
Annales Mathematicae Silesianae 22 (2008), 59–67

Prace Naukowe Uniwersytetu Śląskiego nr 2703, Katowice

ON S-LENGTH OF GROUPS

Olga Macedońska, Aleksandra Potyka

Abstract. Let G be a group and S be a subsemigroup in G, generating G
as a group. Every element in G is a product of elements from S ∪ S−1. An
equality G = S−1S · · ·S−1S allows to define an S-length l(G) of the group
G. The note concerns the problem posed by J. Krempa on possible values of
l(G). We show that for collapsing groups, supramenable groups and groups
of a subexponential growth l(G) ≤ 2. The S-length of a relatively free group
can be equal to 1 or 2 or infinity, but it can not be equal to 3. The problem
concerning other values is open.

1. Introduction

In the process of algebraic classifications in group theory there are used
different parameters of groups defined by so called length or width functions.
The notion of S-length of a group was suggested by J. Krempa in 1998 and
some conjectures were made on its value.

Let S be a subsemigroup in a group G, generating G as a group. If G
is a finite group, it is clear that G = S = S−1. If G is an abelian group
then G = S−1S = S S−1, that is G is a group of fractions of S (see e.g. [1]).
A natural question arises whether for each k > 2 there is a group such that
G = S−1S · · ·S−1S with no less than k factors. The aim of this note is to
describe the groups of S-length equal to 1 and 2. We also give an example of
a group with S-length greater or equal to 3 and show that the S-length of a
relatively free group can not be equal to 3.
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If G is a group and A is a subset in G then sgp(A) will denote the sub-
semigroup of G generated by A. By |A| we denote the cardinality of A.

2. S-length of a group

Let G be a finitely generated group and n be the smallest number of ge-
nerators in G. A subsemigroup S ⊆ G generated by any n-element set of
generators in G will be called a base semigroup of G.

The length of G with respect to a base semigroup S, denoted by l(S, G) is
the smallest natural k (if exists) such that

(1) G = S−1S S−1S · · ·S︸ ︷︷ ︸
k

(−1)k

= S S−1S S−1 · · ·S︸ ︷︷ ︸
k

(−1)k−1
.

If such a k does not exist we assume l(S, G) = ∞.

Definition. Let X(G) denote the set of all base semigroups in G. Then
the S-length of G is defined as

l(G) = sup{l(S, G) : S ∈ X(G)}.

Example 1. Let G = 〈a〉2 ∗ 〈b〉3 be the free product of finite cyclic groups
of orders 2 and 3. Let S1 = sgp(a, b) and S2 = sgp(ab, ab2). It is not difficult
to see that l(S1, G) = 1 (see also Example 4), while l(S2, G) 6= 1, because
each element in S2 begins with a, so S2 6= G. We can see also that a 6∈ S2S

−1
2

and a = (ab)(ab2)−1(ab) = (ab)−1(ab2)(ab)−1 ∈ S2 S−1
2 S2∩S−1

2 S2 S−1
2 , hence

we can conclude that l(G) ≥ 3.

Example 2. If G is a periodic group (e.g. a finite group) then l(G) = 1.

Example 3. If F is a free noncyclic group and S is generated by a set
{a, b, ...} of free generators of F then for every k, l(S, F ) > k, because the
word (ab−1)k is not equal to any other word and needs 2k factors in (1). So
we conclude that l(F ) = ∞.

A word w(x1, ..., xn) is called positive if it is written without inverses of
xi’s. We give now necessary and sufficient conditions for a group G and a base
semigroup S ⊆ G to have l(S, G) = 1.
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Proposition 1. Let S = sgp(a1, a2, ..., an) be a base semigroup in a group
G. l(S, G) = 1 if and only if G has a defining relation r(a1, a2, ..., an) = 1,
where r is a positive word, containing each generator.

Proof. Let F be a free group and F be a free subsemigroup in F , both
generated by the set X = {x1, x2, ..., xn}. By assumption G has a presentation
F/N = 〈x1, x2, ..., xn | N 〉 for some N C F , and the natural homomorphism
F → G ∼= F/N maps F → S.

If l(S, G) = 1, then G = S = S−1, and F = FN = F−1N . Hence
(x1x2 · · ·xn)−1 ∈ F = FN . So the word (x1x2 · · ·xn)−1 is in a coset sN for
some positive word s = s(x1, ...xn) ∈ F . Thus the required defining relator is
r := x1x2 · · ·xn ·s and the relation in G is a1a2 · · · an ·s(a1, ..., an) = 1.

Conversely, let G ∼= F/N . If r ∈ N is a positive word containing each
generator then for each fixed xi we can write r as uxiv for some u, v ∈ F .
Conjugation by u gives the defining relator xivu ∈ N , which implies that
x−1

i ∈ vuN ⊆ FN . Hence F−1 ⊆ FN , F = FN and G = S. Since G = G−1,
we have G = S = S−1 and l(S, G) = 1. �

Example 4. In Example 1, the group G = 〈a〉2 ∗ 〈b〉3, with a base semi-
group S1 = sgp(a, b) has the defining relation a2b3 = 1. So l(S1, G) = 1,
however l(G) 6= 1.

We recall that a semigroup S satisfies Ore conditions if for every g, h ∈ S
there exist g′, h′ ∈ S such that gg′ = hh′ (right Ore condition) and there exist
g′′, h′′ ∈ S such that g′′g = h′′h (left Ore condition) (for definition in different
terminology see [1, §1.10]). We give now necessary and sufficient conditions
for a group G and a base semigroup S ⊆ G to have l(S, G) ≤ 2.

Proposition 2. Let G be a group with a base semigroup S. l(S, G) ≤ 2
if and only if S satisfies Ore conditions.

Proof. If l(S, G) = 2, then G = S S−1 = S−1S and for every g, h ∈ S,
h−1g ∈ G = SS−1, which implies that there exist g′, h′ ∈ S such that h−1g =
h′g′−1 and the right Ore condition gg′ = hh′ follows. The left Ore condition
follows similarly from the equality G = S−1S.

Conversely, the right Ore condition implies that for every g, h ∈ S there
exist g′, h′ ∈ S such that h−1g = h′g′−1 which gives S−1S ⊆ SS−1. The
opposite inclusion follows from the left Ore condition, so SS−1 = S−1S.
Each element of G is in a finite product of the form S S−1S S−1 · · ·S(−1)k−1

with k, say, factors. If k = 3 then by the equality S−1S = SS−1 we have
S S−1S = S(S S−1) = S S−1. Similarly, for any k we can show by induction
that G = S−1S = SS−1. Hence l(S, G) ≤ 2. �

Theorem 1. A group G without free noncyclic subsemigroup has l(G) ≤ 2.
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Proof. Let g, h be elements in G. Since by assumption the semigroup
sgp(g, h) is not free, there are two equal nontrivial words u(g, h) = v(g, h).
By using cancellation in G we can assume that u(g, h) has g as the first letter
and the first letter in v(g, h) is h, so we obtain g u1(g, h) = h v1(g, h), which
implies the right Ore condition in every subsemigroup in G. For the left Ore
condition we use the last letters in u(g, h) and v(g, h). Now the statement
follows by Proposition 2. �

Corollary 1. All collapsing groups [7], supramenable groups [8] and
groups of a subexponential growth [4],[3],[2] have l(G) ≤ 2.

To give an example of a group with S-length greater or equal to 3 we recall
that the restricted wreath product (see [6, p.45]) G = A wr〈b〉 of a group A
and an infinite cyclic group 〈b〉 is a semidirect product of W and 〈b〉 where
W =

∏× Abi

is the direct product of copies of A, numbered by elements of
〈b〉. Instead of Ab0 we write A, and Abi

= b−iA bi. Every element g ∈ G can
be uniquely written as

g = bjw,

where w is a product of commuting factors abi

, abi

= b−ia bi, abi

bj = bj abi+j

.

Theorem 2. If G = 〈a〉2 wr〈b〉 and S = sgp(a, b), then l(S, G) = 3.

Proof. Note that ab ab2 = b−1 a b−1a b2 = b−2abab 6∈ S S−1. Thus
l(S, G) > 2. To prove that l(S, G) = 3 it suffices to show that G = 〈b〉S 〈b〉 =
〈b〉S−1〈b〉. Since a = a−1, we have a ∈ S ∩ S−1. Let w ∈ W . Then w can be
written as a product of, say k, commuting factors

(2) w = abi1
abi2 · · · abik = b−i1a bi1−i2a bi2−i3 · · · bik−1−ika bik .

For example ab5ab3ab−1
= b−5a b5−3a b3+1a b−1 = b−5a b2a b4a b−1 ∈ 〈b〉S 〈b〉.

Since abi

commute, we can assume in (2) i1 > i2 > ... > ik, then w ∈ b−i1Sbik .

If write the factors abi

in reverse order then i1 < i2 < ... < ik, and w ∈
b−i1S−1bik ⊆ 〈b〉S−1〈b〉. Thus W ⊆ 〈b〉S 〈b〉 ∩ 〈b〉S−1〈b〉 and multiplication
by 〈b〉 implies G = 〈b〉S 〈b〉 = 〈b〉S−1〈b〉. Hence G = S−1S S−1 = S S−1S
and l(S, G) = 3. �
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3. S-length of relatively free groups

A group G satisfies a law u(x1, ..., xm) ≡ v(x1, ..., xm) if for every ele-
ments g1, ..., gm in G the equality u(g1, ..., gm) = v(g1, ..., gm) holds. A law
u(x1, ..., xm)≡ v(x1, ..., xm) is called an m-variable positive law if the words
u, v are positive words. The positive law is called balanced if for each variable
xi its exponent sum is the same in u and in v. The simplest example of the
balanced positive law is the abelian law. Note that a non-balanced law implies
a law xm ≡ 1 for some m ∈ N and implies the balanced law xmym ≡ ymxm.

A group G is called relatively free of rank n if it is free in some variety of
groups, and has a set of free generators of cardinality n. We formulate the
statements 13.11, 13.52, 13.53, 13.25 from [6] in the following

Lemma 1. Let {ai} be a set of free generators in a relatively free group G.
(i) If {bj} is another set of free generators in G, then | {ai} | = | {bj} |.
(ii) | {ai} | is the smallest number of generators in G.
(iii) Every relator on the generators in {ai} is a law in the group G.
(iv) Every mapping {ai} → G can be extended to an endomorphism of G.

We can show that for a relatively free group G with a base semigroup S
the number l(S, G) is an invariant of G, not depending on the choice of S.

Lemma 2. The S-length l(G) of a relatively free group G is equal to l(S, G)
for any base semigroup S on a set of free generators.

Proof. Let G be a relatively free group. Let S1 and S2 be two base semi-
groups in G generated by the sets of free generators {ai} and {bi} respectively.
We show that the equality l(S1, G) = l(S2, G) holds. By (i) of Lemma 1, the
sets {ai} and {bi} have the same cardinality and the map ai → bi defines by
(iv) of Lemma 1, an automorphism α in G, such that Sα

1 = S2. Thus α, applied
to the expression (1) written with respect to S1, changes S1 to S2 and hence
l(S1, G) ≥ l(S2, G). Similarly, by applying the automorphism α−1 to (1) for
S2, we get l(S2, G) ≥ l(S1, G), which gives the equality l(S1, G) = l(S2, G).

If a relatively free group G of rank n is a non-Hopf group [5] then there
exists a set {bi} of n generators, which generate G not freely. Let S2 be the
base semigroups on the set {bi} and S1 be the base semigroups on the set
of free generators {ai}. The map ai → bi defines by (iv) of Lemma 1, an
epi-endomorphism in G which implies that l(S1, G) ≥ l(S2, G). Hence we
conclude that l(G) = (S1, G). �

Theorem 3. The S-length l(G) of a relatively free group G is less or
equal to 2 if and only if G satisfies a positive law.
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Proof. Let l(G) ≤ 2 and let S be a base semigroup generated by a
set of free generators {ai} in G. In view of Lemma 2, l(S, G) ≤ 2 and by
Proposition 2, S satisfies Ore conditions. So for generators a1, a2 there exist
s1, s2 ∈ S such that a1s1 = a2s2, then by (iii) of Lemma 1, G satisfies a
positive law.

Conversely, let G satisfies a positive law u′(x1, ..., xn) = v′(x1, ..., xn).
Then G satisfies a binary positive law u(x, y) = v(x, y), obtained by substi-
tution xi → xyi. It follows that G does not contain a free subsemigroup and
the statement follows by Theorem 1. �

Corollary 2. Let G be a relatively free group.
1. l(G) = 1 if and only if G satisfies a law xn = 1 for some n ∈ N.
2. l(G) = 2 if and only if G satisfies only balanced non-trivial positive laws.

There is a conjecture that for a relatively free group G the S-length l(G)
can be only 1, 2 or infinity. We prove that it can not be equal to 3.

Theorem 4. If G is a relatively free group, then l(G) 6= 3.

Proof. If G is a relatively free group and l(G) = 3 then the equality
G = S S−1S =S−1S S−1 implies by (iii) of Lemma 1, that G must satisfy a
law

(3) x y−1z ≡ a−1b c−1,

where a, b, c are positive words in a free group F generated by x, y, z, . . ..
The law (3) can be written as

(4) b ≡ a(x y−1z)c.

We introduce three maps in the free group, defined by

α : y → 1, β : y → x, γ : y → z,

and each leaves other generators fixed. Each of these maps changes (4) into
a positive law. If l(G) = 3 then, by Theorem 3, each of these positive laws
must be trivial. We show that it is not possible.

If we apply α to (4), we obtain a positive law bα ≡ aαxzcα which must be
trivial that is we have the equality

bα .= aαxz cα,

where the symbol " .= " denotes the equality of words in a free group.
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Since b is a positive word and is a pre-image of the word aαxzcα, it must
have a form

b
.= b1(x ykz) b2,

where b1, b2 are positive words, k ≥ 0, bα
1

.= aα, bα
2

.= cα. We use this form of
b to rewrite the law (3) as

(5) xy−1z ≡ (a−1b1)xykz(b2c
−1).

Since bα
1

.= aα, the word a−1b1 becomes trivial under α replacing y → 1,
therefore it has the exponent sums of x and of z equal to zero, and similarly
for b2c

−1, which we denote as

(6) σx(a−1b1) = 0, σz(a−1b1) = 0, σx(b2c
−1) = 0, σz(b2c

−1) = 0.

If we apply β to (5), we get the law

z ≡ (a−1b1)β(xxkz)(b2c
−1)β,

which must be trivial because otherwise it gives a nontrivial positive law. So
we have the equality

z
.= (a−1b1)βxxk︸ ︷︷ ︸ · z · (b2c

−1)β︸ ︷︷ ︸ .

Since σz((a−1b1)β) = σz(a−1b1)
(6)
= 0, the underlined z can not be can-

celled from the left and similarly not from the right. Then the underbraced
words must be trivial. In particular, (a−1b1)βxxk .= 1. It follows that
σx((a−1b1)β) = −k − 1. Since for any word w, σx(wβ) = σx(w) + σy(w),
we have

−k − 1 = σx((a−1b1)β) = σx(a−1b1) + σy(a−1b1)
(6)
= 0 + σy(a−1b1),

that is

σy(a−1b1) = −k − 1 < 0.

Now we apply γ to (5), and the law we get must again be trivial

x
.= (a−1b1)γ · x · zkz (b2c

−1)γ .
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Since σx(a−1b1)γ = σx(a−1b1)
(6)
= 0, the underlined x can not be canceled

from the left and similarly not from the right. Hence (a−1b1)γ .= 1. Then the
exponent sum of z in (a−1b1)γ must be also zero and we have

0 = σz((a−1b1)γ) = σz(a−1b1) + σy(a−1b1) = 0− k − 1 < 0,

a contradiction. �

The following example illustrates the above reasoning for the specific law
of the form x y−1z ≡ a−1b c−1. We show how it implies a positive law.

Example 5. Let a = zy3xy, b = zyxyxyzyx, c = xy then the law (3) is

(7) x y−1z ≡ (zy3xy)−1zyxyxyzyx (xy)−1,

If apply α to (7) we get xz ≡ (zx)−1bα(x)−1, which is trivial because

bα .= (zyxyxyzyx)α .= (zx)xz(x).

By applying β to (7) we get the law which again is trivial

z
.= (zx5)−1(zx3)x2︸ ︷︷ ︸ ·z · (x2)(x2)−1︸ ︷︷ ︸ .

By applying γ to (7) we get a nontrivial law

x ≡ (z4xz)−1z2xzxz2zx(xz)−1,

which implies a positive law (z4xz)x(xz) ≡ z2xzxz3x, or shorter

z2xzx2z ≡ xzxz3x.
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