BOUNDEDNESS FOR MULTILINEAR MARCINKIEWICZ INTEGRAL OPERATORS ON HARDY AND HERZ-HARDY SPACES

Liu Lanzhe

Abstract

The purpose of this paper is to establish the boundedness for some multilinear operators generated by Marcinkiewicz integral operators and Lipschitz functions on Hardy and Herz-Hardy spaces.

1. Introduction and Results

In this paper, we will consider a class of multilinear operators related to Marcinkiewicz integral operators, whose definitions are the following.

Let m be a positive integer and A be a function on R^{n}. Set

$$
R_{m+1}(A ; x, y)=A(x)-\sum_{|\alpha| \leq m} \frac{1}{\alpha!} D^{\alpha} A(y)(x-y)^{\alpha}
$$

and

$$
Q_{m+1}(A ; x, y)=R_{m}(A ; x, y)-\sum_{|\alpha|=m} \frac{1}{\alpha!} D^{\alpha} A(x)(x-y)^{\alpha} .
$$

Fix $\delta>0$ and $0<\gamma \leq 1$. Suppose that S^{n-1} is the unit sphere of $R^{n}(n \geq 2)$ equipped with normalized Lebesgue measure $d \sigma=d \sigma\left(x^{\prime}\right)$. Let Ω be homogeneous of degree zero and satisfy the following two conditions:
(i) $\Omega(x)$ is continuous on S^{n-1} and satisfies the $L i p_{\gamma}$ condition on S^{n-1}, i.e.

$$
\left|\Omega\left(x^{\prime}\right)-\Omega\left(y^{\prime}\right)\right| \leq M\left|x^{\prime}-y^{\prime}\right|^{\gamma}, \quad x^{\prime}, y^{\prime} \in S^{n-1}
$$

Received: January 10, 2005.
(1991) Mathematics Subject Classification: 42B20, 42B25.

Key words and phrases: Multilinear Operators; Marcinkiewicz integral operator; Lipschitz space; Hardy Space; Herz-Hardy space.

Supported by the NNSF (Grant: 10271071).
(ii) $\int_{S^{n-1}} \Omega\left(x^{\prime}\right) d x^{\prime}=0$.

We denote $\Gamma(x)=\left\{(y, t) \in R_{+}^{n+1}:|x-y|<t\right\}$ and the characteristic function of $\Gamma(x)$ by $\chi_{\Gamma(x)}$. The multilinear Marcinkiewicz integral operator is defined by

$$
\mu_{\Omega}^{A}(f)(x)=\left[\int_{0}^{\infty}\left|F_{t}^{A}(f)(x)\right|^{2} \frac{d t}{t^{3}}\right]^{1 / 2},
$$

where

$$
F_{t}^{A}(f)(x)=\int_{|x-y| \leq t} \frac{\Omega(x-y)}{|x-y|^{n-1-\delta}} \frac{R_{m+1}(A ; x, y)}{|x-y|^{m}} f(y) d y
$$

The variant of μ_{Ω}^{A} is defined by

$$
\tilde{\mu}_{\Omega}^{A}(f)(x)=\left[\int_{0}^{\infty}\left|\tilde{F}_{t}^{A}(f)(x)\right|^{2} \frac{d t}{t^{3}}\right]^{1 / 2}
$$

where

$$
\tilde{F}_{t}^{A}(f)(x)=\int_{|x-y| \leq t} \frac{\Omega(x-y)}{|x-y|^{n-1-\delta}} \frac{Q_{m+1}(A ; x, y)}{|x-y|^{m}} f(y) d y
$$

We write

$$
F_{t}(f)(x)=\int_{|x-y| \leq t} \frac{\Omega(x-y)}{|x-y|^{n-\delta-1}} f(y) d y .
$$

We also define that

$$
\mu_{\Omega}(f)(x)=\left(\int_{0}^{\infty}\left|F_{t}(f)(x)\right|^{2} \frac{d t}{t^{3}}\right)^{1 / 2},
$$

which are the Marcinkiewicz integral operator (see [16]).
Note that when $m=0$ and $\delta=0, \mu_{\Omega}^{A}$ is just the commutator of Marcinkiewicz integral operators (see [9-11], [16]), while when $m>0$, it is non-trivial generalizations of the commutators. It is well known that multilinear operators are of great interest in harmonic analysis and have been widely studied by many authors when A has derivatives of order m in $B M O\left(R^{n}\right)($ see [2-5]). In [1], author obtain the boundedness of multilinear singular integral operators generated by singular integrals and Lipschitz functions on $L^{p}(p>1)$ and some Hardy spaces. The main purpose of this paper is to discuss the boundedness properties of the multilinear Marcinkiewicz integral operators on Hardy and Herz-Hardy spaces. Let us first introduce some definitions (see [6], [7], [12-14]). Throughout this paper, $M(f)$ will denote the Hardy-Littlewood maximal function of f, Q will denote a cube of R^{n} with side parallel to the axes. Denote the Hardy spaces by $H^{p}\left(R^{n}\right)$. It is well known that $H^{p}\left(R^{n}\right)(0<p \leq 1)$ has the atomic decomposition characterization(see[6]). The Lipschitz space $\operatorname{Lip}_{\beta}\left(R^{n}\right)$ is the space of functions f such that

$$
\|f\|_{L i p_{\beta}}=\sup _{\substack{x, h \in R^{n} \\ h \neq 0}}|f(x+h)-f(x)| /|h|^{\beta}<\infty,
$$

where $\beta>0$ (see [15]).
Let $B_{k}=\left\{x \in R^{n}:|x| \leq 2^{k}\right\}, C_{k}=B_{k} \backslash B_{k-1}, k \in Z$.

Definition 1. Let $0<p, q<\infty, \alpha \in R$.
(1) The homogeneous Herz space is defined by

$$
\dot{K}_{q}^{\alpha, p}\left(R^{n}\right)=\left\{f \in L_{l o c}^{q}\left(R^{n} \backslash\{0\}\right):\|f\|_{\dot{K}_{q}^{\alpha, p}\left(R^{n}\right)}<\infty\right\}
$$

where

$$
\|f\|_{\dot{K}_{q}^{\alpha, p}}=\left[\sum_{k=-\infty}^{\infty} 2^{k \alpha p}\left\|f \chi_{k}\right\|_{L^{q}}^{p}\right]^{1 / p}
$$

(2) The nonhomogeneous Herz space is defined by

$$
K_{q}^{\alpha, p}\left(R^{n}\right)=\left\{f \in L_{l o c}^{q}\left(R^{n}\right):\|f\|_{K_{q}^{\alpha, p}\left(R^{n}\right)}<\infty\right\}
$$

where

$$
\|f\|_{K_{q}^{\alpha, p}}=\left[\sum_{k=1}^{\infty} 2^{k \alpha p}\left\|f \chi_{k}\right\|_{L^{q}}^{p}+| | f \chi_{B_{0}} \|_{L^{q}}^{p}\right]^{1 / p}
$$

Definition 2. Let $\alpha \in R, 0<p, q<\infty$.
(1) The homogeneous Herz type Hardy space is defined by

$$
H \dot{K}_{q}^{\alpha, p}\left(R^{n}\right)=\left\{f \in S^{\prime}\left(R^{n}\right): G(f) \in \dot{K}_{q}^{\alpha, p}\left(R^{n}\right)\right\}
$$

and

$$
\|f\|_{H \dot{K}_{q}^{\alpha, p}}=\|G(f)\|_{\dot{K}_{q}^{\alpha, p}}
$$

(2) The nonhomogeneous Herz type Hardy space is defined by

$$
H K_{q}^{\alpha, p}\left(R^{n}\right)=\left\{f \in S^{\prime}\left(R^{n}\right): G(f) \in K_{q}^{\alpha, p}\left(R^{n}\right)\right\}
$$

and

$$
\|f\|_{H K_{q}^{\alpha, p}}=\|G(f)\|_{K_{q}^{\alpha, p}}
$$

where $G(f)$ is the grand maximal function of f.
The Herz type Hardy spaces have the atomic decomposition characterization.
Definition 3. Let $\alpha \in R, 1<q<\infty$. A function $a(x)$ on R^{n} is called a central (α, q)-atom (or a central (a, q)-atom of restrict type), if

1) Suppa $\subset B(0, r)$ for some $r>0$ (or for some $r \geq 1$),
2) $\|a\|_{L^{q}} \leq|B(0, r)|^{-\alpha / n}$,
3) $\int_{R^{n}} a(x) x^{\eta} d x=0$ for $|\eta| \leq[\alpha-n(1-1 / q)]$.

Lemma 1 (see [14]). Let $0<p<\infty, 1<q<\infty$ and $\alpha \geq n(1-1 / q)$. A temperate distribution f belongs to $H \dot{K}_{q}^{\alpha, p}\left(R^{n}\right)$ (or $H K_{q}^{\alpha, p}\left(R^{n}\right)$) if and only if there exist central (α, q)-atoms (or central (α, q)-atoms of restrict type) a_{j} supported on $B_{j}=B\left(0,2^{j}\right)$ and constants $\lambda_{j}, \sum_{j}\left|\lambda_{j}\right|^{p}<\infty$ such that $f=\sum_{j=-\infty}^{\infty} \lambda_{j} a_{j}$ (or $\left.f=\sum_{j=0}^{\infty} \lambda_{j} a_{j}\right)$ in the $S^{\prime}\left(R^{n}\right)$ sense, and

$$
\|f\|_{H \dot{K}_{q}^{\alpha, p}}\left(\text { or }\|f\|_{H K_{q}^{\alpha, p}}\right) \sim\left(\sum_{j}\left|\lambda_{j}\right|^{p}\right)^{1 / p}
$$

Now we can state our results as following.
THEOREM 1. Let $0<\beta \leq 1,0 \leq \delta<n-\beta$, $\max (n /(n+\beta), n /(n+\gamma), n /(n+$ $1 / 2))<p \leq 1$ and $1 / p-1 / q=(\delta+\beta) / n$. If $D^{\alpha} A \in \operatorname{Lip}_{\beta}\left(R^{n}\right)$ for $|\alpha|=m$. Then μ_{Ω}^{A} is bounded from $H^{p}\left(R^{n}\right)$ to $L^{q}\left(R^{n}\right)$.

ThEOREM 2. Let $0<\beta<\min (1 / 2, \gamma), 0 \leq \delta<n-\beta$. If $D^{\alpha} A \in \operatorname{Lip}_{\beta}\left(R^{n}\right)$ for $|\alpha|=m$. Then $\tilde{\mu}_{\Omega}^{A}$ is bounded from $H^{n /(n+\beta)}\left(R^{n}\right)$ to $L^{n /(n-\delta)}\left(R^{n}\right)$.

Theorem 3. Let $0<\beta<\min (1 / 2, \gamma), 0<\delta<n-\beta$. If $D^{\alpha} A \in \operatorname{Lip}_{\beta}\left(R^{n}\right)$ for $|\alpha|=m$. Then μ_{Ω}^{A} is bounded from $H^{n /(n+\beta)}\left(R^{n}\right)$ to weak $L^{n /(n-\delta)}\left(R^{n}\right)$.

Theorem 4. Let $0<\beta \leq 1,0<\delta<n-\beta, 0<p<\infty, 1<q_{1}, q_{2}<\infty$, $1 / q_{1}-1 / q_{2}=(\delta+\beta) / n$ and $n\left(1-1 / q_{1}\right) \leq \alpha<\min \left(n\left(1-1 / q_{1}\right)+\beta, n\left(1-1 / q_{1}\right)+\right.$ $\left.\gamma, n\left(1-1 / q_{1}\right)+1 / 2\right)$. If $D^{\alpha} A \in \operatorname{Lip} p_{\beta}\left(R^{n}\right)$ for $|\alpha|=m$. Then μ_{Ω}^{A} is bounded from $H \dot{K}_{q_{1}}^{\alpha, p}\left(R^{n}\right)$ to $\dot{K}_{q_{2}}^{\alpha, p}\left(R^{n}\right)$.

Remark. Theorem 4 also hold for the nonhomogeneous Herz type Hardy space.

2. Some Lemmas

We begin with some preliminary lemmas.
Lemma 2. (see [4]). Let A be a function on R^{n} and $D^{\alpha} A \in L^{q}\left(R^{n}\right)$ for $|\alpha|=m$ and some $q>n$. Then

$$
\left|R_{m}(A ; x, y)\right| \leq C|x-y|^{m} \sum_{|\alpha|=m}\left(\frac{1}{|\tilde{Q}(x, y)|} \int_{\tilde{Q}(x, y)}\left|D^{\alpha} A(z)\right|^{q} d z\right)^{1 / q}
$$

where $\tilde{Q}(x, y)$ is the cube centered at x and having side length $5 \sqrt{n}|x-y|$.
Lemma 3. Let $0<\beta \leq 1,1<p<n /(\delta+\beta), 1 / q=1 / p-(\delta+\beta) / n$ and $D^{\alpha} A \in \operatorname{Lip} p_{\beta}\left(R^{n}\right)$ for $|\alpha|=m$. Then μ_{Ω}^{A} is bounded from $L^{p}\left(R^{n}\right)$ to $L^{q}\left(R^{n}\right)$.

Proof. By Minkowski inequality, we have

$$
\begin{aligned}
\mu_{\Omega}^{A}(f)(x) & \leq \int_{R^{n}} \frac{|\Omega(x-y)|\left|R_{m+1}(A ; x, y)\right|}{|x-y|^{m+n-1-\delta}}|f(y)|\left(\int_{|x-y|}^{\infty} \frac{d t}{t^{3}}\right)^{1 / 2} d y \\
& \leq C \int_{R^{n}} \frac{\left|R_{m+1}(A ; x, y)\right|}{|x-y|^{m+n-\delta}}|f(y)| d y
\end{aligned}
$$

Thus, the lemma follows from [1].

3. Proofs of Theorems

Proof of Theorem 1. It suffices to show that there exists a constant $C>0$ such that for every H^{p}-atom a,

$$
\left\|\mu_{\Omega}^{A}(a)\right\|_{L^{q}} \leq C
$$

Let a be a H^{p}-atom, that is that a supported on a cube $Q=Q\left(x_{0}, r\right),\|a\|_{L^{\infty}} \leq$ $|Q|^{-1 / p}$ and $\int a(x) x^{\eta} d x=0$ for $|\eta| \leq[n(1 / p-1)]$. We write

$$
\int_{R^{n}}\left[\mu_{\Omega}^{A}(a)(x)\right]^{q} d x=\left(\int_{\left|x-x_{0}\right| \leq 2 r}+\int_{\left|x-x_{0}\right|>2 r}\right)\left[\mu_{\Omega}^{A}(a)(x)\right]^{q} d x=I+I I
$$

For I, taking $1<p_{1}<n /(\delta+\beta)$ and q_{1} such that $1 / p_{1}-1 / q_{1}=(\delta+\beta) / n$, by Holder's inequality and the ($L^{p_{1}}, L^{q_{1}}$)-boundedness of μ_{Ω}^{A} (see Lemma 3), we see that

$$
I \leq C\left\|\mu_{\Omega^{A}}^{A}(a)\right\|_{L^{q_{1}}}^{q}|2 Q|^{1-q / q_{1}} \leq C\left\|\left.\left|a \|_{L^{p_{1}}}^{q}\right| Q\right|^{1-q / q_{1}} \leq C .\right.
$$

To obtain the estimate of $I I$, we need to estimate $\mu_{\Omega}^{A}(a)(x)$ for $x \in(2 Q)^{c}$. Let $\tilde{Q}=$ $5 \sqrt{n} Q$ and $\tilde{A}(x)=A(x)-\sum_{|\alpha|=m} \frac{1}{\alpha!}\left(D^{\alpha} A\right)_{\tilde{Q}} x^{\alpha}$. Then $R_{m}(A ; x, y)=R_{m}(\tilde{A} ; x, y)$ and $D^{\alpha} \tilde{A}(y)=D^{\alpha} A(y)-\left(D^{\alpha} A\right)_{Q}$. we have, by the vanishing moment of a,

$$
\begin{aligned}
&\left|F_{t}^{A}(a)(x)\right| \\
& \leq \int_{R^{n}}\left|\frac{\Omega(x-y) \mid}{|x-y|^{n+m-1-\delta}}-\frac{\Omega\left(x-x_{0}\right)}{\left|x-x_{0}\right|^{n+m-1-\delta}}\right| \chi_{\Gamma(x)}(y, t)\left|R_{m}(\tilde{A} ; x, y)\right||a(y)| d y \\
&+\int_{R^{n}} \frac{\chi_{\Gamma(x)}(y, t)\left|\Omega\left(x-x_{0}\right)\right|}{\left|x-x_{0}\right|^{n+m-1-\delta}}\left|R_{m}(\tilde{A} ; x, y)-R_{m}\left(\tilde{A} ; x, x_{0}\right)\right||a(y)| d y \\
&+\left|\int_{R^{n}}\left(\chi_{\Gamma(x)}(y, t)-\chi_{\Gamma(x)}\left(x_{0}, t\right)\right) \frac{\Omega\left(x-x_{0}\right) R_{m}\left(\tilde{A} ; x, x_{0}\right)}{\left|x-x_{0}\right|^{n+m-1-\delta}} a(y) d y\right| \\
&+\sum_{|\alpha|=m} \frac{1}{\alpha!}\left|\int_{\Gamma(x)} \frac{\Omega(x-y)(x-y)^{\alpha} D^{\alpha} A(y)}{|x-y|^{n+m-1-\delta}} a(y) d y\right| \\
&= I I_{1}+I I_{2}+I I_{3}+I I_{4} .
\end{aligned}
$$

For $I I_{1}$, by Lemma 2 and the following inequality, for $b \in \operatorname{Lip} p_{\beta}\left(R^{n}\right)$,

$$
\left|b(x)-b_{Q}\right| \leq \frac{1}{|Q|} \int_{Q}\|b\|_{L i p_{\beta}}|x-y|^{\beta} d y \leq\|b\|_{L i p_{\beta}}\left(\left|x-x_{0}\right|+r\right)^{\beta}
$$

we get

$$
\left|R_{m}(\tilde{A} ; x, y)\right| \leq \sum_{|\alpha|=m}\left\|D^{\alpha} A\right\|_{L i p_{\beta}}(|x-y|+r)^{m+\beta}
$$

on the other hand, by the following inequality (see [16]):

$$
\left|\frac{\Omega(x-y)}{|x-y|^{n+m-1-\delta}}-\frac{\Omega\left(x-x_{0}\right)}{\left|x-x_{0}\right|^{n+m-1-\delta}}\right| \leq\left(\frac{r}{\left|x-x_{0}\right|^{n+m-\delta}}+\frac{r^{\gamma}}{\left|x-x_{0}\right|^{n+m+\gamma-1-\delta}}\right)
$$

and note that $|x-y| \sim\left|x-x_{0}\right|$ for $y \in Q$ and $x \in R^{n} \backslash Q$, we obtain, similar to the proof of Lemma 3,

$$
\begin{aligned}
& \left(\int_{0}^{\infty}\left|I I_{1}\right|^{2} d t / t^{3}\right)^{1 / 2} \\
& \leq\left. C \int_{R^{n}}\left(\frac{r}{\left|x-x_{0}\right|^{n+m+1-\delta}}+\frac{r^{\gamma}}{\left|x-x_{0}\right|^{n+m+\gamma-\delta}}\right) \sum_{|\alpha|=m}| | D^{\alpha} A\right|_{L i p_{\beta}}\left|x-x_{0}\right|^{m+\beta}|a(y)| d y \\
& \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} A\right\|_{L i p \beta}\left(\frac{|Q|^{\beta / n+1-1 / p}}{\left|x-x_{0}\right|^{n-\delta}}+\frac{|Q|^{\mid / n+1-1 / p}}{\left|x-x_{0}\right|^{n+\gamma-\delta-\beta}}\right)
\end{aligned}
$$

For $I I_{2}$, by the following equality (see [4]):

$$
R_{m}(\tilde{A} ; x, y)-R_{m}\left(\tilde{A} ; x, x_{0}\right)=\sum_{|\eta|<m} \frac{1}{\eta!} R_{m-|\eta|}\left(D^{\eta} \tilde{A} ; x_{0}, y\right)\left(x-x_{0}\right)^{\eta}
$$

we obtain

$$
\begin{aligned}
\left(\int_{0}^{\infty}\left|I I_{2}\right|^{2} d t / t^{3}\right)^{1 / 2} & \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} A\right\|_{L i p_{\beta}} \int\left(\sum_{|\eta|<m} \frac{\left|y-x_{0}\right|^{m+\beta-|\eta|}}{\left|x-x_{0}\right|^{n+m-|\eta|-\delta}}\right)|a(y)| d y \\
& \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} A\right\|_{L i p_{\beta}} \frac{|Q|^{\beta / n+1-1 / p}}{\left|x-x_{0}\right|^{n-\delta}}
\end{aligned}
$$

For $I I_{3}$, we have

$$
\begin{aligned}
& \left(\int_{0}^{\infty}\left|I I_{3}\right|^{2} d t / t^{3}\right)^{1 / 2} \\
& \quad \leq C \int_{R^{n}} \frac{\left|R_{m}\left(\tilde{A} ; x, x_{0}\right)\right||a(y)|}{\left|x-x_{0}\right|^{n+m-1-\delta}}\left|\int_{R^{n}} \chi_{\Gamma(x)}(y, t) d t / t^{3}-\int \chi_{\Gamma(x)}\left(x_{0}, t\right) d t / t^{3}\right|^{1 / 2} d y \\
& \quad \leq C \int_{R^{n}} \frac{\left|R_{m}\left(\tilde{A} ; x, x_{0}\right)\right||a(y)|\left|x_{0}-y\right|^{1 / 2}}{\left|x-x_{0}\right|^{n+m+1 / 2-\delta}} d y \\
& \quad \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} A\right\|_{L i p_{\beta}} \frac{|Q|^{1+1 /(2 n)-1 / p}}{\left|x-x_{0}\right|^{n+1 / 2-\delta-\beta}}
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \left(\int_{0}^{\infty}\left|I I_{4}\right|^{2} d t / t^{3}\right)^{1 / 2} \\
& \quad \leq C \sum_{|\alpha|=m}\left\|D^{\alpha} A\right\|_{L i p \beta}\left(\frac{|Q|^{\beta / n+1-1 / p}}{\left|x-x_{0}\right|^{n-\delta}}+\frac{|Q|^{1+\gamma / n-1 / p}}{\left|x-x_{0}\right|^{n+\gamma-\delta-\beta}}+\frac{|Q|^{1+1 /(2 n)-1 / p}}{\left|x-x_{0}\right|^{n+1 / 2-\delta-\beta}}\right)
\end{aligned}
$$

Thus

$$
\begin{aligned}
I I \leq & \sum_{k=1}^{\infty} \int_{2^{k+1} Q \backslash 2^{k} Q}\left[\mu_{\Omega}^{A}(a)(x)\right]^{q} d x \\
\leq & C\left(\sum_{|\alpha|=m}\left\|D^{\alpha} A\right\|_{L i p_{\beta}}\right)^{q} \sum_{k=1}^{\infty}\left[2^{k q n(1 / p-(n+\beta) / n)}+2^{k q n(1 / p-(n+\gamma) / n)}\right. \\
& \left.+2^{k q n(1 / p-(n+1 / 2) / n)}\right] \\
& \leq C\left(\sum_{|\alpha|=m}\left\|D^{\alpha} A\right\|_{L i p_{j}}\right)^{q}
\end{aligned}
$$

which together with the estimate for I yields the desired result. This finishes the proof of Theorem 1.

Proof of Theorem 2. It suffices to show that there exists a constant $C>0$ such that for every $H^{n /(n+\beta)}$-atom a supported on $Q=Q\left(x_{0}, r\right)$, we have

$$
\left\|\tilde{\mu}_{\Omega}^{A}(a)\right\|_{L^{n /(n-\delta)}} \leq C .
$$

We write

$$
\int_{R^{n}}\left[\tilde{\mu}_{\Omega}^{A}(a)(x)\right]^{n /(n-\delta)} d x=\left[\int_{\left|x-x_{0}\right| \leq 2 r}+\int_{\left|x-x_{0}\right|>2 r}\right]\left[\tilde{\mu}_{\Omega}^{A}(a)(x)\right]^{n /(n-\delta)} d x:=J+J J .
$$

For J, by the following equality

$$
Q_{m+1}(A ; x, y)=R_{m+1}(A ; x, y)-\sum_{|\alpha|=m} \frac{1}{\alpha!}(x-y)^{\alpha}\left(D^{\alpha} A(x)-D^{\alpha} A(y)\right)
$$

we have, similar to the proof of Lemma 3,

$$
\tilde{\mu}_{\Omega}^{A}(a)(x) \leq \mu_{\Omega}^{A}(a)(x)+C \sum_{|\alpha|=m} \int_{R^{n}} \frac{\left|D^{\alpha} A(x)-D^{\alpha} A(y)\right|}{|x-y|^{n-\delta}}|a(y)| d y
$$

thus, $\tilde{\mu}_{\Omega}^{A}$ is $\left(L^{p}, L^{q}\right)$-bounded by Lemma 3 and [8], where $1<p<n /(\delta+\beta)$ and $1 / q=1 / p-(\delta+\beta) / n$. We see that

$$
\begin{aligned}
J & \leq C\left\|\tilde{\mu}_{\Omega}^{A}(a)\right\|_{L^{q}}^{n /(n-\delta)}|2 Q|^{1-n /((n-\delta) q)} \\
& \leq C\|a\|_{L^{p}}^{n /(n-\delta)}|Q|^{1-n /((n-\delta) q)} \\
& \leq C .
\end{aligned}
$$

To obtain the estimate of $J J$, we denote that $\tilde{A}(x)=A(x)-\sum_{|\alpha|=m} \frac{1}{\alpha!}\left(D^{\alpha} A\right)_{2 Q} x^{\alpha}$. Then $Q_{m}(A ; x, y)=Q_{m}(\tilde{A} ; x, y)$. We write, by the vanishing moment of a and $Q_{m+1}(A ; x, y)=R_{m}(A ; x, y)-\sum_{|\alpha|=m} \frac{1}{\alpha!}(x-y)^{\alpha} D^{\alpha} A(x)$, for $x \in(2 Q)^{c}$, $\tilde{F}_{t}^{A}(a)(x)$

$$
\begin{aligned}
= & \int_{\Gamma(x)} \frac{\Omega(x-y) R_{m}(\tilde{A} ; x, y)}{|x-y|^{n+m-1-\delta}} a(y) d y-\sum_{|\alpha|=m} \frac{1}{\alpha!} \int_{\Gamma(x)} \frac{\Omega(x-y) D^{\alpha} \tilde{A}(x)(x-y)^{\alpha}}{|x-y|^{n+m-1-\delta}} a(y) d y \\
= & \int_{R^{n}}\left[\frac{\chi_{\Gamma(x)}(y, t) \Omega(x-y) R_{m}(\tilde{A} ; x, y)}{|x-y|^{n+m-1-\delta}}-\frac{\chi_{\Gamma(x)}\left(x_{0}, t\right) \Omega\left(x-x_{0}\right) R_{m}\left(\tilde{A} ; x, x_{0}\right)}{\left|x-x_{0}\right|^{n+m-1-\delta}}\right] a(y) d y \\
& -\sum_{|\alpha|=m} \frac{1}{\alpha!} \int_{R^{n}}\left[\frac{\chi_{\Gamma(x)}(y, t) \Omega(x-y)(x-y)^{\alpha}}{|x-y|^{n+m-1-\delta}}\right. \\
& \left.-\frac{\chi_{\Gamma(x)}\left(x_{0}, t\right) \Omega\left(x-x_{0}\right)\left(x-x_{0}\right)^{\alpha}}{\left|x-x_{0}\right|^{m}}\right] D^{\alpha} \tilde{A}(x) a(y) d y
\end{aligned}
$$

thus, similar to the proof of Theorem 1, we obtain, for $x \in(2 Q)^{c}$

$$
\begin{aligned}
\left|\tilde{\mu}_{\Omega}^{A}(a)(x)\right| \leq & C|Q|^{-\beta / n} \sum_{|\alpha|=m}\left[| | D ^ { \alpha } A | _ { \text { Lip } \beta } \left(\frac{|Q|^{1 / n}}{\left|x-x_{0}\right|^{n+1-\delta-\beta}}+\frac{|Q|^{1 /(2 n)}}{\left|x-x_{0}\right|^{n+1 / 2-\delta-\beta}}\right.\right. \\
& \left.+\frac{|Q|^{\gamma / n}}{\left|x-x_{0}\right|^{n+\gamma-\delta-\beta}}\right)+\left|D^{\alpha} \tilde{A}(x)\right|\left(\frac{|Q|^{1 / n}}{\left|x-x_{0}\right|^{n+1-\delta}}\right. \\
& \left.\left.+\frac{|Q|^{1 /(2 n)}}{\left|x-x_{0}\right|^{n+1 / 2-\delta-\beta}}+\frac{|Q|^{\gamma / n}}{\left|x-x_{0}\right|^{n+\gamma-\delta}}\right)\right],
\end{aligned}
$$

so that,

$$
\begin{aligned}
J J \leq & C\left(\sum_{|\alpha|=m} \| D^{\alpha} A| |_{L i p_{\beta}}\right)^{n /(n-\delta)} \sum_{k=1}^{\infty}\left[2^{k n(\beta-1) /(n-\delta)}+2^{k n(\beta-1 / 2) /(n-\delta)}\right. \\
& \left.+2^{k n(\beta-\gamma) /(n-\delta)}\right] \leq C
\end{aligned}
$$

which together with the estimate for J yields the desired result. This finishes the proof of Theorem 2.

Proof of Theorem 3. By the following equality

$$
R_{m+1}(A ; x, y)=Q_{m+1}(A ; x, y)+\sum_{|\alpha|=m} \frac{1}{\alpha!}(x-y)^{\alpha}\left(D^{\alpha} A(x)-D^{\alpha} A(y)\right)
$$

and similar to the proof of Lemma 3, we get

$$
\mu_{\Omega}^{A}(f)(x) \leq \tilde{\mu}_{\Omega}^{A}(f)(x)+C \sum_{|\alpha|=m} \int_{R^{n}} \frac{\left|D^{\alpha} A(x)-D^{\alpha} A(y)\right|}{|x-y|^{n-\delta}}|f(y)| d y
$$

from Theorem 1 and 2 with [8], we obtain

$$
\begin{aligned}
&\left|\left\{x \in R^{n}: \mu_{\Omega}^{A}(f)(x)>\lambda\right\}\right| \\
& \leq\left|\left\{x \in R^{n}: \tilde{\mu}_{\Omega}^{A}(f)(x)>\lambda / 2\right\}\right| \\
& \quad+\left|\left\{x \in R^{n}: \sum_{|\alpha|=m} \int \frac{\left|D^{\alpha} A(x)-D^{\alpha} A(y)\right|}{|x-y|^{n-\delta}}|f(y)| d y>C \lambda\right\}\right| \\
& \leq C\left(\left.\lambda^{-1}| | f\right|_{H^{n /(n+\beta)}}\right)^{n /(n-\delta)}
\end{aligned}
$$

This completes the proof of Theorem 3.
Proof of Theorem 4. Let $f \in H \dot{K}_{q_{1}}^{\alpha, p}\left(R^{n}\right)$ and $f(x)=\sum_{j=-\infty}^{\infty} \lambda_{j} a_{j}(x)$ be the atomic decomposition for f as in Lemma 1. We write

$$
\begin{aligned}
\left\|\mu_{\Omega}^{A}(f)\right\|_{\dot{K}_{q}^{\alpha, p}}^{p} \leq & \sum_{k=-\infty}^{\infty} 2^{k \alpha p}\left(\sum_{j=-\infty}^{k-3}\left|\lambda_{j}\right|\left\|\mu_{\Omega}^{A}\left(a_{j}\right) \chi_{k}\right\|_{L^{q_{2}}}\right)^{p} \\
& +\sum_{k=-\infty}^{\infty} 2^{k \alpha p}\left(\sum_{j=k-2}^{\infty}\left|\lambda_{j}\right|\left\|\mu_{\Omega}^{A}\left(a_{j}\right) \chi_{k}\right\|_{L^{q_{2}}}\right)^{p} \\
= & L_{1}+L_{2}
\end{aligned}
$$

For L_{2}, by the $\left(L^{q_{1}}, L^{q_{2}}\right)$ boundedness of μ_{Ω}^{A} (see Lemma 3), we have

$$
\begin{aligned}
L_{2} & \leq C \sum_{k=-\infty}^{\infty} 2^{k \alpha p}\left(\sum_{j=k-2}^{\infty}\left|\lambda_{j}\right|\left\|a_{j}\right\|_{L^{q_{1}}}\right)^{p} \\
& \leq\left\{\begin{array}{l}
C \sum_{j=-\infty}^{\infty}\left|\lambda_{j}\right|^{p}\left(\sum_{k=-\infty}^{j+2} 2^{(k-j) \alpha p}\right), 0<p \leq 1 \\
C \sum_{j=-\infty}^{\infty}\left|\lambda_{j}\right|^{p}\left(\sum_{k=-\infty}^{j+2} 2^{(k-j) \alpha p / 2}\right)\left(\sum_{k=-\infty}^{j+2} 2^{(k-j) \alpha p^{\prime} / 2}\right)^{p / p^{\prime}}, p>1
\end{array}\right. \\
& \leq C \sum_{j=-\infty}^{\infty}\left|\lambda_{j}\right|^{p} \\
& \leq\left. C| | f!\right|_{H \dot{K}_{q_{1}}^{\alpha, p}} ^{p} .
\end{aligned}
$$

For L_{1}, similar to the proof of Theorem 1, we have, for $x \in C_{k}, j \leq k-3$,

$$
\begin{aligned}
\mu_{\Omega}^{A}\left(a_{j}\right)(x) \leq & C\left(\frac{\left|B_{j}\right|^{\beta / n}}{|x|^{n-\delta}}+\frac{\left|B_{j}\right|^{1 /(2 n)}}{|x|^{n+1 / 2-\delta-\beta}}+\frac{\left|B_{j}\right|^{\gamma / n}}{|x|^{n+\gamma-\delta-\beta}}\right) \int_{R^{n}}\left|a_{j}(y)\right| d y \\
\leq & C\left(2^{j\left(\beta+n\left(1-1 / q_{1}\right)-\alpha\right)}|x|^{\delta-n}+2^{j\left(1 / 2+n\left(1-1 / q_{1}\right)-\alpha\right)}|x|^{\delta+\beta-n-1 / 2}\right. \\
& \left.+2^{j\left(\gamma+n\left(1-1 / q_{1}\right)-\alpha\right)}|x|^{\delta+\beta-n-\gamma}\right)
\end{aligned}
$$

4 Annales
thus

$$
\begin{aligned}
\left\|\mu_{\Omega}^{A}\left(a_{j}\right) \chi_{k}\right\|_{L^{q_{2}}} \leq & C 2^{-k \alpha}\left(2^{(j-k)\left(\beta+n\left(1-1 / q_{1}\right)-\alpha\right)}+2^{(j-k)\left(1 / 2+n\left(1-1 / q_{1}\right)-\alpha\right)}\right. \\
& \left.+2^{(k-j)\left(\gamma+n\left(1-1 / q_{1}\right)-\alpha\right)}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
L_{1} \leq & C \sum_{k=-\infty}^{\infty}\left(\sum _ { j = - \infty } ^ { k - 3 } | \lambda _ { j } | \left(2^{(j-k)\left(\beta+n\left(1-1 / q_{1}\right)-\alpha\right)}+2^{(j-k)\left(1 / 2+n\left(1-1 / q_{1}\right)-\alpha\right)}\right.\right. \\
& \left.+2^{(j-k)\left(\gamma+n\left(1-1 / q_{1}\right)-\alpha\right)}\right)^{p} \\
\leq & \left\{\begin{array}{l}
C \sum_{j=-\infty}^{\infty}\left|\lambda_{j}\right|^{p} \sum_{k=j+3}^{\infty}\left(2^{(j-k)\left(\beta+n\left(1-1 / q_{1}\right)-\alpha\right)}\right. \\
\left.+2^{(j-k)\left(1 / 2+n\left(1-1 / q_{1}\right)-\alpha\right)}+2^{(j-k)\left(\gamma+n\left(1-1 / q_{1}\right)-\alpha\right)}\right)^{p}, 0<p \leq 1 \\
C \sum_{j=-\infty}^{\infty}\left|\lambda_{j}\right|^{p}\left[\sum _ { k = j + 3 } ^ { \infty } \left(2^{(j-k) p\left(\beta+n\left(1-1 / q_{1}\right)-\alpha\right) / 2}\right.\right. \\
\left.\left.+2^{(j-k) p\left(1 / 2+n\left(1-1 / q_{1}\right)-\alpha\right) / 2}+2^{(j-k)\left(\gamma+n\left(1-1 / q_{1}\right)-\alpha\right) / 2}\right)\right], p>1
\end{array}\right. \\
& \leq C \sum_{j=-\infty}^{\infty}\left|\lambda_{j}\right|^{p} \\
\leq & C\|f\|_{H \dot{K}_{q_{1}}^{\alpha, p}}^{p}
\end{aligned}
$$

This finishes the proof of Theorem 4.

References

[1] Chen W. G., Besov estimates for a class of multilinear singular integrals, Acta Math. Sinica, 16 (2000), 613-626.
[2] Cohen J., A sharp estimate for a multilinear singular integral on R^{n}, Indiana Univ. Math. J., 30 (1981), 693-702.
[3] Cohen J., Gosselin J., On multilinear singular integral operators on R^{n}, Studia Math., 72 (1982), 199-223.
[4] Cohen J., Gosselin J., A BMO estimate for multilinear singular integral operators, Illinois J. Math., 30 (1986), 445-465.
[5] Ding Y., Lu Z. S., Weighted boundedness for a class rough multilinear operators, Acta Math. Sinica, 17 (2001), 517-526.
[6] Garcia-Cuerva J., Herrero M. J. L., A theory of Hardy spaces associated to Herz spaces, Proc. London Math. Soc., 69 (1994), 605-628.
[7] Garcia-Cuerva J., Rubio de Francia J. L., Weighted norm inequalities and related topics, North-Holland Math., 16 (1985), Amsterdam.
[8] Janson S., Mean oscillation and commutators of singular integral operators, Ark. Math., 16 (1978), 263-270.
[9] Liu L. Z., Boundedness for multilinear Marcinkiewicz operators on certain Hardy Spaces, Inter. J. of Math. and Math. Sci., 2 (2003), 87-96.
[10] Liu L. Z., Endpoint estimates for multilinear Marcinkiewicz integral operators, East J. on Approx., 9 (2003), 339-350.
[11] Liu L. Z., Triebel-Lizorkin spaces estimates for multilinear operators of sublinear operators, Proc. Indian Acad. Sci. (Math. Sci), 113 (2003), 379-393.
[12] Lu L. Z., Wu Q., Yang D. C., Boundedness of commutators on Hardy type spaces, Sci. in China (ser. A), 45 (2002), 984-997.
[13] Lu S. Z., Yang D. C., The decomposition of the weighted Herz spaces and its applications, Sci. in China (ser. A), 38 (1995), 147-158.
[14] Lu S. Z., Yang D. C., The weighted Herz type Hardy spaces and its applications, Sci. in China (ser. A), 38 (1995), 662-673.
[15] Paluszynski M., Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss, Indiana Univ. Math. J., 44 (1995), 1-17.
[16] Torchinsky A., Wang S., A note on the Marcinkiewicz integral, Colloq. Math., 60/61 (1990), 235-243.

Liu Lanzhe

College of Mathematics
Changsha University of Science and Technology
Changsha 410077
P.R. of China
e-mail:lanzheliu@263.net

