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SEPARATION THEOREMS FOR CONDITIONAL
FUNCTIONAL EQUATIONS

Włodzimierz Fechner

Abstract. We prove two separation theorems for solutions of conditional
Cauchy and Jensen equations.

1. Introduction

Separation (or sandwich) theorems have been widely investigated by sev-
eral authors, let us mention here only a few papers. A classical result is the
Mazur–Orlicz Theorem [6], which was later generalized by R. Kaufman [3]
and then further developed by P. Kranz [5]. In 1978 G. Rodé [9] proved his
famous result which is a far reaching generalization of the Hahn–Banach The-
orem. Three years later P. Volkmann and H. Weigel [11] further generalized
this theorem. H. König [4] presented a simpler proof of the Rodé’s Theorem
and Z. Páles [8] proved a geometric version of this theorem. K. Nikodem,
Z. Páles and S. Wąsowicz [7] generalized several older results and also pro-
vided necessary (not only sufficient) conditions for the separation.

In spite of great flexibility of the above-mentioned theorems, we do not
know if it is possible to apply them to obtain separation theorems for con-
ditional functional equations. In the present paper we use much simpler
techniques to prove such statements for the Cauchy and Jensen equation on
spheres and its generalizations.
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In 1994 C. Alsina and J.L. Garcia-Roig [1] investigated the following con-
ditional functional equation:

(A) ‖x‖ = ‖y‖ =⇒ f(x + y) = f(x) + f(y),

where f : X → Y is a map defined on a real inner product space X with
dim X ≥ 2. They have proved that if Y = Rn, then each solution of (A) is
additive. Moreover, if Y is a real linear topological space and f : X → Y is a
continuous solution of (A), then f is a continuous linear transformation.

A more general result obtained Gy. Szabó in 1993 [10]. He proved that if
X is a real normed linear space with dim X ≥ 3 and Y is an abelian group,
then each solution of (A) is additive.

In 1997 R. Ger and J. Sikorska investigated the following generalization of
equation (A):

(B) ϕ(x) = ϕ(y) =⇒ f(x + y) = f(x) + f(y),

where ϕ is a given map satisfying certain axioms, which are in particular
fulfilled by ϕ = ‖ · ‖ on a normed linear space. They have found conditions
sufficient for an arbitrary solution of (B) to be additive [2, Theorem 1 and
Theorem 2]. Moreover, they proved the Hyers–Ulam stability of (B) [2, The-
orem 3 and Theorem 4].

In 2001 M. Ziółkowski [12] investigated the following conditional Jensen
equation:

(C) ϕ(x) = ϕ(y) =⇒ f
(x + y

2

)
=

f(x) + f(y)
2

,

and the following equation

(D) ϕ(x + y) = ϕ(x− y) =⇒ f
(x + y

2

)
=

f(x) + f(y)
2

.

Under analogous assumptions upon ϕ to these from the paper of R. Ger and
J. Sikorska [2] he proved that the general solution of (C) and of (D) is of the
form f(x) = a(x) + c, where a is an additive mapping and c is a constant
[12, Theorems 1, 2 and 3]. Moreover, he provided some stability results for
equations (C) and (D) [12, Theorems 4, 5 and 6].

The purpose of the present paper is to obtain some separation theorems
for equations (C) and (D). First, we will prove two general statements and
then we will join them with the above-mentioned stability results of R. Ger,
J. Sikorska and of M. Ziółkowski. Finally, we make use of their results con-
nected with the solutions of equations (B) and (D) to obtain separation by
additive mappings.
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2. Main results

In the first theorem we will provide conditions sufficient for the separation
for a general conditional Cauchy equation. Assume that (S, +) is an arbitrary
semi-group (not necessarily abelian) and H ⊂ S × S. We will formulate our
assumptions in terms of the Hyers–Ulam stability of the general conditional
functional equation:

(1) (x, y) ∈ H =⇒ f(x + y) = f(x) + f(y)

for maps f : S → R. We say that the equation (1) is stable in the sense of
Hyers–Ulam on H, or stable on H for short, if for each ε > 0 there exists
a δ > 0 such that for each F : S → R satisfying

(2) (x, y) ∈ H =⇒ |F (x + y)− F (x)− F (y)| ≤ ε,

there exists a solution f : S → R of (1) such that ‖F − f‖sup ≤ δ (where
‖ · ‖sup denotes the standard supremum norm). Analogically we understand
the stability of the conditional Jensen equation:

(3) (x, y) ∈ H =⇒ f
(x + y

2

)
=

f(x) + f(y)
2

.

Theorem 1. Assume that (S, +) is a semi-group, H ⊂ S × S, p : S → R
and q : S → R satisfy

(x, y) ∈ H =⇒ p(x + y) ≤ p(x) + p(y),(4)

(x, y) ∈ H =⇒ q(x + y) ≥ q(x) + q(y),(5)

q ≤ p and ‖p− q‖sup < +∞. If

(6) x ∈ S =⇒ (x, x) ∈ H,

and the conditional Cauchy equation (1) is stable on H, then there exists
a solution f : S → R of (1) such that q ≤ f ≤ p.
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Proof. Fix (x, y) ∈ H arbitrarily and check that

p(x + y)− p(x)− p(y) ≤ 0

and

p(x + y)− p(x)− p(y) ≥ q(x + y)− p(x)− p(y)
≥ q(x + y)− q(x)− q(y)− 2‖p− q‖sup.

Thus, after letting ε := 2‖p− q‖sup we arrive at

(x, y) ∈ H =⇒ |p(x + y)− p(x)− p(y)| ≤ ε.

From our assumptions it follows that there exist a δ > 0 and a solution
f : S → R of (1) such that ‖p− f‖sup ≤ δ.

Now, by the use of (6) jointly with (1), (4) and (5) we obtain

f(2x) = 2f(x), p(2x) ≤ 2p(x), q(2x) ≥ 2q(x), x ∈ S.

On the other hand, we have

q(x)− δ ≤ p(x)− δ ≤ f(x) ≤ p(x) + δ, x ∈ S,

and thus

2nq(x)− δ ≤ q(2nx)− δ ≤ f(2nx) = 2nf(x) ≤ p(2nx) + δ

≤ 2np(x) + δ, x ∈ S.

Divide this estimations side-by-side by 2n to get

q(x)− 1
2n

δ ≤ f(x) ≤ p(x) +
1
2n

δ, x ∈ S.

Now, tend with n to +∞ to deduce that

q(x) ≤ f(x) ≤ p(x), x ∈ S. �

Now, we will apply a result of R. Ger and J. Sikorska [2, Theorem 4] which
provides a sufficient condition for equation (B) to be stable.
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Corollary 2. Assume that (S, +) is abelian semigroup, Z is a nonempty
set, and ϕ : S → Z is a given function which admits a “duplication formula”,
i.e. there exists a Φ: Z → Z such that

(7) ϕ(2x) = Φ(ϕ(x)), x ∈ S.

Further, let p : S → R and q : S → R satisfy

ϕ(x) = ϕ(y) =⇒ p(x + y) ≤ p(x) + p(y),(8)

ϕ(x) = ϕ(y) =⇒ q(x + y) ≥ q(x) + q(y),(9)

q ≤ p and ‖p − q‖sup < +∞. Then there exists a solution f : S → R of (B)
such that q ≤ f ≤ p.

Proof. It is enough to define

H := {(x, y) ∈ S × S : ϕ(x) = ϕ(y)}

and observe that in this case equations (B) and (1) are equivalent. Thus all
assumptions of Theorem 1 are satisfied. �

Now, we will quote two sets of conditions from the paper of R. Ger and
J. Sikorska [2] which ensures that each solution of (B) is additive.

(i) for any two linearly independent vectors x, y ∈ X there exist linearly
independent vectors u, v ∈ Lin{x, y} such that ϕ(u + v) = ϕ(u− v);

(ii) if x, y ∈ X, ϕ(x + y) = ϕ(x − y), then ϕ(αx + y) = ϕ(αx − y) for all
α ∈ R;

(iii) for all x ∈ X and λ > 0 there exists an y ∈ X such that ϕ(x + y) =
ϕ(x− y) and ϕ((λ + 1)x) = ϕ((λ− 1)x− 2y).

The second set of assumptions involves consideration of a binary relation ≺
on a topological group Z:
(a) for every x ∈ Z the relationship 0 ≺ x implies that −x ≺ 0;
(b) the half-lines {x ∈ Z : x ≺ 0} and {x ∈ Z : 0 ≺ x} are disjoint and open

in Z.

Corollary 3. Assume that X is a real linear space with dim X ≥ 2, Z is
a given nonempty set and ϕ : X → Z is an even mapping satisfying conditions
(i), (ii) and (iii). Further, let p : X → R and q : X → R satisfy (8), (9), q ≤ p
and ‖p− q‖sup < +∞. Then there exists an additive mapping f : S → R such
that q ≤ f ≤ p.
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Corollary 4. Assume that (X, +) and (Z,+) are topological groups,
(X, +) is commutative, (Z,+) is equipped with a connected binary relation
≺⊂ Z × Z satisfying conditions (a) and (b) and ϕ : X → Z is a continuous
mapping such that for every x, y ∈ X the set

(10) {t ∈ X : ϕ(x + t) = ϕ(x− t) = ϕ(y)}

is nonempty and connected provided that ϕ(x) ≺ ϕ(y). Further, let p : X → R
and q : X → R satisfy (8), (9), q ≤ p and ‖p−q‖sup < +∞. Then there exists
an additive mapping f : X → R such that q ≤ f ≤ p.

A special case of equation (B) is equation (A). Therefore, we have the
following corollary.

Corollary 5. Assume that X is a real normed linear space with dim X ≥
2 and let p : X → R and q : S → R satisfy

‖x‖ = ‖y‖ =⇒ p(x + y) ≤ p(x) + p(y),
‖x‖ = ‖y‖ =⇒ q(x + y) ≥ q(x) + q(y),

q ≤ p and ‖p−q‖sup < +∞. Then there exists an additive mapping f : X → R
such that q ≤ f ≤ p.

Now, we will provide an analogue to Theorem 1 for the conditional Jensen
equation.

Theorem 6. Assume that (S, +) is a uniquely 2-divisible semi-group with
the neutral element 0, H ⊂ S × S, p : S → R and q : S → R satisfy

(x, y) ∈ H =⇒ p
(x + y

2

)
≤ p(x) + p(y)

2
,(11)

(x, y) ∈ H =⇒ q
(x + y

2

)
≥ q(x) + q(y)

2
,(12)

p ≤ q, p(0) = q(0) = 0 and ‖p− q‖sup < +∞. If

(13) x ∈ S =⇒ (x, 0) ∈ H,

and the conditional Jensen equation (3) is stable on H, then there exists a
solution f : S → R of (3) such that p ≤ f ≤ q.
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Proof. The proof is analogous to the proof of Theorem 1. For arbitrarily
fixed (x, y) ∈ H we have

p
(x + y

2

)
− p(x) + p(y)

2
≤ 0

and

p
(x + y

2

)
− p(x) + p(y)

2
≥ p

(x + y

2

)
− q(x) + q(y)

2

≥ q
(x + y

2

)
− q(x) + q(y)

2
− ‖p− q‖sup.

Put ε := ‖p− q‖sup to get

(x, y) ∈ H =⇒
∣∣∣p(x + y

2

)
− p(x) + p(y)

2

∣∣∣ ≤ ε.

From the assumptions it follows that there exist a δ > 0 and a solution
f : S → R of (3) such that ‖p− f‖sup ≤ δ.

Now, use of (13) jointly with (3), (11), (12) and apply the equality p(0) =
q(0) = 0 to obtain

f(2x) = 2f(x)− f(0), p(2x) ≥ 2p(x), q(2x) ≤ 2q(x), x ∈ S.

We have

p(x)− δ ≤ f(x) ≤ q(x) + δ, x ∈ S,

and thus

2np(x)− δ ≤ p(2nx)− δ ≤ f(2nx) = 2nf(x)− (2n − 1)f(0) ≤ q(2nx) + δ

≤ 2nq(x) + δ, x ∈ S.

From this one may deduce the estimate

p(x) ≤ f(x)− f(0) ≤ q(x), x ∈ S.

To finish the proof it remains to replace f by f − f(0). �
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Remark 7. If p : S → R and q : S → R are arbitrary solutions of (11)
and (12) and condition (13) is fulfilled, then the mappings p′ : S → R and
q′ : S → R given by

p′(x) := p(x)− p(0), q′(x) := q(x)− q(0), x ∈ S

are solutions of (11) and (12) which satisfy p′(0) = q′(0) = 0. However,
in general p ≤ q does not imply that p′ ≤ q′. Therefore, the assumption that
p and q vanish at zero in the previous theorem cannot be dropped in that way
but it is enough to assume that p(0) ≥ q(0) only. We do not know whether
this assumption can be omitted completely.

Now, make use of a result of M. Ziółkowski [12, Theorem 6] which provides
a sufficient condition for equation (D) to be stable.

Corollary 8. Assume that (S, +) is uniquely 2-divisible abelian group,
Z is a nonempty set, a function ϕ : S → Z satisfies

(14) ϕ(x) = ϕ(y) =⇒ ϕ(2x) = ϕ(2y), x ∈ S.

Further, let p : S → R and q : S → R satisfy

ϕ(x + y) = ϕ(x− y) =⇒ p
(x + y

2

)
≤ p(x) + p(y)

2
,(15)

ϕ(x + y) = ϕ(x− y) =⇒ q
(x + y

2

)
≥ q(x) + q(y)

2
,(16)

p ≤ q, p(0) = q(0) = 0 and ‖p − q‖sup < +∞. Then there exists a solution
f : S → R of (D) such that p ≤ f ≤ q.

Proof. Define

H := {(x, y) ∈ S × S : ϕ(x + y) = ϕ(x− y)}

and observe that in this case (3) is equivalent to (D). Thus our Theorem 6 is
applicable. �

Now, we will state three results, analogous to Corollaries 3, 4 and 5, which
provides separation by additive mappings.
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Corollary 9. Assume that X is a real linear space with dim X ≥ 2, Z is
a given nonempty set and ϕ : X → Z is an even mapping satisfying conditions
(i), (ii) and (iii). Further, let p : X → R and q : X → R satisfy (15), (16),
p ≤ q, p(0) = q(0) = 0 and ‖p − q‖sup < +∞. Then there exists an additive
mapping f : X → R such that p ≤ f ≤ q.

Corollary 10. Assume that (X, +) and (Z,+) are topological groups,
(X, +) is commutative and uniquely 2-divisible, (Z,+) is equipped with a
connected binary relation ≺⊂ Z × Z satisfying conditions (a) and (b) and
ϕ : X → Z is a continuous mapping such that for every x, y ∈ X the set (10)
is nonempty and connected provided that ϕ(x) ≺ ϕ(y) and such that for all
x ∈ X we have ϕ(0) = ϕ(x) or ϕ(0) ≺ ϕ(x). Further, let p : S → R and
q : S → R satisfy (15), (16), p ≤ q, p(0) = q(0) = 0 and ‖p − q‖sup < +∞.
Then there exists an additive mapping f : S → R such that p ≤ f ≤ q.

Corollary 11. Assume that X is a real normed linear space with dim X ≥
2, p : X → R and q : X → R satisfy

‖x + y‖ = ‖x− y‖ =⇒ p
(x + y

2

)
≤ p(x) + p(y)

2
,

‖x + y‖ = ‖x− y‖ =⇒ q
(x + y

2

)
≥ q(x) + q(y)

2
,

q ≤ p, p(0) = q(0) = 0 and ‖p − q‖sup < +∞. Then there exists an additive
mapping f : X → R such that q ≤ f ≤ p.
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