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Abstract. Let X be a linear normed space, A > 0, n € N, Let .7-';\") be a set defined
by

FM = {g: X* = C|lg(@)| < My - > b= Il 2 e X7y,
where My is a constant depending on g. Moreover for all g € F ﬁn) we define
lgll == _sup {e=>k=alioel.|g(z)(}.
TEX™
In the paper norms of the d’Alembert and Lobaczevski difference operators in the

F spaces are calculated (their Pexider type generalizations are also considered).

Moreover it is proved that if f: X — C is a function such that A(f) € F )(‘2), where
A is the d’Alembert difference operator, then f € F) or A(f) =0.

1. Introduction

In the theory of functional equations and inequalities there are two related func-
tional equations: the Cauchy additive functional equation f(z + y) = f(z) + f(y)
and the Pexider functional equation f(z + y) = g(z) + h(y) (more details can be
found in [2]). They are related, because the Pexider equation is a generalization of
the Cauchy equation, therefore the Pexider equation shows the direction of gener-
alization which can be considered in case of other functional equations. Moreover,
using these equations mentioned above we can easily define the operators: the
Cauchy difference operator C(f)(z,y) = f(z +y) — f(x) — f(y) and the Pexider
difference operator P(f){(z,y) = f(z+7y) —g(x) — h(y). It makes possible to estab-
lish some properties of these equations by the theory of linear operators. Obviously
different vector spaces can be considered.
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In the paper we use the idea presented shortly above to find some properties of
the d’Alembert and Lobaczevski functional equations. We define the d’Alembert
and Lobaczevski difference operators in the same manner as it is made for the
Cauchy functional equation. Next we provide a definition of normed vector spaces
of functions and calculate norms of these operator in these spaces. Moreover, we
consider the Pexider type generalizations of these equations.

Additionaly it was proved that the d’Alembert functional equation is superstable
in the spaces provided in the text.

The Cauchy and Pexider difference operators were considered in [3]. The results
obtained in that paper are cited in the text below.

2. Preliminaries

Let us recall the definition of a quadratic operator and its norm and the defin-
ition of a linear-quadratic operator (which is a sum of a linear and a quadratic
operator) and its norm. In the next section we. will prove that the Lobaczevski
difference operator is quadratic and the d’Alembert difference operator is linear-
quadratic. Let E, F be vector spaces over a field K.

DEFINITION 1. An operator @Q: E — F is called quadratic if it satisfies follow-
ing equatiens:

(a) Vz,ye E Qz +y) + Qz — y) = 2Q(z) + 2Q(y),
by VkeK VzeE Q(kz)=k?Q(z).
DEFINITION 2. A quadratic operator Q: E — F is called bounded if
3e>0VceE Q@) < ozl

A norm of a quadratic operator Q: F — F' is defined by

1) IRl = inf{c > 0] |Q(z)]l < cllz|?, = € E}.

If such a number ¢ does not exist we define ||Q|| := oo.
By Bg(E,F) we denote a set of all quadratic operators Q: E — F such that
QI < co.

REMARK 1. Analogously as for a bounded linear operator one can prove an
alternative definition:

) QI :=sup{llQ(@)|l | z € E, |l=f| = 1}.

" Let us notice that the (Bg(E, F),|| - ||) space is a linear normed space. Now we
are ready to define a linear-quadratic operator.
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DEFINITION 3. By Bcg we denote the set
Bro(E,F)={T € FF |3 LeB(E,F)A3 Q€ Bo(E,F) T=L+Q}.
Moreover, for all T'= L + Q € Bzgo(E, F) we define
1T = I1Ll + 1<Q- |
An operator T € Beo(E, F) is called a bounded linear-quadratic operator.

. Let us notice that the space (B¢g, | - ||) is a linear normed space.

3. The d’Alembert and Lobaczevski difference operators

A standard symbol C denotes the set of complex numbers, for a set X a symbol
CX denotes a set of all functions f: X — C.

‘DEFINITION 4. Let2X be a linear normed space. The Lobaczevski difference
operator £: CX — CX" is defined by:

®) £ =1 (L) - @), myeX

LEMMA 1. The Lobaczevski difference operator £L: CX — cx? defined above is
a quadratic operator. '

DEFINITION 5. Leth be a linear normed space. The d’Alembert difference
operator A: CX — CX” is defined by:

(4) A(f)(z,y) = flz+y)+ flz—y) = 2f(z)f(y), =z,yeX.

LEMMA 2. Let A: CX — CX* be the d’Alembert difference operator, then there
erist a linear operator L4 and a quadratic operator Q4 such that

(5) A(f)(=,y) = La(f)(z,9) + Qa(f)(z,y), z,y€X.
PROOF. Let L4: CX — CX* and Qa:CX > CX? are defined by:

La(f)(z,y) = fz+y) + flz —v),
Qa(f)(z,y) = —2f(z)f(y),

Therefore A=Ls+ Q4. O
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4. The d’Alembert and Lobaczevski difference operators in F, spaces

4.1. The ff\") spaces

DEFINITION 6 ([1], [3], see also [2]). Let X be a linear normed space, A > 0,
n € N. Let fﬁ") be a set defined by

F = {g: X* - Cl|g(@)] < My - Eimalnl, ¢ X7y,

where M, is a constant depending on g. Moreover for all g € ff\") we define

\

lgll == sup {e*Zi=tllzel. |g()[}.
zTeX™
Clearly the following lemma holds.

LEMMA 3. The ( - 1) space, where ||| is the norm defined above is a linear
normed space for every n € N,

We denote F), = fil).

LEMMA 4. Let £: CX — CX* be the Lobaczeuski difference operator. Then
VfeF L(f)eFd.

PROOF. Let f € Fi. Then we obtain

L))l < 1FE)P +1f (@) f ()l
< M2 4 ANl vl < 2pp2eA(llHIv),

thus £L(f) € F §2) as claimed. O
LEMMA 5. Let A: CX — CX* be the d’Alembert difference operator. Then
VieFr A(f)e FO.
ProoF. Let f € Fx. Then we obtain

AN (=, )| < f(z+y)| + [f (=~ )| + 2/ f () f(v)]
< Myl 4 ppele=vl 4 gpr2eM i+l

< Nfe/\(llwllﬂlyll),

where Ny = max{M;,2M?}. Thus the lemma holds. O
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4.2. Norms of the d’Alembert and the Lobaczevski difference operators
We will prove the following theorem.
THEOREM 1. The Lobaczevski difference operator L: Fy — .7-'§‘2) defined by (3)
belong.s to the Bg(f,\,f)(?)) space and for all f € F) we have
LA < 20 F11%.
ProOF. We have
NI < Sup {e M= p(2fy)) }+wSyng{e_A””"If(-’E)Ie'A”y”lf(y)l}

< (sup {e MFH| p(atuy|))2 +:lelg{‘e‘*”z"lf(w)l}Slelg{e‘*“y“lf(y)l}

z,y€X

< IAI2+ 1702 = 20702
Thus £ € BQ(fA,f)(\Q)) as claimed. d
THEOREM 2. The d’Alembert difference operator A: Fy — .7:)(‘2) defined by (4)
belongs to the BLQ(]:)\,.F. ) space and for oll f € F) we have

IAHI < 21151 + 211112

~ PROOF. In view of (5) we have A = L4 + Qa, where the linear operator
Ly:Fy— fiz) and the quadratic operator Q4: Fy — F ,(\2) are given by:

La(f)(=z,y) == flz+y) + f(z —y),
Qa(f)(=z,y) == —2f(z)f(y).

The operator L 4 is linear and for all f € F) we obtain

ILaf) < sup {e Al HI8I) £ (2 4 )]} + sup {e= U=+ v £ (2 — )|}

< supx{e’*(”’”*y")lf(w +y)}+ Sup {e‘“”’ Witz -y} = 2071l
z,y€

Thus Ly € B(Fy, F, (2)) We shall show that Q4 is bounded and ||Qal| = 2. Let
f € F», then

1Qa(H)Il = sugx{e‘*‘””"*”y”)l2f(x)f(y)|}
:z,y -
= 2 sup{e=ll| ()|} sup {e VM| £(y)|} = 2| ]|
z€X yeX }

The operator Q4 is quadratic and bounded so therefore Q4 € Bo(Fa, F. §2)). Due
to the fact that A = L4 + Q4 we obtain that A € BgQ(f,\,f/(f)) and

LA = I1Laf + QaOIl < ILafll + 1Qa(NI < 2051 + 2/ F1I2.
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In this part of the paper we will find norms of the d’Alembert and Lobaczevski
difference operators.

THEOREM 3. If L: F\ — ]:f\2) is defined by (3), then
£l =2.
PRroOF. Let u € X. Let us define a function h by

S

h(z) := 62)\”1‘”7 z = 2u,
a e%AIIUII, T = %u,
0, otherwise.

Clearly we have
[h(z)] < MMzl 5 e X,

therefore h € Fx. Moreover,

_ 1, z € {u,2u, 2u},
) = {5 L )

Then ||&|| =1 and
I£(R))] = e~ |h? (Ju) — h(u)h(2u)]

e~ Ml 3l Al 2Alul| = o
whence '
| WLl == sup{IL(AI | f € Fx lIfIl = 1} > 1L(A)] > 2.
In view of Theorem 1, ||£]| < 2, thus |[|[£]| =2. a

THEOREM 4. If A: Fy — F\2 is defined by (4), then
Al = 4.

PROOF. Due to the fact that || A|| = || La||+||Qall, where L 4 and Q 4 are defined
above, we will find ||L 4|| (it was proved before that ||Q4| = 2).
Let z,, € X for all n € N be a sequence such that lim ||z,| = 0. Let us define

for n € N a function f, by

ePlienll 2 € {0,2x,},
0, otherwise.

fulz) = {
Clearly we have

[fr(z)] < e2ManllAlzl - g e X,
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therefore f,, € F, for all n € N. Moreover,

62/\"1"”, T = O’
M @)=L @ =2,
0, otherwise.

Because the sequence {||z, ||} is a sequence of nonnegative numbers which is conver-
gent to 0, we obtain that e21Z~ll > 1 s0 || f»|| = €2*==ll for all n € N. Moreover,

L afnll > =2l £, (22,,) + fn(O)I = e~ DMealigg2Xllznall — o

Thus ||Laf.|| > 2. Now let us suppose that ||L 4|l < 2, then there exists € > 0 such
that

ILafnll < (2=l fnll, fn € Fi.
On the other hand, for f,, € F we have
2 < [|Lafall < (2= €)Ml

Let us notice that if n — oo then ||z, | — 0 and e2M#~ll — 1, thus (2 —¢€)e?Mznll —
2 —¢, so we get 2 < 2 — ¢, where € > 0, which is impossible. Thus we obtain that
I Lall=2.

Because [[A|| = [IL4|| + [|@all, then we have ||4| = 4. O

REMARK 2. In the paper. [3] Stefan Czerwik and Krzysztof Diutek have proved
that the Cauchy difference operator C : Fy — .7:§‘2) defined by

C(f)(z,y) = flzx+y)— f(z) - fy), z,ye X

is a linear bounded operator and ||C|| = 3.

4.3. Superstability of the d’Alembert functional equation
in the F) spaces

By direct calculations one can prove the following lemmas
LEMMA 6. Let f € F, then

VyEX f("y)EfAv
VyueX f(-+uy) € F

LeEMMA 7. Let G be an abelian group. Then for all x,u,v € G

2f @A) (w,v)] = A(f)(z +w,v) — A(f)(z,u +v) — A(f)(z,u - v)
+ A(f) (2 - u,v) + 2f (V) A(f) (2, w),

where A(f) is defined by (4).



14 Maciej J. Przybyla

THEOREM 5. Let f: X — C be a function such that A(f) € .7-')(\2). Then f € Fy
or A(f)=0.

PROOF. Let us suppose that f ¢ Fy, therefore for every M € R, there exists
z € X such that

f(@)| > M=,
From the equality from the previous lemma for all z,u,v € X we have
2f (@A) (w, v)] = A(f)(z + u,v) — A(f)(z, v +v) — A(f)(z,u —v)
+ A(f) (= — u,v) + 2f(v) A(f)(=, w).

From the previous lemma and due to the fact that the Fy is a linear space we
obtain that the right-hand side of the equality belongs to the F space as a function
of x, therefore there exists M4 € R such that

|f @A) (w, ) < Maedll, - 2,40 € X.

Let.us consider two cases:

1. |A(fH{u,v)] # 0 for some u,v € X,
2. |A(f)(u,v)] =0 for all u,v € X.
In the first case we obtain

|f(z)] < ——]\{A—e)‘””””, for all z € X.

|A(F)(u, )|

Under the assumption there exists zg € X such that

2l > —Ma el
TEN> Ep o

which causes a contradiction. Therefore the second case is true and

A()(v) =0

for all u,v € X as claimed. _ | a

5. Remarks about Pexider type generalizations

5.1. The (F»)" spaces

DEFINITION 7. For n-> 1 we define
(f)\)n = {(flaf2>"'af'n) |\/ 1 < 1 <n .fi € fk}a
(f1, f2, .oy f)ll == max{[| full, || foll, .-, | full}-
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Let us notice that for all n > 1, the (F,)" spaces with norms provided above are
vector normed spaces.

REMARK 3. In the paper (3] Stefan Czerwik and Krzysztof Diutek have proved
that the Pezider difference operator P : (Fy)® — .7-'§‘2) defined by

is a linear béunded operator and IP|l = 3.

5.2. The Pexider type generalization of the Lobaczevski
difference operator

DEFINITION 8. Let X be a lineazr normed space. The Pexider—Lobaczevski
difference operator Lp: (CX)* — CX" is defined by

(6) Le((f,9:h.k))(z,y) == f (%5%) 9 (%52) — h(2)k(y), =,y € X.

This operator is not quadratic. For f = g = h = k we obtain the Lobaczevski
difference operator. We will prove the following theorem.

THEOREM 6. For all u € (F»)* the Perider-Lobaczevski difference operator
Lp: (F)*— F §\2) defined in the previous definition satisfies inequality

ILp(w)]| < 2ull®.

PROOF. It is easy to show that Vu € (Fy)* Lp(u) € .7-',{2). Take u = (f, g, h, k),
then we have by the definition

12 ((fo0,h I < sup eI ()] - lg(23))

+ sup {e"*l|n(z)le= ¥l |k (y)|}
z,yeX

< A1£ gl + NIl
= 2(max{||fIl, llgll, 1%, 1%111)? = 2llull®.

COROLLARY 1. If Lp: (Fa)* — }'f\2) is giwen by (6), then
inf{c> 0| [Lp(u)l| < cllulf®,u € (Fr)*} =2.
PROOF. Let us assume on the contrary that

d:=inf{c > 0| ||Lp(u)| < cjul? u € (Fr)'} < 2.
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Thenforf:g:h:k,Weget
ILp(ll = ILHN < AN, £, £, HI? = alf11?,

whence

LA < dllfIP.
By the hypothesis, d < 2 and therefore we infer that ||£|| < 2, which is impossible
in view of the previous lemma. ' |

5.3. The Pexider type generalization of the d’Alembert
difference operator

DEFINITION 9. Let X be a line;ar normed épace. The Pexider-d’Alembért dif-
ference operator Ap: (CX)* — CX" is defined by

Ap((£,9, 1 R)(@,y) = f(& +v) +9(z — y) — 2h(2)k(y), =,y € X.
We shall prove the following theorem.

THEOREM 7. For all u € (F))* the Pexider-d’Alembert difference operator
Ap: (P4 — F §2) defined in the previous definition satisfies the inequality

AP )| < 2[jufl + 2|lull®.

PROOF. It is easy to show that Vu € (F)* Ap(u) € .7-')(\2). Take v = (f,g,h, k),
then we have by the definition

lAp)ll < sup {e™ =¥ f(z + )|} + sup {eM=¥ljg(z —y)|}
z,yeX z,yeX
+2 sup {eMN=la(z)|e vl [k(y)[}
z,y€X
< NFIE+ llglt + 211l &l
= 2max{[|f1l, llgll, I12ll, 15} + 2(max{|| £}, llgll, lIll, [ &} })?
= 2llull +2[lu]%.
O

COROLLARY 2. For all u € (F3)? the difference operator Lp : (Fy)? — F¥
defined by

Le((f,9)zy) = flz+y)+g9(z-y), =z,yeX
is linear and satisfies the inequality
ILp(u)ll < 2|ul.

Moreover ||Lp|| = 2.
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PROOF. The first part of the proof is simple and analogous to the proof of the
previous lemma. We shall prove that ||Lp|| = 2. Let us assume on the contrary
that ||Lp|| < 2. Then for f = g, we get

ILp((f, gl = WLafll < ILpll- ICF Ol = ILell - [ £,

whence |Laf|| < ||Lpll - ||f]l. By the hypothesis, || Lp|| < 2 and therefore we infer
that ||L 4| < 2, which is imposible in view of the previous lemma. a
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