further ψ̂ := ϕ̂1 + · · ·+ ϕ̂N . For almost every p ∈ γi (1 ≤ i ≤ N) we have

sgnp discϕ = (−1)sgni ϕ sgnp disc ψ̂ = sgnp disc ψ̂.

Therefore discϕ = g · disc ψ̂, for some g ∈ ΣK2. Thus, by the Witt theorem
[4, Theorem 9.5] we get

ϕ = ψ̂ + 〈1,−g〉 ∈
N⊕

i=1

Z[〈1,−zi〉]⊕NilWR. �

Corollary 3.5. The Witt ring WR is generated (as a ring) by the set
{〈f〉 : f ∈ E}.

4. Main results

We are now ready to present our main results. Consider again two formally
real algebraic function fields K, L both having the same real closed field of
constants k.

Proposition 4.1. Let γ(K), γ(L) be two non-empty, smooth, complete
real curves over a common real closed field k. Then the rings RK , RL of
functions regular on γ(K), γ(L) are Witt equivalent if and only if γ(K) and
γ(L) have the same number of semi-algebraically connected components.
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Proof. Let Φ: WRK → WRL be an isomorphism. Then Φ maps the
nil-radical of RK onto the nil-radical of RL and preserves the rank of free
Z-modules. Decomposing now IRK and IRL according to Proposition 3.4
we see that γ(K) and γ(L) must have the same number of semi-algebraically
connected components.

To prove the opposite implication, suppose that γ(K), γ(L) have the same
number N of semi-algebraically connected components. Every component is
Nash-diffeomorphic to a circle, thus there is a homeomorphism T : γ(K) →
γ(L) mapping components of γ(K) onto the components of γ(L). Using [7,
Corollary 3.9] we may find a tame Harrison map t : K̇/K̇2 → L̇/L̇2, i.e. an
isomorphism of square class groups such that
(a) t preserves minus one: t(−1) = −1;
(b) for any square classes f, g ∈ K̇/K̇2 the form 〈f, g〉 represents 1 over K if

and only if 〈t̂f, t̂g〉 represents 1 over L;
(c) t maps 1-pt fans of orderings of K onto 1-pt fans of L.

Now [5, Proposition 3.4] asserts that the isomorphism Ψt : WK
u−−→ WL of

Witt rings of fields K, L, given by Ψt〈f1, . . . , fn〉 := 〈tf1, . . . , tfn〉, factors
over WRK :

Ψt

∣∣
WRK

WRK
u−−→WRL. �

It is worth to note that in the above proof we have shown that the iso-
morphism of Witt rings WRK

∼= WRL of rings of regular function on real
curves implies the isomorphism of associated exact sequences. Indeed, con-
sider Knebusch–Milnor exact sequences associated to WRK and WRL:

SK : 0 →WRK
iK−−−→WK

⊕∂K−−−−→
⊕

WKp
λK−−−→ ZN → 0,

SL : 0 →WRL
iL−−−→WL

⊕∂L−−−−→
⊕

WL q
λL−−−→ ZM → 0.

It follows that if either ends of above sequences are isomorphic (i.e. either
WRK

∼= WRL or N = M) then the whole sequences are isomorphic, as well.

Corollary 4.2. Under the above assumptions, the following conditions
are equivalent:
• N = M ;
• WRK

∼= WRL;
• SK

∼= SL.

It is worth to stress the point that Witt equivalence of rings of regular func-
tions on two real curves depends solely on the number of semi-algebraically
connected components of these two curves and not on the relative positions
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Figure 1. Curves with Witt equivalent rings of regular functions defined by Eq. (4.3)

of these components, neither directly on degrees of these curves nor on their
genuses. To see this phenomenon clearly, consider two curves (illustrated in
Figure 1) defined by the following polynomials (found using [10]):

C0 =
(
y2 + x(x+ 1)

)(
x2 + y2

)
− x2 + y2 − 2

100
− 4xy2,

C1 =
(
y2 + x2 − 9

)(y2 + x4 − 16
20

+
(
y2 + x2 − 4

)(
y2 + x2 − 1

))
+
y2 + x4 − 25

100
.

(4.3)

Both curves consist of three components, hence Proposition 4.1 asserts that
the rings of regular functions on these two curves are Witt equivalent. On the
other hand, the configuration of the components of the first curve is 1q 1q 1
while the second curve has a configuration 1〈1〈1〉〉. Likewise, the degrees of
the two curves differ:

degC0 = 4 6= 6 = degC1.

Finally, since both curves are smooth and their degrees differ by more than
one, the genuses of these two curves are different, as well.

Proposition 4.1 is existential in nature—the Witt equivalence of rings of
regular functions implies that the curves have the same number of semi-alge-
braically connected components and this in turn, as we have shown in the
proof of the theorem, implies the existence of an isomorphism Ψt of Witt
rings WK, WL of the fields, which factors over the Witt rings WRK , WRL

of rings of regular functions. The proposition does not say, however, if the
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restriction Ψt

∣∣
WRK

is identical to the original isomorphism Φ or whether the
two isomorphisms are at least correlated in any way. It is, thus, natural to
ask the following question:

Can the isomorphism of the Witt rings WRK , WRL of rings of regular
functions be extended to an isomorphism of Witt rings WK, WL of
their quotient fields?

We do not know the answer to this question in such a generality. However, if
we assume that the isomorphism WRK

u−−→WRL is strong (in a sense which
we will promptly define) the answer turns out to be affirmative.

Recall that the isomorphism of Witt rings of two fields is called strong if
it maps classes of unary forms onto classes of unary forms. In our case, when
we deal with projective modules, the notion of dimension of the form is a bit
fuzzy. But the following notion seems to be justified by Corollary 2.3. We
shall say that the isomorphism Φ : WRK

u−−→WRL is strong if it maps 〈EK〉
onto 〈EL〉.

Theorem 4.4. If an isomorphism Φ : WRK
u−−→ WRL is strong, then

there exists a strong isomorphism Ψt : WK
u−−→ WL extending Φ (i.e.

Ψt

∣∣
WRK

≡ Φ).

4.1. Proof of Theorem 4.4

Let Φ: WRK
u−−→ WRL be a strong isomorphism. Using Proposition 4.1

we see that γ(K) and γ(L) have the same number of semi-algebraically con-
nected components. Denote this number by N . The isomorphism Φ is as-
sumed to map 〈EK〉 onto 〈EL〉 and so the condition

tf := g ⇐⇒ Φ〈f〉 = 〈g〉

defines a group isomorphism t : EK → EL. Observe that Φ, being an iso-
morphism of rings, maps nilradical NilWRK onto the nilradical NilWRL. It
follows from Proposition 3.3 that t maps ΣK2 ⊆ EK onto ΣL2 ⊆ EL. Let
z1, . . . , zN ∈ EK be fixed in the same way as in Proposition 3.4. The following
lemma shows that they are mapped to their counterparts in EL.

Lemma 4.5. For every 1 ≤ i ≤ N there is 1 ≤ j ≤ N such that

sgnL
k tzi =

{
−1, if k = j,

1, if k 6= j.
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Proof. Take a form 〈1,−zi〉. It belongs to IRK and so Φ〈1,−zi〉 ∈ IRL.
Thus, using Proposition 3.4, we have

Φ〈1,−zi〉 = ki,1〈1,−z′′i 〉+ · · ·+ ki,N 〈1,−z′′N 〉+ ε〈1,−g〉,

where ji,1, . . . , ki,N ∈ Z, z′′1 , . . . , z′′N ∈ EL are fixed in the same way as in
Proposition 3.4 but for the curve γL this time, i.e.:

sgnL
k z

′′
j =

{
−1, if k = j,

1, if k 6= j.

Further ε ∈ {0, 1} and g is a sum of squares. First we show that every ki,j

is either zero or one. Indeed, square the form 〈1,−zi〉 in WRK . We have
〈1,−zi〉2 = 2〈1,−zi〉. Now Φ, as a ring homomorphism, preserves multiplica-
tion. Thus we obtain:

2ki,1〈1,−z′′i 〉+ · · ·+ 2ki,N 〈1,−z′′N 〉 = Φ
(
2〈1,−zi〉

)
= Φ

(
〈1,−zi〉2

)
= 2k2

i,1〈1,−z′′i 〉+ · · ·+ 2k2
i,N 〈1,−z′′N 〉.

Therefore k2
i,j = ki,j for every 1 ≤ j ≤ N and so ki,j ∈ {0, 1}.

Now, we show that all but one ki,j ’s are null. Suppose otherwise. Let for
some 1 ≤ i1 ≤ N the image Φ〈1,−zi1〉 has two non-zero coordinates in the
free Z-module Z[〈1,−z′′1 〉]⊕· · ·⊕Z[〈1,−z′′N 〉], then using Dirichlet’s pigeonhole
principle there is another element 〈1,−zi2〉 such that Φ〈1,−zi2〉 has at least
one the same non-zero coordinate. Let for example

Φ〈1,−zi1〉 = 〈1,−z′′a 〉+ other terms,
Φ〈1,−zi2〉 = 〈1,−z′′a 〉+ other terms.

Then

0 = Φ(0) = Φ
(
〈1,−zi1〉 · 〈1,−zi2〉

)
= Φ〈1,−zi1〉 · Φ〈1,−zi2〉
= 2〈1,−z′′a 〉+ other terms 6= 0.

This contradiction shows that indeed every 〈1,−zi〉 is mapped onto 〈1,−z′′j 〉+
〈1,−g〉 for some 1 ≤ j ≤ N and g ∈ ΣL2 (and for different i’s, the correspond-
ing j’s differ too). Now, we have

0 = 〈1,−z′′j 〉 · 〈1,−g〉 = 〈1, 1,−z′′j ,−g〉 − 〈1,−z′′j g〉.



56 Przemysław Koprowski

Therefore

〈1,−z′′j g〉 = 〈1,−z′′j 〉+ 〈1,−g〉 = Φ〈1,−zi〉,

and so, by the definition of t, we have tzi = z′′j g. �

It follows from the above lemma that t induces a permutation i 7→ j =: τ(i)
of the set {1, . . . , N}. We may treat it as the bijection of γK

i 7→ γL
τ(i) of

the sets of components of γ(K) and γ(L). We may find a homeomorphism
T : γ(K) → γ(L) such that TγK

i = γL
τ(i). Fix a single point pi in every

component γK
i of γ(K) and let qτ(i) := Tpi ∈ γL

τ(i). We may now define an

F2-linear isomorphism t̂ : K̇/K̇2 u−−→ L̇/L̇2 of an F2-vector spaces that extends
t. Recall that by Lemma 2.4 we have a decomposition

K̇/K̇2 = EK ⊕ linF2{χ(p,pi) ∈ K̇/K̇
2 : p ∈ γK

i , 1 ≤ i ≤ N},

likewise for L̇/L̇2:

L̇/L̇2 = EL ⊕ linF2{χ(p,pi) ∈ L̇/L̇
2 : p ∈ γL

i , 1 ≤ i ≤ N}.

Let t̂
∣∣
EK

:= t and define t̂ on the basis of the other summand by the condition:

t̂χ(p,pi) := χ(Tp,qi).

By linearity this defines t̂ on the whole F2-vector space K̇/K̇2. Clearly t̂ is a
group isomorphism and t̂ preserves local signatures in the sense that:

(4.6) ∀p∈γ(K)∀f∈K̇/K̇2 sgnK
p f = sgnL

Tp t̂f.

Consequently, t̂ preserves the parity of valuation, as well

∀p∈γ(K)∀f∈K̇/K̇2 ordK
p f ≡ ordL

Tp t̂f (mod 2).

We claim that t̂ is a Harrison map. Indeed, Φ〈−1〉 = Φ(−〈1〉) = 〈−1〉 and so
t̂(−1) = t(−1) = −1. For the second condition, take f, g ∈ K̇/K̇2 such that 1
is represented by 〈f, g〉 over K. This means that the form ϕ := 〈1,−f,−g, fg〉
is hyperbolic over K and so it is hyperbolic over every completion Kp for p ∈
γ(K). Take p ∈ γ(K) such that neither f nor g changes sign at p-almost every
p will do. The form ϕ is hyperbolic in Kp if and only if sgnK

p f = − sgnK
p g.

It follows from Eq. (4.6) that sgnL
q t̂f = − sgnL

q t̂g for almost every q ∈ γ(L).
Thus, by the means of the Witt theorem (cf. [4, Theorem 9.5]) the form
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〈1,−t̂f,−t̂g, t̂f t̂g〉 is hyperbolic over L. Consequently 〈t̂f, t̂g〉 represents 1
over L. This proves the claim. It is well known that if t̂ is a Harrison map,
then the mapping 〈f1, . . . , fn〉 7→ 〈t̂f1, . . . , t̂fn〉 is a strong isomorphism of
Witt rings of fields. Denote it Ψt. It is clear from the construction, that
Ψt

∣∣
WRK

≡ Φ. �
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