MIXED STABILITY OF THE D’ALEMBERT
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Abstract. In the present paper we will prove the theorem concerning the mixed
stability of the d’Alembert functional equation, i.e. we will show that if € > 0,
s> 1,8 =[2°+/225 + 16 + 8]/4, X is a real normed space and f: X — C satisfies
the inequality

[f(z+y) + f(z —y) - 2£(@) )| < e(lizll® + wll°)

for all z,y € X, then {f(z)} < §||z||* for all z € X such that ||z]| > 1, or f(z +vy) +
flz—y)=2f(x)f(y) for all z,y € X.

1. Introduction

In the paper [2] (see also [1]) P. Gavrutd has given an answer to a problem
posed by Th. M. Rassias and J. Tabor concerning mixed stability of mappings. He
has proved the following theorem

THEOREM 1. Lete >0, s > 0 and § = [2° + /225 + 8¢]/2. Let B be a normed
algebra with multiplicative norm and X be a real normed space. If f: X — B
satisfies the inequality

|f(z+y) = @) fW)] < ell=ll® +lyll*)
forall z,y € X, then
If(@)| < 8llzl|° for all z € X such that || > 1,
or

flz+y) = flz)f(y)
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forallz,y € X.

In the present paper we will show the analogous theorem for the d’Alembert func-
tional equation

fz+y)+ flz-y) = 2f(z)f(y).

2. Preliminaries

‘LEMMA 1. Lete > 0, s > 0 and let X be a real normed space. If f: X — C
satisfies the inequality

1f(@+y)+ flz—y) - 2f(@)fW)] < e(ll=ll® + lyll*)
for all z,y € X, then either f(0) =0 or f(0) =1.

PROOF. From the inequality for x = y = 0 we get

fO)L-£(0)]=0.

Thus either f(0) =0 or f(0) =1. O

DEFINITION 1. Let G be an abelian group. Let us denote

ANz y) = flz+y) + flz —y) — 2f(2) f(v)
forall f:G—Cand z,y € G.

LEMMA 2. Let G be an abelian group. Then for all x,u,v € G we have

2f (@A) (w,v)] = A(f)(z +u,v) - A(f)(z,u +v) — A(f)(z,u —v)
(1) +A(f) (@ — u,v) + 2f (V) A(f)(z, u).

Proor. Direct calculation. 0

3. Mixed stability of the d’Alembert equation

THEOREM 2. Lete >0, s > 1 and § = [2° + V225 + 16 + 8]/4. Let X be a
real normed space. If f: X — C satisfies the inequality

(2) lf(@+y) + f(z —y) - 2f (@) f ()] < e(lizll® + flwl*)



Mixed stability of the d’Alembert functional equation 55

forallz,y € X, then
|f(z)] < 8llzl|® for all z € X such that ||z|| > 1,
or
fle+y)+ flz —y) =2f(2)f(y)

forallz,y e X.

REMARK 1. The method of the proof is similar to the method of the proof of
P. Gavruta from [2] and changes only in a few places.

PROOF. Let us assume that there exists 2o € X, ||zo|| > 1 such that |f(zo)| >
dllzo||®. Hence there exists o > 0 such that

£ (zo)| > (8 + o)||zo]*.
From the inequality (2) we obtain
|f(220) + £(0) — 2f*(z0)| < 2¢l|zo]l”.
By Lemma 1 we have |f(0)| < 1. Moreover, we get

12£2(0) — [f(220) + F(O)]| > 12f*(xo)| - 1£(220) + £(0)|
> [2£(z0)l = 1£(20)| - 1

and consequently

|f(2z0)| > 12f%(z0)| — |2f%(z0) — [f(220) + F(0)]] — 1
> 2(8 + @)?||zo||?* — 2e]|zol|® - 1
> [2(8 + @)? — 2e — 1]||zo]|°.

From the definition of & it follows that
202=2°6+2+1 and 26> 2°
Thus we obtain
[ (2z0)| > (6 + 20) 2% o °.
By mathemé,tical induction we will show ti’xat for all n € N we have
3) £ (2"z0)| > (8 + 2"a)||2"zo)°.
From the inequality (2) it follows that

£ o) + £(0) — 23(2730)| < 2e]|27z0 ],
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and from the properties of absolute value we deduce that
|£(2"1z0) + £(0) — 2£2(2"za)| > |2f(2"x0)| — 1 £ (2" z0)] — 1
On account of previous inequalities and the inductive assumption we get

£ z0)| > |273(2"z0)| — | £(2"F z0) + (0) — 2f%(2"z0)| — 1
> 2(8 + 2"%a)?(|2"zo[|** — 26270l — 12" ZolI®
> [2(8 + 2"a)? — 2¢ — 1]||2"zo|°.

And finally from the definition of &
|f(2"+zo)| > 2°(8 + 2" a) |27 zo||*,

which by the induction principle proves the inequality (3).
Let us denote £, = 2"zg, then ||z,|| > 1 for all n € N and in view of the inequality
(3) we get

1 flznll®

6T e [faa)

From the theorem of three sequences it follows that

8
m AZ2l g,

) A )]

By Lemma 2 we have

2£ (2)[A(f) (1w, )] = A(F)(@n + 1, 0) = A()(@n,u+v) = A(f)(@n, u =)
+A(f)(@n ~ u,v) + 2f (V) A(f)(En, u)-

Let us assume that 0° = 1. Thus on account of the inequality (2) for all u,v € X
we have

12f (zn)[A(F) (w, v)]| < elllzn +ull® + Il + |2all® + flu+ ol
+ [lzall® + llu = vll* + llzn — ull® + [l0)°
+12f @) (zall® + lull*)]
< 2¢((l|znll + )T + lol® + Nznll® + (el + Holl)®
+[f@)(lzll® + lfel*)]

[s]
8 — 8
<23 (71 onl -l + 1o+ al

k=0

+ (hull + ol + LF @)1 (Ulnll® + Null)]-
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Because of the equality (4) it leads to

sl (Is) [s1- s .
A(£) )] < 2 lim < =0 () Izl k%’;;nmnn + @)l

loll® + (llwll + o] + 1 ()] + ||u;|s> —o.

+

Thus we get that for all u,v € X
A(f)(u,v) = flu+v) + flu—v) = 2f(u)f(v) =0,

which completes the proof of the theorem. O
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