
Annales Mathematicae Silesianae 22 (2008), 69–82

Prace Naukowe Uniwersytetu Śląskiego nr 2703, Katowice

APPLICATION OF THE A* ALGORITHM TO PROBLEMS
OF THE EUCLIDEAN SHORTEST PATHS IN THE PLANE

WITH POLYGONAL OBSTACLES

Anna Wojak

Abstract. The Euclidean shortest path between two points s and t in the
plane with the cellular decomposition in the presence of obstacles is considered.
The A* algorithm for a visibility graph (VG) is used to avoid widened obstacles.
Computational experiments show that the proposed algorithm is often faster
and it analyzes fewer nodes than the classical Dijkstra algorithm.

1. Introduction

The computation of the shortest path between two nodes in a weighted
graph has been studied in the graph theory and network optimization for
over forty years. A lot of algorithms and their modifications have been pro-
posed, e.g. D’Esopo–Pepe, Dial, Floyd–Warshall, Danzig, Bellman–Fordand
and Dijkstra [1, 3, 9]. The comparison and analysis of their computational
complexity were presented by Pallottino [10], who performed tests on var-
ious data structures. The optimal-time algorithm for the classical shortest
path problem runs in the worst-case time O(n log n) and it requires O(n log n)
space, where n is the total number of nodes in the graph.

Several years ago scientists started to work on heuristic algorithms for
the determination of the shortest path. One of them is the A* algorithm
(A STAR). Its main idea was proposed by Pohl [11] and Hart [4]. Hart

Received: 23.05.2005. Revised: 9.04.2008.
(2000) Mathematics Subject Classification: 68W05, 68U05.
Key words and phrases: shortest path, obstacles, visibility graph.

70 Anna Wojak

used the A* algorithm to solve the shortest path problem in static networks.
His results were extended by Chabini and Lan [2] for the computation of the
fastest paths in a dynamic network.

The Euclidean shortest path problem is an important problem in the com-
putational geometry and it has a lot of applications in robotics, transportation
and computer graphics. The best-known application is the geographic infor-
mation system (GIS), which helps to locate an object, to plan a route or to
avoid traffic.

The shortest path problem considered in a geometric domain, in contrast
to graphs, is usually specified by geometric objects. Given a set of polygonal
obstacles in the plane, the problem is to compute the shortest path between
two points avoiding all the obstacles. There are two fundamental methods:
Shortest Paths Map (SPM) and Visibility Graph (VG). SPM tries to solve
a more general problem: build a map of the shortest paths from a given
origin point to all points in the plane. Hershberger and Suri [5] presented
an algorithm with the computational complexity O(n log n), where n is the
total number of obstacle vertices. They proposed a special decomposition of
the space called ”the conforming subdivision”. Their algorithm studies the
propagation of the wave in the cells of this decomposition in order to avoid
the obstacles. The wavefront moves among the edges of obstacles and does
not enter the obstacles. SPM can be used to the answer single-shortest path
queries in O(log n) time.

The method of Visibility Graph method uses a graph whose nodes are the
vertices of the obstacles and whose edges are pairs of mutually visible vertices.
O’Rourke [9] described the construction of the VG and computed the shortest
path on this graph by running the Dijkstra algorithm. Kapoor, Maheshwari,
Mitchell [7] and Mitchell [8] have shown that the Euclidean shortest path
avoiding obstacles in the plane can be found in O(n + h2 log n) time, where n
is the total number of obstacle vertices and h is the number of obstacles in the
plane. Ghosh and Mount [6] have shown that the optimal time algorithm is
O(n log n+E), where E is the number of edges in the VG graph. In the worst
case E is equal to O(n2), but they showed that E is usually much smaller
than

(n
2

)
.

In this paper we combine the VG method with the heuristic search in order
to find the Euclidean shortest path between two points in the plane with the
presence of obstacles. We show algorithms for the construction of obstacle
vertices for a given initial map and for the determination of the Visibility
Graph. We present the ideas underlying the A* algorithm and show how to
use it to improve efficiency of the determination of the shortest path in the
Visibility Graph.

The paper is organized as follows. In Section 2 we recall the fundamental
information about the A* algorithm. We introduce the notation and describe
the heuristic method for a simple graph [4, 11]. In Section 3 we propose an

Application of the A* algorithm 71

algorithm for the determination of the obstacle vertices. We present a square
cellular decomposition of the two-dimensional plane. For this decomposition
we widen the original obstacles by marking the neighbouring cells. These
marks allow us to determine the vertices of the obstacles. In Section 4 we
present the implementation of the Euclidean A* algorithm in the geometric
domain. In Section 5 we compare the classical Dijkstra algorithm with the
Euclidean A* algorithm. Our numerical results show that the A* algorithm
is usually faster and analyzes fewer vertices than the Dijkstra algorithm.

2. The basics of the A* algorithm

Consider a graph G = (N,E), where N is the set of nodes and E is the
set of edges. To each edge (i, j) ∈ E in G is attached its cost cij > 0. Let
s ∈ N denote the origin node and t ∈ N denote the destination node.

Similarly to the Dijkstra algorithm [9], the A* algorithm uses the node
labelling method: labels are either temporary or permanent. A node i has
a permanent label, denoted by [di], if the shortest path from the origin s to
i is known. The label stores the cost of this path and a node (predecessor)
from which i was reached. A temporary label of the node i, denoted by (d′i),
contains the predecessor and the cost of a path given by formula:

(1) d′i =

{
min{[dj] + cji + fi : for all j ∈ E(i)}, if j 6= s,

fi, if j = s,

where E(i) is the set of all neighbours of the node i, which have permanent
labels, and fi is a heuristic value associated with the node j. This value tells
how the node i is distant from the destination node t. It could be the shortest
path, the minimal number of nodes or edges on the path or a metric distance
between those two nodes. A temporary label stores a heuristic cost of the
path from the origin s to the destination t running though the node i.

A* algorithm

Let S and S denote two sets consisting of nodes with permanent labels
and all other nodes of the graph G = (N,E), respectively. At the beginning
of the A * algorithm (see Algorithm 1), the set S = ∅ and S is the set of all
nodes of the graph G, i.e., S = N . The value dj is the minimal cost of the
path from the node s to the node j, pred(j) is the predecessor of the node j,
cij is the cost of the edge (i, j) ∈ E and fj is a ”distance” between the nodes

72 Anna Wojak

j and t. The value d′j given by formula (1) is a heuristic cost of a path Pst

via the node j.
Each iteration of Algorithm 1 we start by choosing the node i with a

minimal heuristic value d′j (line 3). This node is permanently labelled (line
4). In the first iteration it is origin node s. Next we establish all temporary
labels for neighbouring nodes to i (lines 6–10). We iterate as long as we assign
the node i = t (line 3).

Algorithm 1. A* algorithm

1: S := ∅; S := V ; ds := 0; pred(s) := 0; d′s = fj ;
2: while |S| < V do
3: let i ∈ S be the node for which [di] := {dj : min((d′j) : j ∈ S)}
4: S := S ∪ {i};
5: S := S − {i};
6: for all (i, j) ∈ E(i) do
7: if dj > [di] + cij then
8: dj := [di] + cij ;
9: (d′j) := dj + fj ;

10: pred(j) := i;

It is easy to notice that the Algorithm 1 is similar to the Dijkstra al-
gorithm presented in [1]. The Dijkstra algorithm chooses the node to be
permanently labelled with respect to the minimal value dj whereas the A*
algorithm chooses the node, which has the minimal heuristic value d′j from
all temporarily labelled nodes. The upper bound of the computational com-
plexity of the A* algorithm is O(n2), where n is the total number of nodes
in the graph G. In Section 5 we show that for the same costs of paths the
A* algorithm is faster and analyses fewer nodes than the classical Dijkstra
algorithm.

3. The definition of map and the determination of vertices
of polygonal obstacles

Consider a two-dimensional plane K with a square cellular decomposition.
Each square cell is described by coordinates xi,j = (xi, yj) of its center for
i, j = 1, ..., n. This cell is called the point of the plane K. The set of all
square cells we denote by X, and X = {xi,j : xi,j ∈ K}. Let U(xi,j) =
{xi+1,j , xi−1,j , xi,j+1, xi,j−1} be a four-neighbourhood of the point xi,j (see
Figure 1).

Application of the A* algorithm 73

Figure 1. The surrounding of the square cell xi,j

Let O be any subset of X, and let us define a set B as follows:

(2) B = {xi,j : xi,j ∈ X \O and U(xi,j) ∩O 6= ∅}.

Consider a marking function C : X −→ {1, 0,−1} and

(3) C(xi,j) =


1 xi,j ∈ O,
0 xi,j ∈ B,

−1 xi,j ∈ X \ (O ∪B),

which is used to define the obstacle vertices.

Definition 1. The cell xi,j ∈ B, such that

(4) C(xi,j+1) + C(xi,j−1) 6= C(xi+1,j) + C(xi−1,j)

is called an obstacle vertex.

The set O is called the set of obstacle points. It can be presented as a sum of
finite disjoint polygonal obstacles O =

⋃n
i=1 Oi, where Oi consists of obstacle

points in a form of the polygonal, Oi ∩ Oj = ∅ for i 6= j. The corresponding
set B is called a set of obstacle boundary points. The set X \ (O ∪ B) is
called a set of free points of the plane K. The map with the square cellular
decomposition with these three kinds of points is called the initial map IM.

74 Anna Wojak

3.1. The determination of obstacle vertices

Consider a map with the square cellular decomposition where every square
has a side a. For this map we mark above mentioned three kinds of points
according to formula (3). The maximal connected set of obstacle points and its
boundary points is called widened obstacle. The edges of the widened obstacle
consist of the set of obstacle boundary points and obstacle vertices. The
boundary points should enclose obstacle points (see Figure 4d, obstacle III).
If obstacle points are connected with sides of IM, then the boundary points
enclose a part of obstacle points (see Figure 4d, obstacles I and II). The four
- neighbourhood of boundary points with obstacle points reduces the number
of vertices of the original obstacle, which consists of obstacle points. This
reduction let us efficiently avoid the obstacles using edges and vertices of
widened obstacles and it decreases the number of obstacle vertices. Now we
define a new map called a real map (RM). This RM consists of the initial
map IM and two arbitrarily chosen points: the origin s and the destination t.
In addition we assume that the points s and t are not obstacle points s, t 6∈ O.
According to the marking function the obstacle points, the boundary points
and free space points have the values 1, 0 and −1, respectively. In Algorithm
2 we present the procedure of the vertex determination (VD).

Algorithm 2. VD procedure

1: for all xi,j ∈ X do
2: if xi,j ∈ B then
3: if C(xi,j+1) + C(xi,j−1) 6= C(xi+1,j) + C(xi−1,j) then
4: xi,j is a obstacle vertex;

We look through a RM starting in the left-top point of the map using
the methodology of raster-curve and we check every point xi,j ∈ X according
to the formula (2) if it is a boundary point. If xi,j ∈ B and the formula (4)
holds then xi,j is the obstacle vertex according to Definition 1. The computed
obstacle vertices are stored in a table (see e.g. Table 1), which is an input to
our algorithm. The structure of this table is described in details in Section 4.

As an example, we consider the initial map with the square cellular de-
composition for a = 10 (our plane is covered by 102 squares) with one obstacle
and two points: the origin and the destination, respectively, in Figure 2. This
obstacle is widened according to the four-neighbourhood and the boundary
points have a lighter colour than the obstacle points. The numbers in squares
denote the order in which the vertices were computed. Two points with num-
ber 0 and 10 denote: the origin and the destination, respectively.

Application of the A* algorithm 75

Figure 2. The determination of obstacle vertices

4. Implementation of the Euclidean A* algorithm

To find the Euclidean shortest path in the map between the nodes s and t
avoiding obstacles we use the Visibility Graph method [6–9]. Nodes of VG are
the obstacle vertices and edges are the pairs of their mutually visible vertices.
To compute the set of VG edges we use a simple algorithm. We look at
every edge to see if it blocks or interferes with a given pair of vertices. If not
the two vertices are visible to each other. Of course, to construct the entire
visibility graph, the procedure loops through every pair of vertices. There
are O(n2) pairs of vertices and there are O(n) edges for each vertex so the
total time is O(n3). The algorithm requires O(n) space [9]. To compute the
Euclidean shortest path we combine the methodology of a VG construction
with the A* algorithm (see Algorithm 1). For the shortest path problem
in the geometric domain we call it the Euclidean A* algorithm. First we
compute the obstacle vertices which become the VG nodes. For each node j
the following information is considered: the node number, coordinates of the
point on the plane K associated with the node j, the marker C, the cost dj for
the Euclidean shortest path Psj , the predecessor of the node j, the heuristic
value fj and the value d′j , respectively (as an example, see Table 1 for Figure
2). The marker C describes nodes with temporary label C = 0, nodes with
the permanent labels C = 1 and the destination node t for C = 10. The
Euclidean metric is used to determine the cost cij of the edge between two
nodes i and j

(5) cij =
√

(ix − jx)2 + (iy − jy)2

76 Anna Wojak

and the value fj , which is the Euclidean distance between j and t

(6) fj =
√

(jx − tx)2 + (jy − ty)2,

where (ix, iy), (jx, jy), (tx, ty) are coordinates of points i, j and t, respectively.
The algorithm runs through two stages. The first one is a preprocessing

phase. In this phase we compute the lists A(j) of visible neighbours of each
node j ∈ N . The second phase is the determination of the shortest path using
the Euclidean A* algorithm (see Algorithm 3). Input of our algorithm is the
table T .

Algorithm 3. Euclidean A* algorithm

1: min: = 0; ds := 0; d′s := fs;
2: i = s
3: while C(i) 6= 10 do
4: for all j ∈ A(i) do
5: if C(j) 6= 1 then
6: if dj > min + cij then
7: dj := min + cij ;
8: d′j := dj + fj

9: pred(j) := i

10: i :=MIN(d′i) ;
11: min := di;

Algorithm 3 consist of two parts: a path extention procedure (lines 4-9)
and MIN(·) function (line 10). From the set of temporarily labelled nodes we
choose the one which has the minimal heuristic value d′i. Its label becomes
permanent (line 10) and we start the path extention procedure. We extend
the path Psi to the nodes which are visible from i (line 4). For each of these
nodes we establish the label. For the nodes which has not been labelled we
create new labels and for the labelled nodes we update costs if it is necessary
(line 7). The values cij and fj are computed according to the formulas (5)
and (6), respectively. We iterate as long as C(i) 6= 10. The path extention
procedure requires O(n2) time while the MIN function O(n) [3].

5. Comparison of Euclidean A * and Dijkstra algorithms

In this section we compare the performance of the A* algorithm with the
classical Dijkstra algorithm applied to a geometric problem. Our results show
that the A* algorithm outperforms the classical Dijkstra algorithm.

Application of the A* algorithm 77

First, we consider the map in Figure 2, which consists of one obstacle and
two points: the origin and the destination. The vertices of the obstacle are
numbered (1–9), the origin point is numerated by 0 and the destination by 10.

In the VD procedure (Algorithm 2) we compute the obstacle vertices,
which are stored in the table T (see Table 1). This vertices together with the
origin and the destination create the set of VG nodes. For each VG node we
computed the visible nodes. Next we apply the Euclidean A* algorithm (see
Algorithm 3) and the classical Dijkstra algorithm [1]. Final results of both
algorithms are shown in the table TA (see Table 2) and TD (see Table 3),
respectively.

Table 1. Table T contains the obstacle vertices for Figure 2

Vertex xj yj C dj pred(j) fi d′j

0 375 325 1 0 0 0 0
1 225 75 0 0 0 0 0
2 275 75 0 0 0 0 0
3 125 125 0 0 0 0 0
4 175 125 0 0 0 0 0
5 325 125 0 0 0 0 0
6 75 175 0 0 0 0 0
7 275 175 0 0 0 0 0
8 325 225 0 0 0 0 0
9 225 325 0 0 0 0 0
10 75 25 10 0 0 0 0

We recall that the columns in Table 1 denote: the node j, x and y coor-
dinates of the obstacle vertex j, the marker C, the cost dj of a path Psj , the
predecessor of the node j, the cost of an Euclidean shortest path fj from the
node j to the node t, and the heuristic value d′j , respectively. In table TD we
remove columns associated with the heuristic values d′j and fj because they
are not used in the Dijkstra algorithm.

Table 2. The table TA for results of the Euclidean A* algorithm

Vertex xj yj C dj pred(j) fj d′j

0 375 325 1 0 0 0 0
1 225 75 0 326 2 158 484
2 275 75 1 276 5 206 482
3 125 125 0 434 2 111 545
4 175 125 0 0 0 0 0
5 325 125 1 206 0 269 475
6 75 175 0 0 0 0 0
7 275 175 1 181 8 250 431
8 325 225 1 111 0 320 431
9 225 325 0 150 0 335 485
10 75 25 10 482 2 0 482

78 Anna Wojak

Figure 3. The shortest path computed by A* and Dijk-
stra algorithms for Figure 2

Analyzing the marker column C of the table TA we notice that there
are points for which the marker C = 0. It means that not all points were
permanently labelled. On the other hand, in the table TD all vertices have
the marker C = 1, so we infer that the Euclidean A* algorithm analyzes fewer
vertices than the Dijkstra algorithm and both of them give the same shortest
path (see Figure 3). To prove it, let us consider more complicated examples
of real maps with four types of decompositions for a = {10, 30, 50, 100}.

Table 3. The table TD for results of the Dijkstra algorithm

Vertex xj yj C dj pred(j)

0 375 325 1 0 0
1 225 75 1 326 2
2 275 75 1 276 5
3 125 125 1 432 6
4 175 125 1 396 1
5 325 125 1 206 0
6 75 175 1 362 9
7 275 175 1 181 8
8 325 225 1 111 0
9 225 325 1 150 0
10 75 25 10 482 2

Our maps are approximated by a2 squares. Examples are shown in Figure
4 and Figure 6. We compare the algorithms with respect to the number of
obstacles and the square decomposition. The total number of nodes for the
visibility graph |N |, the cost of the path d(Pst), the total number of analysed
nodes θ and the algorithm running time τ were the objects of our analysis.
The results for the example maps are presented in Table 4. Consider the
map for a = 30 with three obstacles (Figure 4d). The results obtained are:
the total number of vertices are 70, the Euclidean A* algorithm analyzed 55
vertices in time 0,09 seconds while the Dijkstra algorithm analyzed 67 vertices
in time 0,12 seconds (9–10 rows in Table 4).

Application of the A* algorithm 79

Table 4. Result of the Euclidean A* and Dijkstra algorithms for the a – square decompo-
sition. The value |N | denote the total number of nodes in the visibility graph, d(Pst) –
the cost of the shortest path from the origin to the destination, θ – the total number of
analyzed nodes, τ – the algorithm running time in seconds.

Algorithm Number of obstacles a d(Pst) |N | θ τ Map
A* 2 10 674 15 5 0,03 Figure 4a

Dijkstra 2 10 674 15 12 0,05 Figure 4a
A* 3 10 423 16 5 0,02 Figure 4b

Dijkstra 3 10 423 16 15 0,05 Figure 4b
A* 4 10 628 23 11 0,05 Figure 4c

Dijkstra 4 10 628 23 21 0,06 Figure 4c
A* 2 30 973 78 60 0,1 Figure 4e

Dijkstra 2 30 973 78 76 0,18 Figure 4e
A* 3 30 1162 70 55 0,09 Figure 4d

Dijkstra 3 30 1162 70 67 0,12 Figure 4d
A* 3 30 617 44 20 0,13 Figure 5a

Dijkstra 3 30 617 44 42 0,17 Figure 5a
A* 4 30 741 63 24 0,15 Figure 5b

Dijkstra 4 30 741 63 58 0,25 Figure 5b
A* 5 30 1066 91 81 0,47 Figure 5c

Dijkstra 5 30 1066 91 89 0,5 Figure 5c
A* 6 30 681 61 27 0,19 Figure 5d

Dijkstra 6 30 681 61 60 0,27 Figure 5d
A* 2 50 878 304 198 1,59 Figure 5e

Dijkstra 2 50 878 304 287 2,77 Figure 5e
A* 2 50 1318 70 60 0,08 Figure 4f

Dijkstra 2 50 1318 70 69 0,11 Figure 4f
A* 3 50 579 76 41 0,23 Figure 5f

Dijkstra 3 50 579 76 72 0,33 Figure 5f
A* 4 50 908 318 208 3,11 Figure 5g

Dijkstra 4 50 908 318 289 3,42 Figure 5g
A* 5 50 681 291 111 1,77 Figure 5h

Dijkstra 5 50 681 291 259 2,47 Figure 5h
A* 6 50 1075 537 271 6,07 Figure 5i

Dijkstra 6 50 1075 537 507 7,01 Figure 5i
A* 6 100 907 639 377 7,37 —

Dijkstra 6 100 907 639 699 9,01 —

A similar analysis may be performed for all entries in this table. The
computational tests show that in problems of computing the shortest path
with the presence of polygonal obstacles, the Euclidean A* algorithm is faster
and analyzes fewer nodes than the classical Dijkstra algorithm.

80 Anna Wojak

a) b) c)

d) e) f)

Figure 4. The shortest paths computed by Dijkstra and A* algorithms with tree types of
the square decomposition: a–c) for a = 10; d–e) for a = 30; f) for a = 50, respectively

6. Conclusions

In the present paper the Euclidean shortest path problem on the plane
with the presence of polygonal obstacles is considered [5, 7, 8]. We combine a
heuristic search (the A* algorithm [4, 11]) with the Visibility Graph method
[6, 9]. For a map with obstacles we propose the procedure to determine the
Visibility Graph: we use a square decomposition of the plane and a marking
function to find obstacle vertices, the nodes and the edges of the VG. To
such prepared data we apply two algorithms: Euclidean A* and Dijkstra’s.
Numerical tests (the analysis refers to the computation time, the number of
visited nodes and the cost of the paths) show that the Euclidean A* algorithm
outperforms the classical Dijkstra algorithm: it analyzes fewer vertices and
has a shorter running time.

Application of the A* algorithm 81

a) b) c)

d) e) f)

g) h) i)

Figure 5. The shortest paths computed by Dijkstra and A* algorithms with tree types of
the square decomposition: a–d) for a = 30; e–i) for a = 50, respectively

References

[1] Ahuja R.K., Magnanti T.M., Orlin J.B., Network Flows – Theory, Algorithms and
Applications, Prentice-Hall, Englewood Cliffs, NJ, 1993.

[2] Chabini I., Lan S., Adaptation of the A* algorithm for computation of faster paths in
deterministic discrete-time dynamic networks, IEEE. Trans. on Intel. Trans. Syst. 3
(2002), 60–74.

82 Anna Wojak

[3] Cormen T.H., Leiserson C.E., Rivest R.L., Introduction of Algorithms, Second Edition,
The MIT Press, 2001.

[4] Hart E.P., Nilson N.J., Raphael B., A formal basis for the heuristic determination of
minimum cost path, IEEE Trans. Syst. Sci. Cybern. 4 (1968), 100–107.

[5] Hersberger J., Suri S., On computing Euclidean shortest paths in the plane, Proc. 34
Annu. IEEE. Sympos. Found, Comput. Sci. (1993), 508–517.

[6] Ghosh S.K., Mount D.M., An output-sensitive algorithm for computing visibility
graphs, SIAM J. Computing 20 (1991), 888–910.

[7] Kapoor S., Maheshwari S.N., Mitchell J.S.B., An efficient algorithm for Euclidean
shortest paths among polygonal obstacles in the plane, Discrete Comput. Geom. 18
(1997), 377–383.

[8] Mitchell J.S.B., Geometric Shortest Paths and Network Optimization, In: Handbook
of Computational Geometry, Elsevier Science (J.-R. Sack and J. Urrutia, eds.), 2000,
pp. 633–701.

[9] O’Rourke J., Computational Geometry in C, Cambridge University Press, New York,
1995.

[10] Pallottino S., Shortest paths Method – Complexity Interrelations and New Proposi-
tions, Consiglio Nazionale delle Ricerche, Istituto per le Aplicazioni del Calcolo “Mauro
Picone”, Roma, 14 (1984), 257–267.

[11] Pohl I., Heuristic search viewed as path finding in a graph, Artif. Intell. 1 (1970),
193–204.

Institute of Mathematics
Silesian University
Bankowa 14
40-007 Katowice
Poland
and
Institute of Physics
Silesian University
Uniwersytecka 4
40-007 Katowice
Poland
e-mail: annawojak@gmail.com

