WEIGHTED SHARP BOUNDEDNESS FOR MULTILINEAR
COMMUTATORS

Hone Xu, JIASHENG ZENG, LANZHE LiU

Abstract. In this paper, the sharp estimates for some multilinear commutators
related to certain sublinear integral operators are obtained. The operators include
Littlewood-Paley operator and Marcinkiewicz operator. As application, we obtain
the weighted LP(p > 1) inequalities and Llog L type estimate for the multilinear
commutators.

1. Introduction

Let b € BMO(R") and T be the Calderén—Zygmund operator. The commut-
ator [b,T] generated by b and T is defined by [b, T|f(z) = b{z)T f(z) — T(bf)(z).
By using a classical result of Coifman, Rochberg and Weiss[2], we know that the
commutator [b,T)] is bounded on LP(R") (1 < p < o). However, it was observed
that [b, T is not bounded, in general, from L!(R") to L1*°(R"™). In [11], the sharp
inequalities for some multilinear commutators of the Calderé6n—-Zygmund singular
integral operators are obtained. The main purpose of this paper is to prove the
sharp estimates for some multilinear commutators related to certain sublinear in-
tegral operators. In fact, we shall establish the sharp estimates for the multilinear
commutators only under certain conditions on the size of the operators. The op-
erators include Littleftuod—Paley operator and Marcinkiewicz operator. As the
applications, we obtain the weighted norm inequalities and L log L type estimate
for these multilinear commutators. In Section 2, we will give some concepts and
Theorems of this paper, whose proofs will appear in Section 3.
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2. Preliminaries and Theorems

First, let us introduce some notations (see [4], [8], [10], [11]). Throughout this
paper, @ = Q(xg, d) will denote a cube of R™ with sides parallel to the axes centered
at zo and having side length d. For a > 0 and a cube @, aQ will denote a cube
with the same center as @ and a times edges of Q and Q° = {z € R* : z ¢ Q}. For
any locally integrable function f, the sharp function of f is defined by

#(z d
F7( Zl;r; |Q|/ |f(v) - foldy,

where the supremum is taken over all cubes @ cintaining z, and in what follows,
=1Q|7! [, f(z)dz. Tt is well-known that (see [4])

f#(z) = sup inf l-gz—l /Q £ () — cldy,

Q3z ceC

where the infimum is taken over all numbers. We say that f belongs to BMO{R")
if f# belongs to L*(R") and ||f||zmo = ||f#||z=. For 0 <7 < oo, we denote f#
by
FE (@) = [(F* @)V

Let M be the Hardy-Littlewood maximal operator, that is that M(f)(z) =
SUPgs, Q17! fo | (¥)ldy, we write that My(f) = (M(f?))/?. For k € N, we
denote by M* the operator M iterated k times, i.e., M1(f)(z) = M(f)(z) and
M*(f)(x) = M(M*=1(f))(z) for k > 2.

Let ® be a Young function and ® be the complementary associated to &, we
denote that the $-average by, for a function f

ko = mf{A>o IQI/ (‘f(y)')dygl}

and the maximal function associated to ¢ by

Ms(f)(z) = ggr;llfllw-

The main Young functions which will be used in this paper are ®(t) = exp(t")—
and U(t) = tlog"(t + e), the corresponding ®-average and maximal functions are
denoted by ||-|lexpLr,@s Mexprr and {|-||L(ogr)r,@s ML(0gr)-- We have the following
inequalities, for any r > 0 and m € N

M(f) < Mpgogry (f)s Migogry=(f) < CM™¥L(f).

For r > 1, we denote

[1Blloscaxprr = sup 1o = bQllexpLr.-
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The spaces Oscexprr is defined by
Oscexprr = {b € Lllog(]R") 1Blloscexprr < 00}
It has been known that (see [11])

{16 = borgllexprr2v@ < C|[b||0scerprr-
It is obvious that Oscexpr- coincides with the BMO space if r = 1. For r; > 0
and b; € OscCexprmi for j =1,---,m, we denote that 1/r =1/r; +--- +1/ry, and
[16]] = H]m:l ”bj”O“expL':’ . Given a positive integer m and 1 < j < m, we denote by
C7" the family of all finite subsets o = {o(1),---,0(j)} of {1,---,m} of j different
elements. For o € C7*, denote that o = {1,---,m} \ 0. For b = (by,---,bn) and
0'~= {0‘(1), . ( )} € C™, denote b (b(,(l), .. ~,bo.(j)), be = ba(l) .. ~ba(j) and
“ba“Oscexera ”bo(l)”Oscexera(l) T ”ba(j) ”Oscexer,,(j) .
We denote the Muckenhoupt weights by A, for 1 < p < oo, that is (see [4])

A,= {w sup(IQl/ (:c)dm) (ﬁ/cgw(x)“l/(”‘l)dz>p—l<oo}, 1<p<oo

and
A1 = {w: M(w)(z) < Cw(z),a.e.}.

We are going to consider some integral operators as following.
Let b;(j = 1, ...,m) be the fixed locally integral functions on R™.

DEFINITION 1. Let A > 3+ 2/n, ¢ > 0 and % be a fixed integrable function
defined on R™, which satisfies the following properties:

(1) Jgn ¥(z)dr =0,
(2) [(2)] < C(1+ [z])=C+D,
(3) [(z+y) — (@) < Clyl*(1 +|z|)~"+1+%) when 2Jy| < |z|.

Set ]Rf,ﬁ*’1 = {(z,t) : z € R",t > 0}. Let f be a integrable function on R™ with
compact support. The Littlewood-Paley multilinear commutator is defined by

AN [//R <t+|x~y|) F (e ,y>|’*’f§’ff]1/2

m

b T,y) = () ~ b;(z +(y — 2)f(2)dz
FNww = [ [H(b;() by( ))]wy )f()d

Jj=1
and ¢(z) = t7"Y(x/t) for t > 0. Set F1:(f)(y) = Jgn ¥e(2)f(y — 2)dz. We also
define that

nA 1/2
A()@) = ( /] " (=) |F1t(f)(y)|2f3ff>

which is the Littlewood—Paley function (see [13]).

where




76 . Hong Xu, Jiasheng Zeng, Lanzhe Liu

Let H; be the Hilbert space

/2
H, = { Vﬂim—(// Ay, |2dydt/t"+l> <00}-

Then for each fixed z € R™, FA(f)(x,y) may be viewed as a mapping from
(0,4+00) to Hy, and it is clear that

P o= ¢ ni/2 P N
d0@ = (=) A )
and
(=) = (——t )an )
ax = t+|x—y| 1t Yy .

DEFINITION 2. Let Fix A > max(1,2n/(n+2)), 0 < vy < 1 and  be homo-
geneous of degree zero on R™ such that [, , Q(z')do(z’) = 0. Assume that Q €
Lip,(S™~1), that is there exists a constant M > 0 such that for any z,y € S*~!,
1Q(z) — Qy)| < M|z —y|?. We denote I'(z) = {(y,t) € R} : |z —y| < t} and the
characteristic function of I'(z) by xp(s). Let f be a integrable function on R™ with
compact support. The Marcinkiewicz multilinear commutator is defined by

(N = [ /L. (m)A IFL(f)(a, y)l"’ffff] "

where
FL(N(z.y) = /I - S {H(b () — b (z))] 1(2)dz.
Set o
Uy — z)
Faou(F)y) = /Iy—z|<t 'lyTln_lf(z)dz.

We also define that

) ( / /R (m) |Fac(f )<y>|2j,i’f§)

which is the Marcinkiewicz integral (see [14]).
Let Hj be the space

1/2
H2={h:nhnyz= ( / / y,t)i2dydt/t"+3> <oo}.
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Then, it is clear that

A N ¢ nAf2 . .
w01 )—‘ () Hew .
and
¢ ni/2
w@ = (=) W .

More geﬁerally, we define the following multilinear commutator related to cer-
tain integral operators.

DEFINITION 3. Let f be a integrable function on R™ with compactly supported
and F(z,y,t) be a function define on R” x R™ x {0, +00), we denote

F(f)z)= | F(z,y,t)f(y)dy

R»

and

F3(f) / [ﬁ —b;®)| Fle,v,0)f@w)dy

Let H be the Banach space H = {h : ||h||g < oo} such that, for each fixed
z € R", Fy(f)(z) and F?(f)(z) may be viewed as a mapping from [0, +oo) to H.
Then, the multilinear commutator related to Fy is defined by

T(f)(@) = |F2 () (@)l
We also denote that
T(f)(z) = ||F(f)(@)||n-

Note that when by = -+ = by, Tj is just the m order commutator. It is well
known that commutators are of great interest in harmonic analysis and have been
widely studied by many authors (see [1-3], [5], [6], [8-11]). Our main purpose is
to establish the sharp inequalities for the multilinear commutator operators.

The following theorems are our main results.

THEOREM 1. Let r; > 1 and b; € O8Cexprmi for j = 1,---,m. Denote that
lr=1/ri+ -+ 1/rm.

(1) Then for any 0 < p < q < 1, there exists a constant C > 0 such that for
any f € C°(R™) and any z € R”,

j=10€CT

(GNE@ <cC (IIbIIML(xogL)xxr(f)(z)+Z > Mgy (f))(w)> ;
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(2) If 1 <p< oo and w € Ay, then

Ngx (Ol Low) < CUBINIS I Lo uw);

(3) If w € A;. Denote that ®(t) = tlog"/"(t +e). Then there ezists a constant
C > 0 such that for all X > 0,

w({z €eR™: g (f)(z) > A}) < C 2 (M—') w(z)dz.

THEOREM 2. Let r; > 1 and b; € OSCeyppmi for j = 1,---,m. Denote that
1/r=1/ry+---+1/rp.

(1) Then for any 0 < p < q < 1, there exists a constant C > 0 such that for
any f € CP(R™) and any z € R™,

WBUNE) <C (ub||MmogL)m(f)(x) IDIR A (f))(r)> ;

(2) If1<p< oo and w € Ay, then

R (Pl e ) < CHBIIFI o

(8) If w € A;. Denote that (t) = tlog!/"(t +€). Then there exists a constant
C > 0 such that for all X > 0,

w{z eR* 1 )k (f)2) > APy < C @ (Mle-@) w(z)dz.

3. Proofs of Theorems

We begin with a general theorem.

MAIN THEOREM. Letr; > 1 and b; € Osceypmi for j =1,---,m. Denote that
1/r=1/r1+---+1/ry. Suppose that T is the same as in Definition 1 such that T is
bounded on LP(w) for all w € Ap, 1 < p < 00 and weak bounded of (L (w), L} (w))
for all w € A,. If T satisfies the following size condition:

[1Fe((b1—(b1)2q) - - - (bm— (bm)2@) ) (z) = Fy((b1—(b1)2Q) - - - (bm — (bm)2@) ) (o)l
< CMpogryr/-(£)(Z)

for any cube Q = Q(xo,d) with suppf C (2Q)° and z,& € Q = Q(xo,d). Then for
any 0 < p < q < 1, there exists a constant Cy > 0 such that for any f € C§°(R™)
and any € R?,

(T3(F)E (@) < Co <|1b||ML(,ogL>w(f>(x> +30 S M, (f)(z)))

j=10€Cy
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To prove the theorem, we need the following lemmas.

LeMMA 1 (Kolmogorov, [4, p. 485]). Let 0 < p < g < oo and for any function
f > 0. We define that, for 1/r =1/p—1/q,

I fllwee = sup Mz € R™: f(2) > A9, Npo(f) = sup Fxellze/lixellz-,
>

where the sup is taken for all measurable sets E with 0 < |E| < oo. Then

1fllwea < Npg(£) < (a/(a = )Pl fllwers.

LEMMA 2 ([11]). Letr; > 1 forj=1,---,m, we denote that 1/r =1/r1+---+
1/rm. Then

1
@/Q [fi(@) - fm(z)g(z)|dz < ”f”expLTl Q0 llf”exPL"'f‘:QlIg“L(logL)l/T’Q

PRrROOF OF MAIN THEOREM. It suffices to prove for f € C§°(R™) and some
constant Cp, the following inequality holds:

(i [ e )—cowdx)l/p

<C (IlbllML(logL)lxr(f)(fE) +Y Y M(T;,, (f))(i)) -

j=10€Cp

Fix a cube Q = Q(zo,d) and & € Q. We first consider the case m = 1. We write,
for fi = fx2q and fa = fxmrr\20,
FH(f) (@)= (b1(2)— (b1)2) P (f)(@) = F (b1 = (b1)2@) f1) (@) — Fi (b1~ (b1)2q) fo) (),

then

|Ts, (£)(2) = T(((b1)2q — b1) f2)(zo)]
< IFPH(A)(@) — F(((br)2g — b1) fo) (o)l
< (b (y) - (b1)2Q)Ft(f)( )|l + ||F((b1 — (b1)2) 1) (@)|m
+[|Fe((b1 — (b1)20) f2)(z) — Fe((b1 — (b1)2q) f2) (o)l
= [(z)+ [I(z) + I1I(z).

For I(z), by Holder’s inequality for the exponent 1/l + 1/’ =1 with 1 <l < q/p
and pl = q, we have


file:////Ftdh
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(ﬁ /Q g (x)lf’dm>1/p
= (137 /., 2= Gaapirs )(m)]”dﬂﬁ>1/p

('m'/ it ~at)" (g | i)

< Cllb1lloseaxprr Mpt(T(£))(Z)
< C[lblllOscexpu Mq(T(f))(i)

For II(z), by Lemma 1 with ¢ = 1, the weak bounded of (L!(w), L*(w)) for T
and Lemma 2, we have

L @ (L (T((br — (b)a) 1) @) Pe 1p
1Rl Jo 1Rl Jo

_ gt 1T (G = (u)a0) i)xoller
QI

< ClRITMIT (b1 = (b1)20) fx20)lwr

< cRQ™ /2 @) = (b)ollf @)l

< Cllby — (b1)2q|lexprr 20l fllLogL) 1/ 20
S Cllbllloscexer ML(lOgL)l/r (f)(‘;i:)'

For I1I(z), using the size condition of T, we have

(|Q[ / |111(z) lpd”:) " < CMpogry-(F)(Z).

Now, we consider the case m > 2. We write, for b = (b, ..., bmm),

m

F)(f)() = / [H }F(w,y,t)f(y)dy

= Jon (b1(z) = (b1)2@) — (b1(y) = (b1)2Q) * - - (bm(z) — (bm)2q)

~ (b (y) = (bm)2@) F(z,y,8) f(y)dy

m

=Y 3 ()™ ~ Bhae [ ()~ B0)e Pl )iy

3=0 crECJT"

= (bi(x) = (b1)2Q) - - (b () — (brm)2@) Fi(f)(2)
+ (=1)™F((b1 — (b1)2@) - - - (bm ~ (bm)2) f)(z)
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m-—1
£ T (C1mIbE) - Oaade | () ble))os Fla . f(0)dy

j=1 ceC

= (b1(z) = (01)2Q) -+ (bm(2) — (bm)2@) F3(f) ()
+(- l)mFt(( = (b1)2Q) -+ (b = (bm)20) f)(2)

thus

IT5(f)(x) = (=1)™T((b1 = (b1)2q)  * + (b — (bm)2q)) f2)(@0)]
< F(F) () = (=)™ Fe((br = (b1)2q) - - (bm — (bm)2q)) f2) (zo)l| &
< (br(@) = (b1)2q) -+ (b (@) — (bm)2@) Fe(f) (@)1

+Z 3 (@) - B)20)0 Fe () (@)la

j=1 oeCy
(s = (1)30) - (bm — (b)) )@l
+ [[F((b1 = (b1)2@) - - - (bm — (bm)2q) f2) (%)
= Fi((b1 — (b1)2q) -+~ (bm — (bm)2q) f2) (o)l |1
= I (z) + Io(z) + Is(z) + La(z).

For I (z) and I(z), similar to the proof of the Case m = 1, we get, for 1/l; +
vt 1/l + 1/l =1 with 1 <l < g/p and pl = q,

(7 / |11<z>|1’dx)l/p
(I2QI/ s 2‘?"’1)1/?! (IQI/ s 'pld’”>l/pl

Mu(T(f))(E) < CM(T(f))(E)

)
)

&2

I/\

cll
H ”b ”Osc

expL Ti

an

(IQI/ ol 'pd””>

SC Zc<|2Q|/ (b() = (Blag)o "™ )1/%(@1/ T, ‘Pld“”>1/pl

Z 1o |0scaprra Mpt(Ts,. (£))(E)
.

I/\
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Z Z (T, (@)
=1 C’

For I3(z), by the weak bounded of (L(w), L}(w)) for T and Lemma 1 and 2,
we obtain

(& frs)”

C
= 12Q| »/2Q [b1(z) = (b1)2g] - - [bm(2) = (bm)2ql|f(x)|dz

< Cllby = (b1)2gllexprr 2@« |[bm = (bm)2@llexprrm 201 fll L10gL )1/ 20
< C|bl| My gogryr/+ (FHE)-

For I4, using the size condition of T, we have

1 1/p )
(@ /Q(I4(w))de) < CMy(1ogryrim(F)(E).
This completes the proof of the main theorem. 0

To prove Theorem 1 and 2, it suffices to verify that gf;\ and u’:’\ satisfy the size
condition in Main Theorem, that is, for j = 1,2,
H;

( t )’IZA/?_( t )n)\/2
t+|c—y| t+ |zo — yl
< CMpegryr/()(Z)-

Suppose suppf C Q° and z € @ = Q(zo,d). Note that |zg — 2| = |z — 2| for
z € Q°.

For g,\, by the condition of ¢ and the inequality: a 172 bl/ 2 < (a—b)Y/? for
a>b>0, we get

ni/2 ni/2
[(mﬁ_—m) =) }Fu((bl—(bl)x»--~(bm—(bm)2Q)f)(y)

Fjt((b1—(b1)2q) : - - (bm ~(bm)20) F)(¥)

H,
¢ n ¢ ni 1/2
< ) p— Fra((b1—(b1)2@) - - (b — (bm)2@) f)(¥)
(t+| yl) (t+! 0 yl) M
- 9 1/2
nA/2 /2 ™ dyd
= //Rm/(zQ)cl:(t:-lwo—lzr (”f\|+1)/2 H|b (2)=(Bs)2elllF ()llWey— z)]dz} tzﬂt

1/2
ti=m A | g — z|dydt
< C/ l I b // dz
QQ)C | 2Q|||f ( t+|$o yl)n/\+1(t+|y zD2n+2
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<C Hlb (2) = (b)2alllF(2)l|zo — 2|/

2)31

- " 1/2
" [/o e (/R (t+ m) A Tl iyzn'm“) ‘“] &

noting that 2t + |y — 2| > 2t + |zo — 2| — |20 — y| = t + |zo — 2| when |zo —y| < ¢
and 251t 4 |y — 2| > 251t 4 |zp — 2| — |20 — y| > |To — 2| when |zo — y| < 2FF1e,
we get, recall that A > (3n + 2)/n,

lt_n/ ( t )"A dy
re \t+ [Zo — y| (t+ |y — 2|)?n+2

_ ¢ ni dy
=t " 2n+42
lzo—yl<t \t + |Zo — ¥l (t+]y—2|)

[s ]

A
+tTh Y / ( t >" =
= Jorictzo—yl<oeie \EF To =yl ) (E+ |y — 2[)?7+2

<t—"/ 22n+2dy E/ A 2(k+2)(2n+2)dy ]
- oyl <t (2t 2]y~ 2[)2n+2 zo-y|<2k+1t (2k+2¢ 4 202 |y — 2) 22

<ct™ / Z / g—knA 2k(2n+2) gy
B |zo— y|<t(2t+|y Zl 2n+2 |zo— y|<2k+1t (t+2k+1t+|y—z|)2n+2_

<Ct™ / Z / g—knr__ 2D dy
B lwo—yl<t (t+ lxo - Z| )2mt2 w0~ y|<2k+1t (t + |zo — 2|)27+2

r

<Ct ™" 2k(3n+2 nA)
- (t + |zo — 2[)2+2 + X_: (t+ |z — 2])2nt+2

C
= [t oo — 2P

e dt __C —2n-1
[+ fmo—apeee ~ Clmo =277

since

we obtain

<;)"*’ o (_t_)"” 2} Fu((b1~(b1)20) - (b (b)) )W)

t+|z—yl t+|zo—y|

H,

< C’/ H |bj(z) — (bj)2glllf(z )|| [zo z|n|+1/2dz

< CZ/ |wo—a|!/2|zo—2| =D | T (bs(2) — (b5)20)| 1/ (2)1dz
k=1

2k+1Q\2%Q j=1
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k=1

<oy rHrpEriQ / [14:) - ()0)| 1721z
2lc+1Q j=1
< 022 k/2 H [1b; — (05)2lexprs 2x+1QI F Il LogLyr/r 28410

<C Z kmo—k/2 H |Ibjllose,, ,~ MLogLyi/=(f)(Z)
k=1 J=1

<C H ”b “Osc (logL)l/"(f)(i)'

exp L T3

For ,ul:’\, by the condition of Q, we get

( t )‘n/\/2 < t )TL/\/Q
t+lz—yl t+ |zo—yl

F2t((b1 _(bl)QQ) e (bm_(bm)2Q)f)(y)

H;
<C // / Xr(z) (Y, )t 2 |zg — z|'/2
R+t Sy | (E+ |z — y) (AN 2y — z|n=1
9 1/2
dydt
x Hlb mllf(Z)ldz} o
1/2
Xr(z) (Y, )t "8 |zo — z|dydt
<C b( dz:
/QQ)C Hl bj)2l1f(2)] (//R nti (E 4 |z — gy |y - 2[2n-2 2

note that o — 2| < 2t, ly—z| > |z —z| — |z —y| 2 |t — 2| — ¢t when |z —y| < ¢,
ly— 2| <t and |z — 2| < (1 + 26+H1) < 2642 |y — 2| > |z — 2| — 2F73¢ when
|z —y| < 251, |y — 2| < t, we obtain

ni/2 nA/2
ll (=) - (m) }th((bl—(bl)zc;) (=)o) )
. 2o — 1/2
<c/2Q Hlb( bi)eallf(2)lizo — |

n —n 1/2
/°° / ( t > M e (v, )t dydt &
0 Jjo—y<t \t+ ]z~ Yl (lz — z| — t)2n+2

+C b(2) F(2)llzo — =['/?
. ]H1| i(2) = (b)2@l| f(2)||zo —

- n . 1/2
s () et
0 £ Jaricle—y <o \EF |T — (lz — 2| — 2k+3¢)2n+2

H;



file:///X-Z/-

Weighted Sharp Boundedness for Multilinear Commutators 85

oo dt 1/2
b5~ O ol f@Nlloo — ol | [~ Tl ds
/ Q) ]Hl| D2l AT
vo [ T - Gagllf@liso -2
(2Q)° i1
2- k(n/\+2)(2k )nt_n2kdt 1/2d
Z/ 2okjg_y) (|7 — 2| = 2FF3¢)2n+2 z
= C/m) H b;(2) — (b)20|lF (2)llzo — 2|2z~ 2|71/ 2dz
+C/ H [b;(2) = (b5)20l1F (2)l|z0 — [/ 22“" ~mA=2)/2g _ p1-n=1/2,
2Q)c k=0

Ixo_x|1/2

< C/ b —(b; e (] >
QQ)CHI (bi)2ql|f(= )|| Y

< CHIijllosc

J=1

ML(logL)l/"(f)(j)'

explL i

These yields the desired results.

By (1) and the boundedness of gx, px and My (og1)1/r, We may obtain the
conclusions (2) (3) of Theorem 1 and 2. This completes the proof of Theorem 1
and 2.
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