ON LUCAS NUMBERS, LUCAS PSEUDOPRIMES AND A NUMBERTHEORETICAL SERIES INVOLVING LUCAS PSEUDOPRIMES AND CARMICHAEL NUMBERS

Andrzej Rotkiewicz

Abstract. The following theorems are proved:
(1) If α and $\beta \neq \alpha$ are roots of the polynomial $x^{2}-P x+Q$, where $\operatorname{gcd}(P, Q)=$ $1, P=\alpha+\beta$ is an odd positive integer, then $(\alpha+\beta)^{n+1} \mid \alpha^{x}+\beta^{x}$ if and only if $x=(2 l+1)(\alpha+\beta)^{n}$, where $l=0,1,2, \ldots$ and then

$$
\operatorname{gcd}\left(\frac{\alpha^{(\alpha+\beta)^{n}}+\beta^{(\alpha+\beta)^{n}}}{(\alpha+\beta)^{n+1}}, \alpha+\beta\right)=1
$$

(2) Given integers P, Q with $D=P^{2}-4 Q \neq 0,-Q,-2 Q,-3 Q$ and $\varepsilon= \pm 1$, every arithmetic progression $a x+b$, where $\operatorname{gcd}(a, b)=1$ contains an odd integer n_{0} such that $\left(D \mid n_{0}\right)=\varepsilon$. The series $\sum_{n=1}^{\infty} 1 / \log P_{n}^{(a)}$, where $P_{n}^{(a)}$ is the n-th strong Lucas pseudoprime with parameters P and Q of the form $a x+b$, where $\operatorname{gcd}(a, b)=1$ such that $\left(D \mid P_{n}^{(a)}\right)=\varepsilon$, is divergent.
(3) Let C_{n} denote the n-th Carmichael number. From the conjecture of P. Erdős that $C(x)>x^{1-\varepsilon}$ for every $\varepsilon>0$ and $x \geq x_{0}(\varepsilon)$, where $C(x)$ denotes the number of Carmichael numbers not exceeding x it follows that the series $\sum_{n=1}^{\infty} 1 / C_{n}^{1-\varepsilon}$ is divergent for every $\varepsilon>0$.

Let P, Q be non-zero integers. Then the polynomial $x^{2}-P x+Q$, has the roots $\alpha, \beta=\frac{P \pm \sqrt{D}}{2}$, where $D=P^{2}-4 Q$.

Received: 1.12.2006. Revised: 27.02.2007.
(2000) Mathematics Subject Classification: 11A07, 11B39.

Key words and phrases: Carmichael number, Lucas number, Lucas pseudoprime.

For each $n \geq 0$, define $u_{n}=u_{n}(P, Q)$ and $v_{n}=v_{n}(P, Q)$ by:

$$
\begin{aligned}
& u_{0}=0, u_{1}=1, u_{n}=P u_{n-1}-Q u_{n-2}(\text { for } n \geq 2), \\
& v_{0}=2, v_{1}=P, v_{n}=P v_{n-1}-Q v_{n-2}(\text { for } n \geq 2) .
\end{aligned}
$$

The sequences $u_{n}(P, Q)$ and $v_{n}(P, Q)$ are called the first and second Lucas sequences with parameters P and Q. If $\eta=\alpha / \beta$ is a root of unity then the sequences $u_{n}(P, Q), v_{n}(P, Q)$ are said to be degenerate.

If $\operatorname{gcd}(P, Q)=1$, then for degenerate sequence we have $(P, Q)=(1,1)$, $(-1,1),(2,1)$ or $(-2,1)$. If the sequence is degenerate, then $D=0$ or $D=-3$. For $D \neq 0$ by Binet's formulas:

$$
\begin{aligned}
& u_{n}=\frac{\alpha^{n}-\beta^{n}}{\alpha-\beta}, v_{n}=\alpha^{n}+\beta^{n}, \\
& u_{n}(-P, Q)=(-1)^{n-1} u_{n}(P, Q), v_{n}(-P, Q)=(-1)^{n} v_{n}(P, Q) .
\end{aligned}
$$

1. Historical remarks

In the book [2], which contains every extant work by E. Galois (1811-1832) on page 301 it is written:

$$
\begin{aligned}
& 8,27,64,125,343,512,729,1000 \\
& \frac{3^{3}+5^{3}}{2^{3}}, \frac{4^{3}+5^{3}}{3^{3}}, \frac{2^{3}+7^{3}}{3^{3}}, \frac{5^{3}+7^{3}}{3^{3}}
\end{aligned}
$$

(in the denominator of last number, instead 3^{3} should be $3^{2} \cdot 2^{2}$).
The above passage of Galois manuscript suggests that $m(a+b) \mid a^{m}+b^{m}$ if $2 \nmid m$ and every prime factor of m divides $a+b$.

We note here that E.E. Kummer [11] (see L.E. Dickson [5], p. 737) showed that if an n is odd prime we have

$$
\frac{a^{n} \pm b^{n}}{a \pm b}=(a \pm b)^{n-1} \mp(a \pm b)^{n-3} a b+\frac{n(n-3)}{2}(a \pm b)^{n-5} a^{2} b^{2} \mp \ldots
$$

and if the above number and $a \pm b$ have a common factor, it divides the last term $\pm n(a b)^{(n-1) / 2}$, and is equal n if a and b are relatively prime with n.

Since the coefficients $n, n(n-3) / 2, \ldots$ are divisible by n, the exponent of the highest power of n dividing $a^{n} \pm b^{n}$ exceeds by unity that in $a \pm b$. T. Boncler (see W. Sierpiński [24], p. 67) proved that for every odd n and coprime integers a and b we have $(a+b)^{2} \mid a^{n}+b^{n}$ if and only if $(a+b) \mid n$.

The author proved [17] that if $(a, b)=1$ and $a+b$ is a positive odd integer then $(a+b)^{n+1} \mid a^{x}+b^{x}$ if and only if $x=(2 l+1)(a+b)^{n}$, where $l=0,1,2, \ldots$ and

$$
\operatorname{gcd}\left(\frac{a^{(a+b)^{n}}+b^{(a+b)^{n}}}{(a+b)^{n+1}}, a+b\right)=1
$$

Here we shall prove the following generalization of the above theorem.
Theorem 1. If α and $\beta \neq \alpha$ are roots of the polynomial $x^{2}-P x+Q$, where $\operatorname{gcd}(P, Q)=1, P=\alpha+\beta$ is an odd positive integer, then $(\alpha+\beta)^{n+1} \mid \alpha^{x}+\beta^{x}$ if and only if $x=(2 l+1)(\alpha+\beta)^{n}$, where $l=0,1,2, \ldots$ and then

$$
\operatorname{gcd}\left(\frac{\alpha^{(\alpha+\beta)^{n}}+\beta^{(\alpha+\beta)^{n}}}{(\alpha+\beta)^{n+1}}, \alpha+\beta\right)=1 .
$$

Proof. By the so-called law of repetition [26, p. 87] we have:
Let p^{e} (with $e \geq 1$) be the exact power of p dividing u_{n}. We shall write $p^{e} \| u_{n}$ when $p^{e} \mid u_{n}, p^{e+1} \nmid u_{n}$. Let $f \geq 1, p \nmid k$. Then, p^{e+f} divides $u_{n k p^{f}}$. Moreover, if $p \nmid Q, p^{e} \neq 2$ then p^{e+f} is the exact power of p dividing $u_{n k p f}$.

For the sequence v_{n} we have:
If p is an odd prime, $\lambda>0$ and $p^{\lambda} \| v_{m}$, then $p^{\alpha+\mu} \| v_{m n p^{\mu}}$, where $p \nmid n, n$ is odd, and $\mu \geq 0$.

Let $v_{1}=\alpha+\beta=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \ldots p_{k}^{\alpha_{k}}$, where $p_{1}, p_{2}, \ldots, p_{k}$ are odd primes. We have $(\alpha+\beta)^{n+1}=p_{1}^{\alpha_{1}+n \alpha_{1}} p_{2}^{\alpha_{2}+n \alpha_{2}} \ldots p_{k}^{\alpha_{k}+n \alpha_{k}}$ and by law of repetition for v_{n} we have
$(\alpha+\beta)^{n+1} \mid \alpha^{x}+\beta^{x}$ if and only if $x=(2 l+1) p_{1}^{n \alpha_{1}} p_{2}^{n \alpha_{2}} \ldots p_{k}^{n \alpha_{k}}=(2 l+1)(\alpha+\beta)^{n}$, where $l=0,1,2, \ldots$ and since by law of repetition: $p_{1}^{\alpha_{i}+n \alpha_{i}} \| v_{p_{i}^{n \alpha_{i}}}$ for $i=$ $1,2, \ldots, k$ thus

$$
\operatorname{gcd}\left(\frac{\alpha^{p_{1}^{n \alpha_{1}} p_{2}^{n \alpha_{2}} \ldots p_{k}^{n \alpha_{k}}}+\beta^{n \alpha_{1}^{n \alpha_{1}}} p_{2}^{n \alpha_{2}} \ldots p_{k}^{n \alpha_{k}}}{p_{1}^{\alpha_{1}+n \alpha_{1}} p_{2}^{\alpha_{2}+n \alpha_{2}} \ldots p_{k}^{\alpha_{k}+n \alpha_{k}}}, p_{1} p_{2} \ldots p_{k}\right)=1
$$

and

$$
\operatorname{gcd}\left(\frac{\alpha^{(\alpha+\beta)^{n}}+\beta^{(\alpha+\beta)^{n}}}{(\alpha+\beta)^{n+1}}, \alpha+\beta\right)=1
$$

Examples

1) $P=\alpha+\beta=3, Q=\alpha \cdot \beta=-1, D=P^{2}-4 Q=13$; the characteristic polynomial is $x^{2}-3 x-1 ; v_{0}=2, v_{1}=3, v_{n}=3 v_{n-1}+v_{n-2}(n \geq 2)$, $v_{0}=2, v_{1}=3 ; v_{2}=11, v_{3}=36=2^{2} \cdot 3^{2}, v_{4}=119=7 \cdot 17, v_{5}=393=3 \cdot 131$,
$v_{6}=1298=2 \cdot 11 \cdot 59, v_{7}=4287=3 \cdot 1429, v_{8}=14159, v_{9}=46764=$ $2^{2} \cdot 3^{3} \cdot 433,(\alpha+\beta)^{3}=3^{3} \mid \alpha^{(\alpha+\beta)^{2}}+\beta^{(\alpha+\beta)^{2}}$ and

$$
\operatorname{gcd}\left(\frac{\alpha^{(\alpha+\beta)^{2}}+\beta^{(\alpha+\beta)^{2}}}{(\alpha+\beta)^{3}}, \alpha+\beta\right)=\operatorname{gcd}\left(\frac{2^{2} \cdot 3^{3} \cdot 443}{3^{3}}, 3\right)=1
$$

2) $P=3, Q=1$ we have $\alpha, \beta=\frac{3 \pm \sqrt{5}}{2}, v_{0}=2, v_{1}=3, \alpha, \beta=\frac{3 \pm \sqrt{5}}{2}$, $v_{n}=3 v_{n-1}-v_{n-2}(n \geq 2)$
$v_{0}=2, v_{1}=3, v_{2}=7, v_{3}=18, v_{4}=47, v_{5}=123=3 \cdot 41, v_{6}=322=2 \cdot 7 \cdot 23$, $v_{7}=843=3 \cdot 281, v_{8}=2207, v_{9}=5778=2 \cdot 3^{3} \cdot 107$

$$
3^{3} \| v_{9}, \operatorname{gcd}\left(\frac{\alpha^{(\alpha+\beta)^{2}}+\beta^{(\alpha+\beta)^{2}}}{(\alpha+\beta)^{3}}, \alpha+\beta\right)=\operatorname{gcd}\left(\frac{2 \cdot 3^{3} \cdot 107}{3^{3}}, 3\right)=1
$$

2. Landau's and Jarden's results

Let $P=1, Q=-1$, so $D=5$.
The Lambert series is $L(x)=\sum_{n=1}^{\infty} \frac{x^{n}}{1-x^{n}}=x+2 x^{2}+2 x^{3}+\ldots$ in which the coefficient of x^{n} is $d(n)$ - the number of the divisors of n. The Lambert series is convergent for $0<x<1$. Let F_{n} denote the n-th Fibonacci number.
E. Landau [12] had evaluated $\sum_{n=0}^{\infty} 1 / F_{n}$ in terms of the sum of Lambert's series and $\sum_{n=0}^{\infty} 1 / F_{2 n+1}$ in relation to theta Jacobi series which are defined as follows, for $0<|q|<1$ and $z \in C$:

$$
\begin{aligned}
& \theta_{1}(z, q)=i \sum_{n=-\infty}^{\infty}(-1)^{n} q^{\left(n-\frac{1}{2}\right)^{2}} e^{(2 n-1) \pi i z} \\
& \theta_{2}(z, q)=\sum_{n=-\infty}^{\infty} q^{\left(n+\frac{1}{2}\right)^{2}} e^{(2 n-1) \pi i z} \\
& \theta_{3}(z, q)=\sum_{n=-\infty}^{\infty} q^{n^{2}} e^{2 n \pi i z}, \\
& \theta_{4}(z, q)=\sum_{n=-\infty}^{\infty}(-1)^{n} q^{n^{2}} e^{2 n \pi i z} .
\end{aligned}
$$

In particular, we have

$$
\begin{aligned}
& \theta_{1}(0, q)=0 \\
& \theta_{2}(0, q)=2 q^{1 / 4}+2 q^{9 / 4}+2 q^{25 / 4}+\ldots, \\
& \theta_{3}(0, q)=1+2 q+2 q^{4}+2 q^{9}+\ldots, \\
& \theta_{4}(0, q)=1-2 q+2 q^{4}-2 q^{9}+\ldots
\end{aligned}
$$

Landau's result (see E. Landau [12] and P. Ribenboim [16, pp. 51-61]) are
Theorem L_{1} :

$$
\sum_{n=1}^{\infty} 1 / F_{2 n}=\sqrt{5}\left[L\left(\frac{3-\sqrt{5}}{2}\right)-L\left(\frac{7-3 \sqrt{5}}{2}\right)\right]=\sqrt{5}\left[L\left(\beta^{2}\right)-L\left(\beta^{4}\right)\right], \beta=\frac{1-\sqrt{5}}{2} .
$$

Theorem L_{2} :
$\sum_{n=0}^{\infty} 1 / F_{2 n+1}=-\sqrt{5}\left(1+2 \beta^{4}+2 \beta^{16}+2 \beta^{36}+\ldots\right)$
$\left(\beta+\beta^{9}+\beta^{25}+\ldots\right)=-\frac{\sqrt{5}}{2}\left[\theta_{3}(0, \beta)-\theta_{2}\left(0, \beta^{4}\right)\right] \theta_{2}\left(0, \beta^{4}\right)$.
In 1948 D.R. Jarden [10] gave the following generalization of Landau's theorem.

Let $u_{0}=0, u_{1}=1, u_{n}=P u_{n-1}+u_{n-2}(n=2,3,4, \ldots ; P$, an arbitrary positive real number) and $D=P^{2}+4$. Let $a=\frac{P-\sqrt{D}}{2}$ ans $b=\frac{P+\sqrt{D}}{2}=-\frac{1}{a}$ be the roots of the equation $x^{2}-P x-1=0$.

Jarden's results are the following:
Theorem J_{1} : The series $\sum_{n=1}^{\infty} \frac{1}{u_{2 n}}$ converges and

$$
\sum_{n=1}^{\infty} 1 / u_{2 n}=\sqrt{D}\left(L\left(a^{2}\right)-L\left(a^{4}\right)\right) .
$$

Theorem J_{2} : The series $\sum 1 / u_{2 n+1}$ converges and

$$
\sum_{n=0}^{\infty} 1 / u_{2 n+1}=-\sqrt{D}\left(1+2 a^{4}+2 a^{16}+2 a^{36}+\ldots\right)\left(a+a^{9}+a^{25}+\ldots\right) .
$$

3. Lucas pseudoprimes

Let a, b be relatively prime integers with $|a|>|b|>0$. For any $n>0$, let $\phi_{n}(a, b)$ denote the n-th homogeneous cyclotomic polynomial, defined by

$$
\phi_{n}(a, b)=\prod_{d \mid n}\left(a^{d}-b^{d}\right)^{\mu(n / d)},
$$

where μ is the Möbius function.
Definition 1. A composite n is called a pseudoprime if $n \mid 2^{n}-2$.
Definition 2. If $1 \leq d_{1}<d_{2}<\ldots<d_{k}$ are integers, we shall call the number $n=\prod_{i=1}^{n} \phi_{d_{i}}(2,1)$ a cyclotomic number and if n is a pseudoprime we shall call it a cyclotomic pseudoprime.

The above definition was introduced in 1982 by C. Pomerance (see [15]). In the paper [22] it was proved the following:

Theorem P_{1} : If $n>3$ is a prime or an odd pseudoprime then the number $\left(2^{n}-1\right) \phi_{2^{n}-2}(2)$ is a cyclotomic pseudoprime.

Examples

The least cyclotomic pseudoprime of the form $\left(2^{n}-1\right) \phi_{2^{n}-2}(2)$ is $\left(2^{5}-\right.$ 1) $\phi_{30}(2)=31 \cdot 331=10261$. For pseudoprime 341 we get the cyclotomic pseudoprime $\left(2^{341}-1\right) \phi_{2^{341}-2}(2)$.

Definition 3. A composite number n is called a Lucas pseudoprime with parameters P and Q if $(n, 2 D Q)=1$ and

$$
\begin{equation*}
U_{n-(D \mid n)} \equiv 0 \quad(\bmod n), \tag{1}
\end{equation*}
$$

where $(D \mid n)$ is the Jacobi symbol.
Instead of $\phi_{n}(\alpha, \beta)$, where α and β are roots of the polynomial $x^{2}-P x+Q$ we shall write ϕ_{n}.

Definition 4. If $1 \leq d_{1}<d_{2}<\ldots<d_{k}$ are integers, we shall call the number $n=\prod_{i=1}^{k} \phi_{d_{i}}$ a cyclotomic Lucas number and if n is a pseudoprime we shall call it Lucas cyclotomic pseudoprime.

In the paper [22] the author proved the following:
Theorem P_{2} : If $p>5, P=\alpha+\beta \geq 1, Q=\alpha \beta=-1, p \nmid P^{2}+4=D$, then the number $u_{p} \phi_{u_{p}-\left(D \mid u_{p}\right)}$ is a cyclotomic Lucas pseudoprime.

Examples

1) For $P=1, Q=-1$ we get Fibonacci sequence $0,1,1,2,3,5,8,13,21$, $34,55,89,144, \ldots$ and companion Fibonacci sequence

$$
v_{n}(1,-1): 2,1,3,4,7,11,18,29,47,76,123,199,322, \ldots
$$

The least Fibonacci cyclotomic pseudoprime (that is cyclotomic Lucas pseudoprime for $P=1, Q=-1$) we get for $p=7$. For $p=7$ we have $u_{p} \phi_{u_{p}-\left(5 \mid u_{p}\right)}=$ $u_{7} \cdot \phi_{14}=u_{7} \cdot v_{7}=13 \cdot 29=377$.
2) For $P=2, Q=-1$ the numbers $u_{n}=u_{n}(2,-1)$ and $v_{n}=v_{n}(2,-1)$ are the Pell numbers and the companion Pell numbers. We have

$$
\begin{aligned}
& u_{n}(2,-1): 0,1,2,5,12,29,70,169, \ldots \\
& v_{n}(2,-1): 2,2,6,14,34,82,198,478, \ldots
\end{aligned}
$$

The smallest Pell cyclotomic pseudoprime of the form $u_{p} \phi_{u_{p}-\left(8 \mid u_{p}\right)}$ we get for $p=3$. We have $u_{3} \phi_{u_{3}-\left(8 \mid u_{3}\right)}=5 \phi_{5-(8 \mid 5)}=5 \phi_{5+1}=5 \phi_{6}=5 \cdot 7=35$.

Problem 1. Let P, Q be non-zero rational integers $P \geq 1, Q \neq-1$. Does there exist a natural number n_{0} such that for every prime number $p>n_{0}$ the number $u_{p} \Phi_{u_{p}-\left(D \mid u_{p}\right)}$ is a cyclotomic Lucas pseudoprime with parameters P and Q ?

3.1. Number theoretical series involving Lucas pseudoprimes and Carmichael numbers

Let $P(x)$ denote the number of pseudoprimes $\leq x$. In 1949 P. Erdôs stated that

$$
\begin{equation*}
C_{1} \log x<P(x)<c_{2} x /(\log x)^{k}, \quad \text { for every } k \text { and } x>x_{0}(k) . \tag{2}
\end{equation*}
$$

K. Szymiczek [25] proved, using the following result of P. Erdős [6]

$$
\begin{equation*}
P(x)<2 x \exp \left\{-\frac{1}{3}(\log x)^{1 / 4}\right\} \text { if } x>x_{0} \tag{3}
\end{equation*}
$$

that $1 / P_{n}<2 / n(\log n)^{4 / 3}$. Therefore $\sum_{n=1}^{\infty} 1 / P_{n}<\sum_{n=1}^{\infty} 2 /(\log n)^{4 / 3}$ and since the last series is convergent $\sum_{n=1}^{\infty} 1 / P_{n}$ is also convergent.

The author asked [18, Problem 47] whether the series $\sum 1 / \log P_{n}$ is convergent. A. Mąkowski [13] proved that the series $\sum 1 / \log P_{n}$ is divergent, where P_{n} denotes the n-th pseudoprime with respect to $c(n$ is a pseudoprime to the base c if n is composite and $n \mid c^{n}-c$). He used the fact established by M . Cipolla [3] that the number $\left(c^{2 p}-1\right) /\left(c^{2}-1\right)$ is a pseudoprime to the base c such that $p \nmid c^{2}-1$ and that the series $\sum 1 / p$, where p runs over the primes, is divergent.

First we note that the divergence of $\sum_{n=1}^{\infty} 1 / \log P_{n}$ follows from the estimation $P(x)>c \log x$ (see A. Rotkiewicz, R. Wasén [19]). Indeed, if we put $x=P_{n}$ in the last inequality we get

$$
\begin{equation*}
P\left(P_{n}\right)>c \log P_{n} \tag{4}
\end{equation*}
$$

and the divergence follows at once from the well-known divergence of the harmonic series.

Definition 5. A composite number n is called a strong Lucas pseudoprime with parameters P and Q if $(n, 2 Q D)=1, n-(D \mid n)=2^{3} \cdot r$ are odd and
(5) either $u_{r} \equiv 0(\bmod n) \quad$ or $\quad v_{2^{t} r} \equiv 0(\bmod n) \quad$ for some $t, 0 \leq t<9$.
C. Pomerance put forward (see [21, p. 78]) the following question.

Given integers P, Q with $D=P^{2}-4 Q$ not a square, do there exist infinitely many, or at least one, Lucas pseudoprimes n with parameters P and Q satisfying $(D \mid n)=-1$.

An affirmative answer to this question in the strong sense (infinitely many $n)$ is contained, except in the trivial cases $P^{2}=Q, 2 Q, 3 Q$ in the following theorem, which follows from the results of [21].

Theorem T (see [21]): Given integers P, Q with $D=P^{2}-4 Q \neq 0,-Q$, $-2 Q,-3 Q$ and $\varepsilon= \pm 1$, every arithmetic progression $a x+b$, where $(a, b)=1$ which contains an odd integer n_{0} with $\left(D \mid n_{0}\right)=\varepsilon$ contains infinitely many strong Lucas pseudoprimes n with parameters P and Q such that $(D \mid n)=\varepsilon$. The number $N(X)$ of such strong pseudoprimes not exceeding X satisfies

$$
N(X)>c(P, Q, a, b, \varepsilon) \frac{\log X}{\log \log X},
$$

where $c(P, Q, a, b, \varepsilon)$ is a positive constant depending on P, Q, a, b, ε.

Now we shall prove the following
Theorem 2. Given integers P, Q with $D=P^{2}-4 Q \neq 0,-Q,-2 Q,-3 Q$ and $\varepsilon= \pm 1$, every arithmetic progression $a x+b$, where $(a, b)=1$ contains an odd integer n_{0} such that $(D \mid n)=\varepsilon$. The series $\sum_{n=1}^{\infty} 1 / \log P_{n}^{(a)}$, where $P_{n}^{(a)}$ is the n-th strong Lucas pseudoprime with parameters P and Q of the form $a x+b$, where $(a, b)=1$ such that $\left(D \mid P_{n}^{(a)}\right)=\varepsilon$ is divergent.

Proof. Let $P^{(a)}$ the n-th strong pseudoprime of the form $a x+b$, where $(a, b)=1$ with $\left(D \mid P_{n}^{(a)}\right)=\varepsilon$.

By Theorem T

$$
\mathcal{N}^{(a)}(X) \gg \frac{\log X}{\log \log X} .
$$

Put $X=P_{n}^{(a)}$, hence

$$
\mathcal{N}^{(a)}\left(P_{n}^{(a)}\right) \gg \frac{\log P_{n}^{(a)}}{\log \log P_{n}^{(a)}},
$$

hence

$$
\begin{equation*}
n \gg \frac{\log P_{n}^{(a)}}{\log \log P_{n}^{(a)}} . \tag{6}
\end{equation*}
$$

Thus by (6) we have

$$
\begin{equation*}
\log n \gg \log \log P_{n}^{(a)} \tag{7}
\end{equation*}
$$

By (6) and (7) we have

$$
\begin{equation*}
\log P_{n}^{(a)} \ll n\left(\log \log P_{n}^{(a)}\right) \ll n \log n . \tag{8}
\end{equation*}
$$

Hence, it follows that

$$
\begin{equation*}
\sum 1 / \log P_{n}^{(a)} \gg \sum 1 / n \log n \tag{9}
\end{equation*}
$$

and the divergence of the series $\sum 1 / \log P_{n}^{(a)}$ follows from well known divergence of $\sum 1 / n \log n$.

3.2. Carmichael numbers

Definition 6. A composite number n is Carmichael number if

$$
n \mid\left(a^{n}-a\right) \quad \text { for all } a \in \mathcal{N} .
$$

In 1994 W.R. Alford, A. Granville and C. Pomerance proved [1] the following

Theorem A. G. P. There are infinitely many Carmichael numbers. In particular, for x sufficiently large, the number $C(x)$ of Carmichael numbers not exceeding x satisfies $C(x)>x^{2 / 7}$.

The best result belongs to Glyn Harman. In 2005 he proved [9] the following theorem.

Theorem G. H. [9] There exists $\beta>0.33$ such that, for all sufficiently large x, we have

$$
\begin{equation*}
C(x)>x^{\beta} . \tag{10}
\end{equation*}
$$

Though P. Erdős [7] (see also A. Granville and C. Pomerance [8]), has conjectured that $C(x)>x^{1-\varepsilon}$ for every $\varepsilon>0$ and $x \geq x_{0}(\varepsilon)$, we known no numerical value of x with $C(x)>x^{1 / 2}$ (see R. Crandall and C. Pomerance [4, p. 123]).

The following theorem holds
Theorem 3. Let C_{n} denote the n-th Carmichael number. From the conjecture of P. Erdốs that $C(x)>x^{1-\varepsilon}$ for every $\varepsilon>0$ and $x>x_{0}(\varepsilon)$ it follows that the series $\sum_{n=1}^{\infty} 1 / C_{n}^{1-\varepsilon}$ is divergent for every $\varepsilon>0$.

Proof. Suppose that $\varepsilon>0$ then by the conjecture of P. Erdős:

$$
C(x)>x^{1-\varepsilon} \text { for every } \varepsilon>0 \text { and } x>x_{0}(\varepsilon) .
$$

Put $x=C_{n}$. Then

$$
C\left(C_{n}\right)>C_{n}^{1-\varepsilon} \quad \text { for } n>n_{0}(\varepsilon),
$$

hence

$$
\begin{equation*}
n>C_{n}^{1-\varepsilon} \quad \text { for } n>n_{0}(\varepsilon), \tag{11}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\sum 1 / C_{n}^{1-\varepsilon} \geq \sum 1 / n, \tag{12}
\end{equation*}
$$

and it follows that the series $\sum 1 / C_{n}^{1-\varepsilon}$ is divergent.
By conjecture of P. Erdôs and C. Pomerance [7] the number $C(x)$ of Carmichael numbers not exceeding x satisfies

$$
C(x)=x^{1-(1+0(1)) \ln \ln \ln x / \ln \ln x}
$$

as $x \rightarrow \infty$.
Denoting by $P_{2}(x)$ the number of base -2 pseudoprimes up to x, C. Pomerance [14] proved that

$$
\begin{gathered}
C(x)<x^{1-\ln \ln \ln x / \ln \ln x}, \\
P_{2}(x)<x^{1-\ln \ln \ln x /(2 \ln \ln x)}
\end{gathered}
$$

for all sufficiently large values of x.

References

[1] Alford W.R., Granville A., Pomerance C., There are infinitely many Carmichael numbers, Ann. of Math. 140 (1994), 703-722.
[2] Bourgne R., Azra J.-P., Ecrits mathematiques d'Évariste Galois, Gauthier-Villars \& Cle, Paris 1962.
[3] Cipolla M., Sui numeri composti P che verificaro la congruenza di Fermat $a^{P-1} \equiv 1$ $(\bmod P)$, Annali di Matematica (3), 9 (1904), 139-160.
[4] Crandall R., Pomerance C., Prime numbers. A computational perspective, Springer--Verlag, New York 2001.
[5] Dickson L.E., History of the theory of numbers, Vol. 2, New York 1952.
[6] Erdős P., On almost primes, Amer. Math. Monthly 57 (1950), 404-407.
[7] Erdôs P., On pseudoprimes and Carmichael numbers, Publ. Math. Debrecen 4 (1955), 201-206.
[8] Granville A., Pomerance C., Two contradictory conjectures concerning Carmichael numbers, Math. Comp. 71 (2001), 883-908.
[9] Harman G., On the number of Carmichael numbers up to x, Bull. London Math. Soc. 37 (2005), 641-650.
[10] Jarden D.R., The series of inverses of a second order recurring sequence, 3rd edition, Riveon Lematematika, Jerusalem 1973.
[11] Kummer E.E., De aequatione $x^{2 \lambda}+y^{2 \lambda}=z^{2 \lambda}$ per numeros integros, J. Reine Angew. Math. 17 (1897), 203-209.
[12] Landau E., Sur la serie des inverses de nombres de Fibonacci, Bull. Soc. Math. France 27 (1899), 298-300.
[13] Mąkowski A., On a problem of Rotkiewicz on pseudoprimes, Elem. Math. 29 (1974), 13.
[14] Pomerance C., On the distribution of pseudoprimes, Math. Comp. 37 (1981), 587-593.
[15] Pomerance C., A new lower bound for the pseudoprimes counting function, Illinois J. Math. 26 (1982), 4-9.
[16] Ribenboim P., My numbers, my friends, Springer-Verlag, New York-Berlin-Heidelberg 2000.
[17] Rotkiewicz A., On the properties of the expression $a^{n} \pm b^{n}$, Prace Mat. 6 (1961), 1-20 (in Polish).
[18] Rotkiewicz A., Pseudoprime numbers and their generalizations, Student Association of the Faculty of Sciences, Univ. of Novi Sad, Novi Sad 1972.
[19] Rotkiewicz A., Wasen R., On a numbertheoretical series, Publ. Math. Debrecen 26 (1979), 1-4.
[20] Rotkiewicz A., On strong Lehmer pseudoprimes in the case of negative discriminant in arithmetic progressions, Acta Arith. 68 (1994), 145-151.
[21] Rotkiewicz A., Schinzel A., Lucas pseudoprimes with a prescribed value of the Jacobi symbol, Bull. Polish Acad. Sci. Math. 48 (2000), 77-80.
[22] Rotkiewicz A., On pseudoprimes having special forms and a solution of K. Szymiczek's problem, to appear in Acta Math. Univ. Ostraviensis (2007).
[23] Rotkiewicz A., On Lucas cyclotomic pseudoprimes having special forms, to appear in the Proceedings of the Twelfth International Conference on "Fibonacci Numbers and Their Applications", July 17 - July 21, 2006, San Francisco.
[24] Sierpiński W., Teoria liczb, Warszawa-Wrocław 1950.
[25] Szymiczek K., On pseudoprimes which are products of distinct primes, Amer. Math. Monthly 74 (1967), 95-97.
[26] Williams H.C., Edouard Lucas and primality testing, In: Canadian Mathematical Society Series of Monographs and Advanced Texts, Vol. 22, John Wiley \& Sons Inc., New York 1998.

Institute of Mathematics
Polish Academy of Sciences
ul. Śniadeckich 8
00-956 Warszawa 10
SKRYtKA POCZTOWA 21
Poland
e-mail: rotkiewi@impan.gov.pl

