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Abstract. The paper deals with an optimization problem in which minima of 
a finite collection of objective functions satisfy some unilateral constraints and are 
linked together by a certain subdifferential law. The governing relations are vari­
ational inequalities defined on a nonconvex feasible set. By reducing the problem to 
a variational inequality involving nonmonotone multivalued mapping defined over a 
nonnegative orthant, the existence of solutions is established under the assumption 
that constrained functions are positive homogeneous of degree at most one. 

1. Introduction 

Consider the problem of finding the vectors Xj € R " , j — l , . . . , m , which 
minimize a finite collection of convex objectives Vj : R5. —» Ru{+oo}, j = 1,. . . , m. 
The minimizers are subject to unilateral constraints \Aj-ir,Xj) < 4>j(ir) with given 
nonnegative continuous functions <f>j : R™ —» R+. The problem is to find a price 
vector 7r s R™ and a multivector (XJ) € (R") m which are linked together by 
a subdifferential relation of the form YljLi-A-Jxj 6 d$+(ir), $ + being a convex 
function. This problem has been studied in [9] under the assumption that 4>j (r) > 
Sj, 6j > 0. In the presented approach we begin with establishing existence of 
solutions for the case when <j)j, j = 1 , . . . , m, are positive homogeneous of degree 
9j < 1. We then extend this result toward the case when <j>j, j = 1 , . . . , m , are 
positive homogeneous of degree one. This is important for the study of equilibrium 
models of welfare economics. 

The main feature of the problem is that the feasible set of the unknowns n, 
Xj, j = l , . . . , m , is nonconvex and, hence, the standard theory of variational 
inequalities (cf. [6], [3]) cannot be used directly to obtain solutions. The approach 
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presented here does not involve the notion of Pareto optimum or its generalizations 
(cf. [11], [8], [7], [4] and the references therein) but, roughly speaking, is based on 
the analysis of objectives' parametrized constrained minima (xj(ir)). Some ideas 
from [10] concerning of nonmonotone inequality problems are applied. 

2. Formulation of the problem 

Denote by R™ the Euclidean space of all vectors x = \x\,..., xn], i j £ 1 , 
i = 1 , . . . , n, equipped with the inher product (•,•): R n x R™ —> R. By R n x n we 
denote all n x n real valued matrices. Moreover, the following notations will be 
used: 

R+ = {a £ R: a > 0}, 

R^ = [x = [xi,...,xn] £ R n : Xi > 0, V i = l , . . . , n } , 

R^x" ={A = (Aik) £ R n x n : Aik > 0, V i , k = 1 , . . . ,n } , 

R .̂ = { x = [x1:...,xn] € R " : Xi <0 , V i = l , . . . , n } . 

Throughout the paper it wil l be assumed that the functions 

Vj : R" -> R U {+oo}, j = 1 , . . . , m, 

are convex, proper and lower semicontinuous. Assume that the functions 

0 j : R ^ ^ R + , i = l , . . . , m , 

are continuous, positive homogeneous of degree 0j, 0 < 0, < 1 and such that 

m i n { ^ ( r ) : r e R^, |r| = 1} = 7 j , 7,- > 0. 

Moreover, let the matrices Aj £ R™ x n satisfy 

K e r ^ ^ j O } , j = l , . . . , m , 

where KerAj = {T € R" : AjT = 0}. Furthermore, let 

$ : M n ->Ru{+oo} 

be a convex, proper, lower semicontinuous function. 
Recall that if H is a Hilbert space and ip : H —> R U { + 0 0 } is a convex function, 
the subdifferential dtp: H —> 2H is defined by 

ćV(u) = {w £ H: <p(v) - ip(u) > (w,v - u), Vw £ H}, 

provided that ip(u) < +00 or dip(u) = 0 if <p{u) = + 0 0 . 

We are now in a position to formulate the main problem of the paper. 
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P R O B L E M ( P ) . F ind w £ K™ and X j € R+, j = 1 , . . . , m that the following 
conditions are satisfied: 

(PM) V j ( i j ) = m i n { V i ( i ) : (Aj7r,x) < <j)j(ir) /\ x € R " } , j = 1 , . . . , m , 

3 = 1 

3. The case <j>j positive homogeneous of degree 0 < Oj, < 1 

In this section we assume that <f>j, j = l , . . . , m , are positive homogeneous 
functions of degree 0 < 6j < 1, respectively, i.e. 

(Hi) <f>j(tr) = te^j(r), V r € R £ , W > 0, where 0 < 6j < 1. 

and 

(izo) min{^ j (T) : T 6 R™, |r| = 1} = 7̂ , for some jj > 0. 

To find the solution of the problem (P) we use the method analogous to that 
presented in [9]. We begin with establishing the sufficient conditions for the exist­
ence of a solution of the problem (PM) in dependence on 7r. Then, we define a 
multivalued operator 1Z which will allow us to describe the problem (PM) — (PE) 
in the form of a variational inequality. 

F ix j g { l , . . . , m} and TT 6 W$_ with n 0. 
Denote by ind^- the indicator function of a set K, i.e., 

ind ( ) = { ° i f y € K " 
m K^y' \ +oo otherwise. 

In order to reformulate the problem (PM) we introduce the functions Vj : R™ —> 
R U { + 0 0 } by setting 

Vj := Vj + i n d K n . 

Moreover, we define a linear operator Ajn : R™ —• R by 

Ajnx — (Ajir,x), x S R n . 

The subdifferential of the indicator function of {t € R : t < <j>j(n)} is denoted 
by dindŚMv} : R ^ 2 R . 

We are now ready to reformulate (PM) as follows 

P R O B L E M (Pjn). vj7r := inf (Vj(a;) + i n d ^ . ^ A ^ x ) : x € R n } . 
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According to the Fenchel theory (cf. [1]) the dual problem of (Pjn) is 

% 7 r := i n f { 7 * ( - ^ a ) + md^jM(a) : a 6 R} , 

with : R —> R™ being the transpose of A^. Since A^a = aAjir and 
ind<^ (^(a) = a<f>j(ir) + i n d R + ( a ) , a £ R, the dual problem (P_j„) reads as 

P R O B L E M (Pj7r). vjir := inf{F*(-ai4j7r) + a</>j(7r)+ind>o(a) : a G R} , where 
V* : R™ —* R U { + 0 0 } stands for the Fenchel conjugate function of Vj defined by 

(1) V;<JM) := sup {(^x) -Vj(x)}, /x G R " . 
x G R n 

Let DomU stands for the effective domain of U, B(0,r) — for an open ball 
centered at the origin with radius r > 0, Int K — for the interior of K and cl K-
for the closure of K C R n . 

From the Fenchel theorem (cf. [1]) we get 

P R O P O S I T I O N 1. Assume that 

(2) O e c l f D o m a F , - ) . 

Then for any TT € R^ \ {0}, 

(3) vjn+vjw=0 

and there exists a number Uj e R+ such that 

(4) Vj(-ajAjir) + a^ir) = vjlr 

where aj is a solution of {Pjn)- In addition, if 

(5) (R™ \ {0}) f l 2 ? R n (0, rj) C Int Dom F * for some Tj > 0, 

then there exists a vector Xj G R™ such that (AjTr,Xj) — <f>j(Tr) < 0 and 

(6) Vj(xj) = Vj„ 

where Xj is a solution of (Pjv)- Moreover, the following compatibility conditions 
hold 

(7) -ctjAjit E dVj{xj) 

(8) aj G dind^wdAjK^j)), 

and the aj satisfies the variational inequality 

(9) (AjTT, -dVj(-ajAj7r)){t - aj) + ̂ ) { t - aj) > 0, V * > 0. 
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P R O O F . Under (2) and (5) it is enough to verify that 

0 G I n t R [ A ^ D o m (Vj) - Dom (ind <^(„))] 

and (since Ajir G 1+ \ {0}), 

0 G R+Ajir + (Wn_ \ {0}) n B K n ( 0 , TJ) C Int R » [ A ^ D o m (ind ^ ( i r ) ) + Dom (F* ) ] 

and then to invoke (Theorem 3.2, p. 38, [1]). • 

We now get the following result whose proof is similar to that of Theorem 1, p. 149 
[9]. 

T H E O R E M 1. Assume that for j = 1 , . . . , m the following conditions hold: 

(Hi) 0 G cl (DomdVj), (IT \ {0}) n B^(Q,rj) C Int Dom V* for some ró > 0; 

(H2) {xeRl: {{x*,x) :x* G dVj(x)}nR- ^ 0} C B^n (0, Mj) for some Mj > 0; 

(Hi) <j>j(tr) = teict>j(T), V r G R™, V i > 0, where 0 < 9j < 1; 

(H0) m i n { ^ ( r ) : T G R™, |r| = 1} =: l j , 7 i > 0. 

T/ien /or any 7r G R™ \ {0} the optimization problem of finding a vector Xj G R+ 
such that 

(10) Vj(Xj) = min{V^(y): Vy G R " tó/i (Ą,-7r,y) < ^ ( T T ) } 

/las a£ least one solution. 
Moreover, there exists a number a j G AJ(IT) such that 

(11) Xj G dVj(—ajAjw). 

Here AJ(TT) stands for the set of all solutions of variational inequality 

(12) (Ajir, -dV*(-ajAjir))(t - atj) + 4>j(ir)(t - ay) > 0, V i > 0. 

Additionally, Aj : RIJ. —•> 2 R + «5 an upper semicontinuous mapping from R™ mio 
2K+ assuming nonempty, closed, convex and bounded values when extended to R " 
6y setting Aj(Q) := {0}. 

P R O O F . Let j G {1 , . . . , m}. From Proposition 1 it follows that for any TT G R™ \ 
{0} we have AJ(TT) ^ 0. Furthermore, Aj(n) as a set of all solutions of variational in­
equality (12) involving maximal monotone mapping Gj (t) := (AJTT, —dVj (—tAjir)), 
t > 0, is convex and closed (see [3]). 

Now let us notice that for sufficiently small S > 0 the condition |7r| < 5 implies 
Aj(n) = {0}. To the contrary, suppose that for every 5 > 0 there exist TTS G R™, 
xSj G RIJ., aSj > 0 such that 0 < \ns\ < 5 and 

-a^AjTr8 G fiV^), (Ajirs,xsj) - cPj(7rs) G 3 ind> 0 (a j ) , 
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(which means that aSj £ Aj(ns)). Hence we get that 

0 > -a'^Aj^,^) £ (dVjtf),^). 

Therefore, by the hypothesis (H2), we obtain that < Mj. In the case aSj > 
0, the condition (Ajirs,x^) - (J)J(TTS) £ dind >0(aSj) takes the form (AJ-K8 ,xf) = 
<J>J(TT5). Using (Ho) and (Hi) we get 

0 < 7; = i T r * ! 1 - ^ ^ , ^ ) < l ^ - I M ^ 1 - ^ , 

which leads to a contradiction. 
Therefore in some neighbourhood of 0 in R™, say O, we have AJ(T) = {0} 

V r G O. This justifies the extention of Aj : R^ \ {0} -» 2K+ to R £ by setting 
Aj(0) := {0}. The extension preserves the upper seminontinuity of Aj(-) at 0. 

Hence we have established that dVj (0) ^ 0, Vj = 1,... , m. 
For the boundedness of aj £ A j (7r) , 7r ̂  0 we suppose to the contrary that 

there exists {ak}keN C Aj(ir), akj —* +00, as k —* + 0 0 . There exists xk £ R™ such 
that -ajAj-K £ 8Vj(xk), (AjTt,xk) - (j>j(n) £ dmd>o(ak), k £ N. Hence we get 

-<*&(*) = (-akjAj<K,xkj) = Vj(xkj) + V;(-akjAj^). 

Using the fact dV*(0) ^ 0 we obtain 

Vj(y) > —Cj, £ Doral^, for some Cj € R. 

From the definiton Fenchel conjugate function we get the estimate 

c . _i_ v(v) 
0 < 7j|7r|^ < ^(TT) < 3

 k
A y > + {Aj7r,y), Vy e D o m i c . 

aj 

Letting l n o o w e get 

0 < jj\ir\9> < (AjiT, y), Vy£ Dom Vj, 

which contradicts the assumption 0 £ cl (DomdVj ) . 
Finally it remains to show the upper semicontinuity of A j on R™ \ {0}. To this 

end assume that {irk}keN C R™ and a k £ Aj(-nk) are such that nk —> 7r* in R™ \{0} 

and ak —> a*j in R+, as k —• + 0 0 for some 77* € R " and a*j £ R + , respectively. We 
now aim to show that a*j £ Aj(n*). 

Using the fact that there exists xk £ R " with -akAj-KK £ dVj(xk), we arrive 
at — ak(Ajirk,Xj) £ (dV j(xk),xk). But the left hand side of this inclusion is 
nonpositive. Therefore, by the hypothesis (H2), the boundedness of {xk}keN in 
R™ results. Consequently, one can suppose that xk —> Xj in R n , as k —> + 0 0 for 
some Xj £ R™ (by passing to a subsequence, if necessary). Taking into account the 
conditions 

-akAjitk £ dVj(xk), (Aj7rk,xk) - ^(7r f c) 6 dind >0(ak), 
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we are allowed to take the limit as k —* oo. By the continuity of (j>j(-), the maximal 
monotonicity of dVj(-) and <9ind>o(-)i we get 

—ctjAjTT* e dVj(x*j), (Ajir^x*) - <f>j{iT*) 6 dind >o(a*), 

from which we deduce that a* £ AJ(IT*). The proof is complete. • 

Now the problem (PE) can be considered. Taking into account (11) we intro­
duce a multivalued mapping IZ : R™ —> 2 R " by setting 

m 
(13) TI(TT) : = - J 2 AjdV-i-Aji^AjTT), ir e R™, 

where y 6 TZ(^) if and only if there exist ctj S Aj(ir), XJ £ dV*(—ctjAjir), for any 
j — I,... , m, such that y = — 5Z^=i Ajxj-

It is easily seen that an equivalent reformulation of the problem (PE) is: 

F ind IT 6 R " and X £ 1Z(TT) such that 

(14) (X,T--K) + $(T)-$(TT)>0, r 6 R™. 

As far as 7̂  is concerned we have the following result. 

P R O P O S I T I O N 2. Suppose that for any j = l , . . . , m the assumptions (Ho), 
(Hi), (H2), (Hi) are satisfied. Then IZ : R™ —> 2 R is an upper semicontinu-
ous mapping with nonempty, closed, convex and bounded values. 

P R O O F . As in the proof of Proposition 4, p. 150 [9] we get that the mulitvalued 
mapping IZ: R " —> 2 R " assumes closed, convex and bounded valued. It remains to 
show the upper semicontinuity of 7Z on R™ . 

Suppose that {irk}k€N C R+, nk -»ir, yk e 7£(7r f c), yk —> j/ in R n , as fc —> + 0 0 . 
We wish to show that y € 7Z(ir). 

Using (13) we get 

771 
yk = - ^Ajxk, x) E dV*(-akAjnk), a) e Aj(nk), k e N, j = 1 , . . . , m. 

j=i 

Since 0 > (—ct k Aji : k ,x k ) G (dV j(xk),xk), from (H2) we obtain the boundedness 
of {xk}keN, j = 1 , . . . , m . 

We shall now consider the bounds for {ak}kcN, j = 1, • • • 
If 7Tfc —» 0 then from the proof of Theorem 1 we get that for sufficiently large k, 

ak = 0 for any j = 1 , . . . , m. 
If 7Tfc —» 7T, 7T 7̂  0, then to the contrary suppose that for some j — 1 , . . . , m 

a * —» + 0 0 , as k —> + 0 0 . As in the proof of Theorem 1 we get the estimate 

\ABili < M*k) < C j ' + J ? ' ( y ) + (^^.2/), Vy € Dom ^ , 
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where Cj £ R such that Vj(y) > —Cj for any y £ D o m V j . 
Letting k —> + 0 0 we obtain 

0 < |7r|̂ 7j < (AJTT,y), Vy € DomVj 

which contradicts 0 £ cl (Dom dVj). 
This shows that y £ TZ(n) and completes the proof. • 
We can now formulate the main result in the case when <pj are positive homo­

geneous of degree 6j < 1. 

T H E O R E M 2. Suppose that for any j = 1,..., m the following conditions hold: 

(Hx) 0 £ cl(DomdVj-)> (WL \ {0}) n B^(0,rj) c Int Dom V* for some ró > 0; 

(H2) {x £ R™ : {(x*,x) : x* £ dVj(x)}r\R_ ^ 0} c B R n ( 0 , M j ) for some Mj > 0; 

(Hi) 4>j(tr) = t9'4>j(T), V r £ R™, Vt > 0, where 0 < % < 1; 

( # 0 ) min{^(r) : r £ R™, |r| = 1} =: 7,-, 7 j > 0; 

(H$) {T € R £ : $ ( T ) < E 7 = i ^( T ) + * ( ° ) } C 5 R " ( ° - M ) / o r s o m e M > ° ! 

(H6) 9$+(0) ^ 0, w/iere + i n d R " ; 

(tfg1) £ ™ i 4 ^ * 9 < M ° ) / ° r a ^ ^ € dV*(0). 

Then the problem of finding elements TT € RIJ. and X £ 7£(7r) satisfying the 
variational inequality 

(15) ( X , 7 - - 7 r ) + * ( T ) - * ( 7 r ) >0, V r € R™ , 

has at least one solution. Equivalently, there exists (n, (XJ), (ctj)) such that 

which means that (P) has nontrivial solutions. 

REMARK 1. The nontrival solution for the problem (P) means an element 
(TT, (XJ), (AJ)) £ R £ x ( R £ ) m x ( R + ) m fulfilling (PM) - (PE) and such that TT ̂  0. 

P R O O F O F T H E O R E M 2. It is well known that if (HQ) holds then T\ := 
((d<b+)~l + A / ) - 1 (with J : R n —> R™ being the identity) is a maximal monotone, 
bounded operator with D o m T A = RN for any A > 0 (cf. [2], p. 280). It is 
easily seen that 1Z + T\ is a pseudomonotone mapping on R™ (see Definition 7, 

—ajAj-K £ dVj(xj), 

(Ajir,Xj) - (j>j(ir) £ d'md>o(aj), 

>n 
•+' 
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p. 288, [2]). Thus applying (Theorem 15, p. 289, [2]) we deduce the existence of 
TT\ e BRn (0 ,2M) n R". such that 

(16) (T-Trx,TZ(nx)+Tx(nx)) > 0, V r G Rf. D 5 R » ( 0 , 2 M ) , 

with M satisfying ( # £ ) . Thus there exist ^ e l ^ n B K n ( 0 , M j ) , yA G TA(TTA) and 
M A € R™ with the properties that 

m 

~Y1AJXJ e ^ 7 r A ) ' e <9$+(MA), |AJ/A| = |7rA - / i A | , 

(TTA - M A , A^/A) = |TA - MA||A2/A| 

and 
m 

(17) ( r - TT a, - ^ A j z * + >0 , V r e K ^ n B r ( 0 , 2 M ) . 

Substitution r = 0 into (17) leads to the estimate 
m 

( T A . ^ ^ J ^ ) > (TI"A - M A , 2 / A ) + ( M A , 2 / A ) , 

from which it follows that 
m j 12 

> L ? R A ~ / + * ( M A ) - $(0). 

Taking into account that $ ( M A ) > — O|MA| — b, for some a, b > 0 as <i>+ being 
proper, lower semicontinuous convex, and that 7r A G B R ~ ( 0 , 2 M ) , we get 

C > -a|7rA - M A I + 1 ^ — -

for some C > 0. Thus |TTA - M A | -» 0 as A -> 0. Since {7rA} C S K n ( 0 , 2 M ) and TZ 
is a bounded IR™ valued operator, we can extract a sequence A ^ —• 0, as fc —> + 0 0 
and find x* G 5 R - ( 0 , MJ) n R " , IT* G £ R » ( 0 , 2 M ) n R". such that — x) in R". 
and 7r A | c —• TT* in R™ as fc —> + 0 0 . Note that M A ł - * when fc —> + 0 0 , as well. 
Thus the upper semicontinuity of 72. yields 

J = I 

5 Annates 
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Finally, for any r e £R>»(0, 2M) from (17) we obtain 

(18) ^-^Ajx;,T-n*) + ^{T)-^(if*)>0, V r e B R n ( 0 , 2 M ) n E ; . 

Substituting r = 0 easily leads to the conclusion that 

m 

*(**)< 5>,-(7r*) + $(0), 

which by (HQ) means that < M. Accordingly, since (18) holds for any 
r 6 Bw(0,2M) n R " , we easily deduce (15). The proof is complete. • 

4. The case <j>j positive homogeneous of degree 1 

In the case when <j>j are positive homogeneous of degree 1 we construct an 
approximation scheme using the previous results. This approach provides the ex­
istence of the solution of the modified problem (P). 

T H E O R E M 3. Suppose that for any j = 1,... ,m the following conditions are 
satisfied: 

(Hx) 0 e cl(DomdVj), (WL \ {0}) D BRn(0,rj) c Int Dom V* for some r j > 0; 

(H2) {xeW±: {(x*,x) : x* e dVj(x)}nR- ^ 0} C B R »(0 , Af,-), for some Mj > 
0; 

(Hi) <j>j(tT) = t(}>j(T), V r e ^ , W > 0 ; 

(H0) mm{<j>j(T): r e R%, \T\ = 1} =: 7 j , jj > 0; 

m 

o < ( - J2 A J x j k + v>*'T - ^} 

m 

TH 1 1 ^ 
< ( - £ ^ . r - ^ > + * ( r ) - ) - ' ^ " " ^ 

j = l 
m 

< ( -^4x ^ , r-7r A f e ) + $ ( r ) - $ ( / x A t ) . 

Hence, by taking the limit as /c —• oo we get 
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(Hi) $ = J2T=1 $3 i s c o n v e x ! 

(m) E7=i A J x i i «*+(o) f°r anv x3 e 9V*(0). 

Then there exist a number r > 1 and a system (n, (XJ), (ctj)) £ 
(E+)"\ TT^O, such that 

(19) 

- ctj Aj 7T G d Vj (x j), 

(Ajir,Xj) - r<pj(Tr) £ d'md>o(aj), 

^ * ( T ) - *(TT) > ( r - 7T, E 7 = 1 4̂ -). V r G E " , 

P R O O F . Let V|(r) = | T | _ £ ^ ( T ) , r e l " + \ {0}, V|(0) = 0, where 0 < e < 1, 
j = 1 , . . . , m . We claim that the assumptions of Theorem 2 are satisfied. Indeed, 
from the (HQ) we get that i = 1, • • • ,m are continuous on E™. The functions 
^J, j = 1 , . . . ,77i are positively homogeneous of degree 1 — e < 1, i.e. (H\) holds. 
Moreover, in view of (H±) and (HQ), from 

m m 
(20) $(r) < £ > * ( r ) = k r £ ^ ^ ( r ) = | T | " E $ ( T ) 

j=l j=l 

it follows that |T| < 1, i.e. (H°) is satisfied. The remaining assumptions can be 
easily verified. 

Accordingly, from Theorem 2 it follows that for any e < 1 there exists a system 
(-Ke,(xfj,(afj) such that 

(21) 

-aejAjTTE £ dVj(xej), 
(^Aj7rs, Xj) - | 7 T £ | - £ ^ ( 7 r £ ) G <9ind>0(<*£), 

[ * ( T ) - $ ( 7 T £ ) > ( E 7 = 1 A j l J . T - 7T£>, V r G E™ . 

The (F^) ensures easily that 7r £ ^ 0. Hence (7r £ , ( T £ ) , (a £)) is a solution of (19) 
with r = |TT£|~£. 

Moreover, if |7r£| > c£ for some c > 0, then l i m ^ o |TT £|~ £ = 1 and there exists 
a solution of (19) with r = 1. Indeed, since 0 > {-OJAJ-K* ,xf) G (dVj(xE

j),x£
j), 

then from (H2) we get the boundedness of the sets {a;£}o<e<i, j = 1,... ,m. From 
(20) we have that 0 < |7r£| < 1, for any £ < 1. 

We shall now prove that {oj^|7r£|}o<e<i, j = 1 , . . . , m are bounded. Indeed, 
suppose to the contrary that for some j £ {1 , . . . ,m} a £ |7r £ | —» + 0 0 , as e —• 0 
(choosing a subsequence, if necessary). From the the first two conditions of (21) 
we get 

-a £ |7r £ |- £ 0 j (7r £ ) = ( - a £ Ą - r r £ , x £ ) = ^(x £) + V*(-a]Aj^). 

Using the fact dV*(0) ^ 0 we obtain 

Vj(y) > -Cj, My £ D o m V j , for some Cj £ E . 
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By the definition of Fenchel's conjugate functions we get the estimate 

a°|7r c 

Letting e —* 0 in above we get 

0<7j < l^ - IM, V y e D o r n V j , 

which contradics the assumption 0 6 cl (DomdVj). 
Hence we can assume that there exist p G R™, |p| = 1, Xj G R™, ćiy € R+, 

j = 1 , . . . , m such that J^JJ —» p, X j —» X j , o;||7Te| —* ay (passing to a subsequence, 
if necessary). From the positive homogeneity of the functions <j>j, j = 1 , . . . , m and 
3> we equivalently rewrite (21) as 

-a^lAj-faedV^), 

(Ajfaxf) - \*Te<t>Aw]) G 3 i n d > o ( a ^ | ) , 

I * M - > ( E 7 = 1 A j ^ . r - ń > , V r 6 R+, 

Here we used the substitution r Letting £ —> 0 we now get 

- 5 j A , p G O V J ( X J ) , 

( A j p , X j ) - (p) e dind > 0 (5j), 
* ( r ) - *(p) > ( E ^ i Ajxj, r - p), V r £ R™, 

which means that (p, (XJ), (ay)) is the solution of (19) with r = 1. • 
COROLLARY 1. Under the assumptions of Theorem 3, let r > 1 and Ze£ 

(TT, (XJ) , (aj)) € RIJ. x ( R £ ) m x (R+) m , n ^ 0, be a solution of the problem (19). 
Then 

i) V j = l , . . . , m , ( J ^ p < l a i = 0 ) , 

nj 3 j ' € {1 , . . . ,m}, 
7 , ' 

1 1 > 1, 

where Mj = inf { M j : Mj is a constant fulfilling the condition ( # 2 ) } -

P R O O F . _ 

i) Suppose to the contrary that ^A '^M ' < 1 and aj > 0 for some j G {1 , . . . , m}. 
Then the second condition of (19)2 takes the form (Ajit,Xj) = r</>j(7r). From the 
positive homogeneity of the function </>j we get 

(AjP, Xj ) = r<j>j (p) > r 7 j , p = — . 
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Let Mj be as in ( # 2 ) , then from the previous estimate we obtain r < {Ajl^'x') < 

Hence 

l < r < l ^ < 1 ) 

which is a contradiction. 

ii) Suppose to the contrary that ^A^M' < 1 for each j = 1,... , m. From i) it follows 

that otj = 0, j = 1,... , m. The first condition of (19) implies Xj G dVj (0), j = 
1,... , m. Moreover, (i?g) leads to Ej=i ^ 3$+(0). Taking into account that 

$ is proper, convex, l.s.c and positive homogeneous of degree 1, we get that there 

exists a closed and convex set W c R " such that = ind w • The assumptions 

{Ho), (Hi) imply that 5(0,7) n RIf. C W, where 7 := 1 7J-
Since, | Ej=i Ajxj\ > 7 — Ej=i 7J> there exists an index jo G {1,... , m} such 

that |A^a:j0| > 7j-0. On the other hand, \XJ0 \ < Mj0 leads to 

> 1, 
7j 0 

which is a contradiction. • 

The next corollary concerns estimates on r. 

C O R O L L A R Y 2. Under the assumptions of Theorem 3, let r > 1 and let 
(•jr,(xj),(aj)) e l " x ( R £ ) m x (R+)m, 7T ̂  0 be a solution of the problem (19). 
Then 

J : = { i 6 { l , . . . , m } : c « j > 0 } ^ 

and 

l < r < m i n { ^ ® ) , 

where Mj = inf{Mj : Mj is a constant fulfilling the condition (.H^)}-

P R O O F . First, we claim that J ^ 0. Assume to the contrary that ctj = 0, 
j = 1,... , m. From the first condition of (19) we get Xj G dVj (0), j = 1,... , m. 

Taking into account that $ is proper, convex, l.s.c and positive homogeneity of 

degree 1, from the third condition of (19) we obtain Ej=i Ajxj G <9$+(0), which 

contradicts the assumption (Hg). Hence J 7̂  0. 

Let j G J . From Corollary 1 it follows that \AĄMi > 1. Moreover, the second 

condition of (19) can be equivalently reformulated as (Aji:,Xj) — r<f>j(ir). B y the 
positive homogeneity of degree 1 of <j>j and (Ho) we arrive at 

\AAMj 1 < r < 1 J l J , 
7» 

file:///AAMj
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where Mj is a constant from (H2). Accordingly, 

(\Aj\Mj\ 
1 < r < m i n < : — — — - >. 

• 
The following Corollary provides the conditions for r = 1 . 

C O R O L L A R Y 3. Suppose that for any j = 1 , . . . ,mthe following conditions hold: 

(Hi) 0 € cl(Dom0Vj-) , ( R H \ {0}) n £ R n ( 0 , r j ) C Int D o m F * /or some r,- > 0; 

(H2) {x € R £ : {{x*,x) : x* € dFj (x) } n R_ ^ 0} C 5 R ~ ( 0 , M j ) , /or some M j > 
0; 

<j>j{tT)=t(f>j(T), V r e M I J : , V t > 0 ; 

(#o) min{0j(T): r € R " , |r| = 1} = : l ó , 7 j > 0; 

(Hi) $ = ^DJlj </>j is convex; 

(Hg) Ajxj £ d$+(0) for any Xj € dV*(0), where $+ = $ + i n d R n . 

Then there exists a system (TT , ( X J ) , ( O ^ ) ) G R™ x (R!f.) m x ( R + ) M , TT ^ 0, such 
that 

—CtjAjTT € O V ^ X j ) , 

(Ajir,Xj) - 4>J(K) € 9 ind> 0 (a j ) , 

* ( r ) - * ( T T ) > ( r - TT, ^ J ^ ) , V r € R " , 

which means that the problem (P) has a nontrival solution. 

P R O O F . Note that (Hg) implies the condition (Hg) of Theorem 19 . From The­
orem 1 9 we get that there exist a number r > 1 and a system (n,(xj),(ctj)) £ 
Rl x (W\_)m x (R+) m , TT ^ 0 such that 

(22) 

f -oijAj-K e dVj(xj), 

(Ajir,Xj) -r<j)j(-K) 6 <9ind>o(oy), 

{ * ( T ) - $ ( T T ) > ( r - TT, E 7 = 1 AJXJ), V r e R " , 

Thus (#f) leads to aj > 0, j = 1 , . . . , m. 
Indeed, assume to the contrary that ay = 0 for some j € { 1 , . . . , m}. Then the 

second condition (22) means that Xj e <9V*(0). Since the function $ is proper, 
convex, l.s.c. and positive homogeneous of degree 1, by the third condition of (22) 
we obtain Ajxj e d$+(0), which contradicts the assumption (Hg). 

file:///Aj/Mj/
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As ctj > 0, j = 1,... , m, the second condition (22)2 takes the form (Ajir, XJ) = 
r4>j(ir),j = 1,... , m . Now, by (H$) a n d the third condition of (22) we get 

* w = ( £ 7 = 1 4 w > = r E3T=i fcM = * M -

Consequently r = 1. • 
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