FUNCTIONS OF CONVEXITY AND DIMENSION

Tomasz KuLpra

Abstract. Two dual sequence functions describing some kind of local convexity
and dimension of subspaces of linear metric spaces are introduced. It is shown that
the functions give a useful tool in the investigations of fixed point properties of the
Schauder type.

Notations and conventions. By a linear metric space we mean a topological
real vector space E which is metrizable. By Kakutani theorem (see for instance [6])
E is equipped with an F-norm such that ||z +y|| < ||z|| + ||y]| and ||tz|| < ||z]| for
each t € [~1,1]. Such an F-norm induces an equivalent translation-invariant metric
p on E given by the formula, p(z,y) = |jz — y||. A linear space with a metric
induced by an F-norm is said to be an F-metric linear space. Let us denote by;
B(a,r) :={x € E: p(z,a) < r} — the ball with centre a and radius r,

B(A,r) :={B(a,r) : a € A} for each nonempty set A,

diam A := {p(z,y) : z,y € E} — the diameter of the set A,

conv Ai={z € E:x =3 (tiai, Y ooti =1, >0, a; € A, n € N} — the
convex hull of the set A.

In this paper we want to construct a tool to estimate approximative fixed points.
Our aim will be reach by constructing two dual sequences of functions describing
dimension and local convexity.

Sequence function of dimension. For any family W of subsets of a metric
space (Y, p) let us define mesh and order of the family W:

mesh W < ¢ provided that diam W < ¢ for each W € W,
ord W < n provided that [{(W eW:z € W} <n+1lforeachz €Y.

Let us recall the definition of covering dimension, dim Y, of a topological space

Received: February 23, 2005. Revised: June 07, 2005.

(1991) Mathematics Subject Classification: 54H25, 47H10.

Key words and phrases: the Schauder fixed point theorem, measure of convexity and dimen-
sion. )



24 Tomasz Kulpa

Y; dim Y < n provided that for each open finite covering W there exists an open
finite covering U of order < n, ord U < n, being a refinement of W
(i.e., for each U € U there is W € W such that U C W).

For a given metric space (Y, p) define a sequence function of dimension Uy:
N — [0, 00):
Ty (n) := inf{e > 0 : 3 finite covering W of Y, meshW < ¢ and ord W < n}.

Let us list without proof the following properties of the function ¥y:
1. Uy (n) > iIly(n+ 1) >0 foreach n€N.

2.If Y is a compact then limp_o ¥y (n) =0.
3.Ifdim Y < oc and Y is compact then ¥y (n) =0 for each n > dim Y.
4. Uy (n) = 5= for the Hilbert cube Y = [0, 1], with the metric

o0

1
p(z,y) := Z §;ll‘i - yil.

i=1

THEOREM. Let E be an infinite-dimensional F-metric linear space. Then for
each decreasing sequence €g > €1 > ... > 0 of reals there is a closed conver subset
C of infinite dimension such that

Yeo(n) <e, foreach neN.

PRrOOF. We shall define by induction a sequence of affine independent points
ag, a1, .. € E, a sequence of families Wy, n € N, of open sets, and a sequence of
positive reals §; > d2 > ... > 0, §; < &; such that:

1 meshW, < e, and ord W, <n for each n € N,

(2) Cn := conv{a,...,an} €| JWa C B(Cn-1,6,) C B(Cn-1,26n) C | JWn-1.
Inductive Construction.
Step 0. Choose ag € E \ {0} and define Cp := {ag} and Wy := {E}.

Step n + 1. Asume that we have defined affinely independent points ay,...,an
families Wy, . .., W, of open sets and reals 41, ..., d, satisfying (1) and (2).

Since C, is compact, there exists a positive real 6,41; 0 < 0py1 < On, 20n41 <
€n+1, such that

Cn C B(Cn,(snr{-l) - B(Cn,26n+l) C UWn

Choose a point a1 € B(Cn,dn+1)\ span Cy. The points ag, ..., a1 are affinely
independent. Note that ‘

Cny1 = conv{ag,...,ant+1} C B(Cn, nt1).
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To see this, fix x € Cpy1. Then

n+1 n+1

z:Etiai, Zt;‘=1 and ti ZO

=0 1=0
Choose b € Cy, such that ||ap+1 — b|| < dn+1 and put
n
Y= Ztiai + tp41b.
1=0 '
Then it is clear that y € C,, and
llz — yll = lltn+1(an+1 = O| < |lans1 = bf| < bnyr.

This yields z € B(Cp,dp+1). Since dim Cry1 = n + 1, according to theorems on
shrinkings and swellings of families of sets (see [1], Theorems 1.7.8 and 3.1.2), one
can find a family W,,11 of open sets in E such that

mesh Wn+1 < En41, OI‘de+1 <n-+1, Cn+1 C UW""H C B(Cn,5n+1).

This completes the inductive construction. Now, let us put

o
C:= U Cn.
n=0
Note that
o ——————eeererere—
Cc n B(Cn,6n+l)a
=0
because ;o Cr C Moo, B(Ch,6nt1). Thus from (1) and (2) we infer that C C
UWh, for each n € N, and therefore ¥¢(n) < mesh W, < e,. O

Sequence function of convexity. For a given subset Y C E of a linear metric
space (E, p) define a sequence function of convezity &y : N x [0, 00) — [0, 00);

@Y(TL, 7") = 1nf{L > T VK>L33>rVy,co,...,c,.€Y Coy--sCp € B(y1 3) =
conv {cg,...,¢cn} C B(y,K)}.

The function ®y has the following properties:

1. ®y(n,r) < ®y(n+1,r) and ®(n,r) < ®(n,s) foreachn € Nand r < s.
2.2z(n,r) < Py(n,r)for ZCY.

3.1f (E,|| - ||) is a normed space, then ®y(n,r) = r for each n € N and r > 0.
4.1f (E, p) is an F-metric linear space, then ®y(n,7) < (n + 1)r.

To see this, let co,...,cn € B(y,s). Choose z € conv {cp,...,cn} C B(y,s). Then

plz,y) = 1) tici—yll =11 tici = > tayl|
=0

=0 i=0



26 Tomasz Kulpa

< e = <D lles =yl € (n+1)s,

where

n
Zti:l’ 20, K>n+1r, r<s<—.
i=0 n
5. Fix 0 < p < 1. Recall that the Lebesgue space Ly, is defined to be an F-metric

space of all the Lebesgue measurable functions f : [0,1] — R with an F-norm such
that

1|f||:=/0 FOP d < oo.

One can verify that &y (n,r) < r(n+ 1)17P.

Raughly speaking, a function of convexity ®y describes some kind of n-local
convexity of nonlocally convex F-metric spaces. This function together with a se-
quence function of dimension ¥y gives a better tool for investigations of a fixed
point property, than a sequence function of the Kuratowski measure of noncom-
pactness [5]. Some methods of measure of noncompactness which are intensively
exploit the reader will find in [7].

6. In a paper [4] due to Olga Hadzi¢ it is investigated a notion of a set of
Z4-type. In our terminology a subset Y C E of an F-metric linear space E is said
to be of Zy-type if there exists a function ¢ : [0,00) — [0,00) such that for each
r>0

conv [(Y —Y) N B(0,r)] < B(0, ¢(r)).

From this condition it follows that

Dy (n,r) < ¢(r) foreachneN, r>0.

7. In the same paper, for the Lebegue space Lo;

0

Lo:={f:[01 =R : |Ifll= | 75

dt < oo},

it is shown that for the convex set
Ya:={f € Lo:|f(t)] < Aforeachte|0,1]}, where A >0,
the function ¢ is given by the formula:
o(r) = (1 +24)r.

The concept of Zg-set was originated in Zima’s paper (8], where a fixed point
property of the Schauder type was established for some nonlocally F-metric spaces.
From the results of the next part of our paper it will be follow that for this space
Y4 each continuous compact map g : Y4 — Y4 has a fixed point.
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Mixed sequence of functions of convexity and dimension. A function
Xy : N — [0,00), where Y is a subset of a linear metric space E, defined by the
formula

xy (n) i= @y [n, Ty (n)]

is said to be a mized sequence function of convexity and dimension. The real
number

x(Y) :=inf{xy(n) : n € N}
is said to the convezity-dimension characteristic of the subset Y of E.
The following properties of the function x are easy to deduce.
1.If (E,p) is an F-metric linear space, then xy(n) < (n + 1)¥y(n) for each
ne€ N.

2.If E is a normed space, then xy(n) = Uy(n), for each subset ¥ C E, and
consequently:

3.If Y is a subset of a normed space E, then x(Y) = 0.

4.If Y is a compact subset of an F-metric space £ and dim Y < oo, then
x(Y)=0.

5.Let Y be a set of Z4-type in an F-metric space E. Then xy(n) < ¢(xy(n))
and x(Y) < limp . ¢(Ty (n)).

6. For each subset Y C Ly, if 0 < p < 1 then xy(n) < (n+ 1)1 7Py (n).

Now, we are going to show some applications.in investigating of a fixed point
property of the Schauder type.

MAIN THEOREM. Let Y C X C E be an arbitrary subset of a convex set X of
a linear metric space E. Fizn € N and K > xy(n). Then for each continuous
map g: X — Y there is a point ¢ € X such that p(c, g(c)) < K.

PROOF. By definition K > x(n) means that
(1) @y[n, \I’y(n)} < K,

and let us put
(2) r:=Uy(n) and L:= ®y(n,r)

According to the definitions of functions ®y there is s > r such that for each
Y;€C05.--1Cn € Y

3) Coy---,¢n € B(y,8) => conv{cy,...,cn} C By, K).

Now, from the definition of the function ¥y there exists a finite relatively open
covering W = {Wo,...,Wp} of Y such that

4) ordW <n and meshW < s.
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Choose points ¢; € W; for each'i =0,...,m.
We shall show that there exists a point ¢ € X and a sequence of indices 0 <
19 < ... < 1 < m such that

(5) c € conv{cig,...,ci. }NgT (Wi )N ...Nng ™ (W,).

Indeed, if not, then conv {io,...,ix} C Fj; U...UF;, for each set 0 < ip <

. < i £ m of indices, where F; = X \ g‘l(W) Then according to the KKM-

principle (see [2] , Theorem 1.2, p.73 or [3] Theorem 8.2, p.97) the intersection

N{F::i=1,...,m} is a nonempty set. This contradicts the fact that the family
{g7Y(W;) :i=,...,m} is a covering of X.
From (4-5) and ¢; € W; it follows that

(6) k<n and Cigs - - - Ci,, € B(g{c),s).
From (3) we get
(7) ¢ € conv {cy, ..., ¢, } C B(g(c), K).

Finally, we have obtained p(c,g(c)) < K. = O

- THEOREM. Let Y C X C E be a compact subset of a conver set X of a linear
metric space E such that x(Y') = 0. Then every continuous map g: X — Y has a

fized point.

.PROOF. According to Main Theorem for each £ > 0 there exists a point ¢, € X
such that p(g(ce),ce) < €. Using compatness arguments we may assume that there
is a point ¢ € X such that ¢, — ¢ as € — 0. The continuity of g yields g(c) = ¢.

O

If we assume that balls B(z,r) are convex then it is clear that ¥y (n,r) = r for
each n € N and r > 0 and consequently x(Y) = 0 for each compact subspace of E.
Thus, we immediately obtain:

COROLLARY 1. (The Schauder fixed point theorem). Let X be a convex subset
of a metric linear space E such that open balls are convexr. Then each continuous
map g: X — X, where g(X) is compact, has a fized point.

From the properties of the function y we also obtain
COROLLARY 2. LetY C X C E be a compact subset of a convexr subset of an

F-metric space E. If dimY < oo, then each continuous map g: X — Y has a fized
point.
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