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INFINITE PRODUCT FOR ¢5¢®)

MARIAN GENCEV

Abstract. The author uses the summation of rational series using the prop-
erties of the digamma function ¥(z) and the methods of the residue calculus
to evaluate the function Hu(z) for « = 1 and = a~(N), N € N (see
Theorem 1) which is called the function generating the generalized harmonic
numbers of order 1 (see Definition 1). The relation between the functions
Hi(z), = > 0, and ¥(z) is used to find the approximations of the constant
€%¢(3) in the form of the infinite product which contains only the numbers e,
7 and the roots of unity, where ((3) is the Apéry constant.

1. Introduction

The study of the arithmetical nature of the values of the Riemann function
C(s) =30 L at integers s > 1 is one of the most attractive topics of the
modern number theory. Euler’s formula

(271)° By
§)=——""—, s=2/4,6,...
marked the first progress in this area. Some criteria for irrationality of such
kind of factorial series can be found in [4] and [5]. In 1882 F. Lindemann
proved that 7 is transcendental, which implies that {(s) is transcendental if s
is even. The problem of the irrationality of the values of ((s) at odd integers
is not solved yet, except the case s = 3, which was proved by Apéry in 1978.
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There are many papers concerning the results involving the value ((3).
In this paper we investigate the possibility to express the value %) using
the numbers 7, e and the roots of unity as the infinite product. J. Sondow
and J. Guillera (see [3] and [6]) found new infinite products of many classical
constants such as vy, 7 /e, €7 or e¢(®)/47* in 2003 and 2005. Certain interesting
infinite product expansions were obtained by Gosper in 1996:

o0 (n+1)4 24570n* 4641610462 152n%426 427n+4 154
II{ 4oos(n+2)*(n+8)° 31104 (n+3) (nt3) (n+3)
n=1 O 1

_ (0 ¢B3)
0 1 :
Transcendence criteria of special infinite products are investigated by
J. Hancl and P. Corvaja in [2].

2. Main result

THEOREM 1. Let N € N, (1 vy := —1 for all N € N, n = ¢;5 — 1,
j=2,...,N, wheree; y # 1 are the (N —1) solutions of the equation sé-\’[N =1
and

(gn,N + 1)N71 —1

Zp,N = ~ , 1<n<N.
G, T2, joen (Goov = Giov)
Then
a(N) w2 —6a?(N)
66(3) — <
€ Nl_lg_loo a3(N)Z, a(N)
=1 Gia(N)

where a(N): N — N is an increasing function.

For the proof of Theorem 1 it is convenient to introduce the function H, ()
generating the generalized harmonic numbers of order 1.

DEFINITION 1. Let a € Rt and £ € RT. Then the function

Moty = [ 120207,

t
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is called the function generating the generalized harmonic numbers of order 1.

COROLLARY 1. Let N € N. Then

Hl(N):Z

Sl =

LEMMA 1. Let N € N, N > 2 and a := M eN, M > 2. Then

1
M’

1
0 <AY(N,a) < \/(2(N+a)—1)(1_2a)7

where A¥(N,a) := V(N +a) — ¥(N).

Proor. Let N € N; N > 2 and a := ﬁ, M € N, M > 2. Using the
formula

(1) W(z) = /Om (et _ (1+1t)z> % Re(z) > 0,

t+oo 1 1 dt
AU(N,a) = A T S e
(V,a) /0 (e TETLEC +(1+t)N> t

N /om ((1 +1t)N S Q +1>N+a> %

/+<><> (1+8)°—1  at
0 t (14 t)N+a

[ 0 [ ()
- V W /om (W)Qd”
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For the last integral we obtain the estimation
oo (14 )* — 1) 1-¢ 1—¢w
[ e [ () e ()
0 t 0 1-¢
1-1
T M-1
—M/ (1—7‘M> T dr
—M/ —5d7
1

7'.7

1
<M M=3 gr = )
= /OT TT 12

This implies that

1
VRN +a) —1)(1—2a)

The inequality 0 < AV(NV, a) follows easily from (1), which completes the
proof of the lemma. O

A¥(N,a) <

PROOF OF THEOREM 1. Set

400 1
@) ) =D e

The infinite series on the right hand side of (2) represents for a € R the
absolute convergent infinite series and thus the value ¢(a) is defined for all
a € R. Using the definition of the Riemann (-function, we get the fact that

lim 6(a) = ((3).

Now, for the function ¢(a) we obtain (a > 0)

0= (o (i)

n=1
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Using the recursion formula ¥(z + 1) = ¥(2) + 1, we have

S L= 3 (W4 1)~ W) = N 4 1)~ W(1) = W(N 1)+,

n=1 n=1

and

=> (U(n+a+1)-=¥(n+a)=Y(N+a+1)—T(at1).

n=1
a>0

iiMz

This and Lemma 1 implies that

N

. 11
Jim Z_j (n - n+a> = — Jim_ ((\IJ(N+ a+1)— (N +1))
NeN Z;(% NeN

+(U(a+1) = ¥(1)) = Vla+1) - ¥(1),

which yields the fact that

2 1

Ha) = g — —5 (Pla+1) - ¥(1)).

Note that —¥(1) = v is the Euler-Mascheroni constant. Using the integral
representation for the term ¥(a + 1) — ¥(1), we obtain the formula

72 1 [t1—1te
3 =— - — —dt.

From the fact that lir% ¢(a) = ¢(3) we have the relation

lim ¢ (a™" (V) =¢(3),

N—+oc0

where N € N. The integral in (3) can be treated as the value of the generalized
harmonic number function H,(z) for « =1 and x := a = a~}(N).
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The value Hi(a"'(N)) =: H (a"'(N)), N € N, can be computed as fol-

lows:

11 —ge (V) N
—1 _ _ a(N)—1
H (a™'(N)) /0 — dt a(N)/0 T —a " dr

1 a(N)— 7_]—1
= a(N)/ Z = (N)%ji dr
i=
a(N) 1 i—1
=a(N)—a(N) L2 dr

_ oo VA de
_a(N)—a(N)/ Ea(N (C+ 1)1 (C+1)2

oo U+ 1)y e
(S

— a(N) — a(N) /O

T+ -1 d¢
(C+ 1) —1 ¢+1

— a(N) — a(N) /0
Using the fact that
deg ((c +1) - ((¢+1)°) — 1)) = deg ((< F1)a(N)-1 1) 12, VYNEN,
we can compute the last integral for H (a=*(N)) with the help of the residue

calculus.
For the brevity we write

(C+1DeM-1_1 1
C+1)e™ -1 ¢+1

ha(N)(C) =

Let (i ovy = —1 and (jony) = €javy) — 1, 5 = 2,...,a(N), where € () are

the solutions of the equation 5?(]\7)

a(N) = 1, except the trivial solution 1. Then

(e s SIS SR (Sl
(IS (€= Gan) €L SIS (€= Gam)

ha(nv)(€) = . C#£0.
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This implies that

a(N)

“+o0
/0 (€ dC == 37 Res  han) (€) g

naN

a(N) a(N)-1 _
- Y-
cﬂcwm gl‘[] LHén(C_Cj,a(N))

a(N) (Cn a(N) + 1)a(N)—1 -1
= Z a(I) G amy | -
CTL a N) HJ 1, ]#n(cn,a(N) - ija(N))

Setting
(Cn,a(N) + 1)a(N)71 -1
a(N) _
Crya () HJ‘:L j;én(Cn,a(N) Cy,a(N))

Zn,a(N) =

we obtain finally

a(N)
H (a_l(N)) = ( ln H Cya‘(]]\;)(N)
Thus
a(N) w2 —6-a%(N)
1 e
-1
6 (@ () = s In 1 SN

J=1 Sj.a(N)

Since lim ¢ (a=!(N)) = ((3), we obtain

N—+oco
a(N) w2 —6a%(N)
6C(3) — €
€ o N1—1>I-Ii-loo . 6a3(N)Zj a(n)’
=1 Sja(N)
which completes the proof of Theorem 1. O

REMARK 1. Note that the result in Theorem 1 must be taken in the sense
that there exists a branch in the complex plain of the number

a(N) 72 —6a?(N)

AN = H 6a (N)Zj a(N)
=1 $a(v)

such that Ay € R for every N € N.
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OPEN PROBLEM. Is the number e¢(® transcendental?
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