SUPERSTABILITY OF THE D’ALEMBERT
FUNCTIONAL EQUATION IN L;' SPACES
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Abstract. Let (X,+,—,0,%, ) be an abelian complete measurable group with
#(X) > 0. Let f: X — C be a function. We will show that if A(f) € L;’,'(X x X,C)
where

AN)(=zy) = fz+y) + flz—y) - 2f(2)f(v), =zyeX,
then f € L,T (X, C) or there exists exactly one function g: X — C with

9(z +y) + g9(z — y) = 2g9(z)g(v), z,ye X

such that f is equal to g almost everywhere with respect to the measure p.
LF denotes the space of all functions for which the upper integral of |[f||P is
finite. .

1. Introduction

DEFINITION 1. The functional equation

(1) fE+y)+ fz—y) =2f(z) f(y)
is known as the d’Alembert functional equation (see [1], [4]).

A standard symbol C denotes the set of complex numbers, for a set X a symbol
CX denotes a set of all functions i X —C

DEFINITION 2. Let 2X be an abelian semigroup. The d’Alembert difference
operator A:CX — CX" is defined by

(2) Af)(@,y) = flz+y) + flz—y) - 2f(x)f(y), =zyelX.

Let f: X — C, where X is an abelian semigroup. We will consider the following
problem of stability. Let us suppose that A(f) is bounded in a certain sense. What
does it imply? In the case of the d’Alembert functional equation the phenomen of
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superstability occurs which means that either f is bounded in the same sense as
A(f) or f satisfies the d’Alembert functional equation.

Boundness in different senses can be considered. The first result of this type for
the d’Alembert functional equation was obtained by Baker in [3] (see also [7]). He
has proved the following theorem.

THEOREM 1 ([3], [7]). Let 6§ > 0 and G be an abelian group and f:G — C be
a function satisfying the inequality

Vz,y € G |A(f)(z,y)| <6
Then either f is bounded or satisfies the d’Alembert functional equation (1).

In the present paper we will consider the stability in a generalization of L?
spaces — we will prove that if A(f) € L} (X x X,C) (p-power of the modulus of
A(f) is bounded by an integrable function) then f € L} (X,C) or f satisfies the
d’Alembert functional equation (1) almost everywhere. In this case we call such
stability “almost superstability”.

We shall show under some additional assumptions that if A(f)(z,y) = 0 al-
most everywhere then there exists exactly one function g: X — C satisfying the
d’Alembert functional equation (1) such that f is equal to g almost everywhere.

For the Cauchy functional equation

flz+y) = flz)+ fy)

similar problem has been investigated by Jézef Tabor in [8] (see also 4], [6]).
For the equation of quadratic functionals

flz+y)+ flz—y) =2f(z) +2f(y)

superstability in L;’ spaces was considered by Stefan Czerwik and Krzysztof Diutek
in [5] (see also [4]).

2. Preliminaries

DEFINITION 3 ([8], see also [4] and [5]). We say that (X,+,—,0,Z,u) is an
abelian complete measurable group, if

(a) (X,+,—,0) is an abelian group,

(b) (X,%,u) is o-finite measure space, 4 is not identically equal to zero and is
complete,

(c) the o-algebra ¥ and the measure y are invariant with respect to the left
translations and p is invariant under symmetry with respect to zero,

(d) v = u x pis the completion of the product measure X x X,
(e) the translation S: X x X — X x X defined by
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3) S((z,y)) = (z,z +y)
is measurability preserving, i.e. S and $~! are measurable.

Under the assumptions given above the measure p is invariant with respect to
translations and symmetry with respect to zero.

DEFINITION 4 ([8], see also [4] and [5]). Let (X, 1) be a measure space. A sym-
bol L(X,R) denotes the space of all integrable functions ¢: X — R.

Moreover, if f: X — R is nonnegative we define the upper integral of f with
respect to u by

/+fdu :=inf{/ pdu| e LX,R), £(z) < o(z), weX},
X X
or X
+
/fdu=+oo
X

if the corresponding set is empty.
Let p > 0. Then we define the space

+
L} (X,C):= {f:X — C| / |fIP dp < +oo}.
X
LEMMA 1 ([8], see also [4]). Let (X,X, u) be a measure space and let p > 0. If
f,9€ L{(X,C), then f + g € L}(X,C).
DEeFINITION 5. For any function f: X — Y and zy € X we define
Jao () == f(z + z0), reX.

LEMMA 2 ([8], see also [4]). Let (X,+,—,0,2,u) be an abelian measurable
group. Let f € L} (X,C) and p> 0. Then

Veo € X  fa € LF(X,C).

LEMMA 3 ([8], see also [4]). Let (X,X, 1) be a measure space and let p > 0 and
feLF(X x X,C). Then there exists a subset A C X such that p(A) =0 and

f(,y)EL;—(ch) fOT’yGX\A-
REMARK 1.1. Obviously, there exists a subset B C X such that u(B) = 0 and
flz,) e L}(X,C) forze X\B.

LEMMA 4 ([5]). Let (X,+,—,0,%, ) be an abelian complete measurable group
and let AC X, u(A)=0. If

D={(z,y)eXxX| recAVyeAVe+ye AVz—ye A},
then v(D) = 0.
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3. Superstability of the d’Alembert functional equation

THEOREM 2. Let (X,+,~,0,%, 1) be an abelian complete measurable group and
let f: X — C be a function such that A(f) € L} (X x X, C), for somep > 0. Then
feLi(X,C) or

() Vz,ye€ X flz+y)+ flz—y) = 2f(x)f(v).

PROOF. Let us assume that f ¢ L} (X,C), then from the definition it follows
that

[ 1@ dutz) = o0
On account of Lemma 2 there exists a subset A C X such that u(A) =0 and
Vye X\ A A(f)(-y) € L7 (X,C).
Let u,v,z € X, then we obtain

2 (z)[A(f)(u, v)] = 2f(z)[f(u +v) + f(u — v) — 2f(u) f(v)]

= 2f(z)f(u +v) + 2f(z) f(u — v) — 4 (2) f(u) f(v)

= [f((z+u) +v) + fz +u —v) — 2f(z + u) f(v)]
= [flz+ (u+v) + flz — v —v) - 2f(2) f(u +v)]
—[f(z+ (u=v)) + flz —u+v) - 2f()f (v —v)]
+ [z —w) +v) + flz —u—v)) = 2f(z — u) f(v)]
+2f()[f(z + u) + fz — v) — 2f(z) f(u)]

= A(f)(z +u,v) — A(f)(z,u +v) — A(f)(z,u —v)
+ A(f)(z — u,v) + 2f (v)A(f)(z, v)

= (A(f)(@,v)u — A(f)(z,u +v) — A(f)(z,u — v)
+ (A(f)(z,v))—u + 2f (V) A(S)(2, w).

Consequently, for u, v,z € X we have

24 (@A) (w,0)] = (A(F)(@,v))u — A(f) (&, utv) - A(f) (@ u—0)
+ (A(f) (2, v))-u + 2f (V) A(f)(=, u).

Take u,v € X \ Asuch that u+v e X\ Aand u—v € X\ A. In view of the
previous lemmas we see that the right side of the last equality as a function of z
belongs to L} (X,C), which means that

.
/X |2£ (@) [A() (i 0)]P dpu(z) < +o00,

and in view of the assumption that f ¢ L;' (X, C), hence it follows

A(f(u,v) =0 foru,ve X\ A u+veX\A u—-veX\A
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One can rewrite this condition in the form
A(fY(u,v) =0 for (u,v) €e X x X\ D,

where D is as in Lemma 2. Since by this lemma, v(D) = 0 and the proof is
complete. O

THEOREM 3. Let (X,+,—,0,%, 1) be an abelian complete measurable group
with w(X) > 0 and let f: X — C be a function such that

A(f)(z,y) = 0.

Then there exists ezactly one function g: X — C with

9(z +y) + g(z — y) = 29(z)g(y)
such that
flz) £ g(z) forzeX.

REMARK 3.1. A similar result with different assumptions for almost trigono-
metric functions was proved by 1. Adamaszek in her paper [2], but we provide a
different proof fixed to L} spaces.

The proof is very similar to the proof of Theorem 1 from the paper of S. Czerwik
and K. Dlutek ({5]) and changes only in a few places, thus we will use their method
of the proof here.

'"PROOF OF THEOREM 3. If f = 0 almost everywhere then g = 0 and the theo-
rem holds. Thus let us assume that there exists a subset A C X, p(A4) > 0 such
that f(z) # 0 for £ € A. By assumption, there exists a set V C X x X such that
v(V) =0 and

V(z,y) e XX X\V f(z+y)+ flz—y) =2f(x)f(y).

Thus by Fubini’s theorem there exist sets U;,Us C X such that u(U;) =
u(Us) = 0 and

(a) for every x € X \ Uy there exists K, C X such that u(K,) = 0 and for all
y € X\ K, we have A(f)(z,y) = 0;

(b) for every y € X \ Uy there exists L, C X such that u(L,) = 0 and for all
z € X\ L, we have A(f)(z,y) =0.

Let U := U; U Uj. Then, obviously, u(U) = 0. For any = € X, we define
U, =UU(e-U)U(—z+T).

Clearly, u(U;) = 0, whence X \ U, # #. Consequently, for every = € X there
exists w, € X \ Uy, ie.

we ¢U, z+w, ¢U, z—-w,¢U,
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and f(w,) # 0 (it is possible by assumption that u(A) > 0, where A is defined at
the beginning of the proof). Let us define the function g: X — C by the formula

(5) 9(z) = f(z+w;.)fa-ui‘)(x—wx).

First we shall show that g does not depend on the choice of w, € X \ U, . Take
any £ € X, then z +w, ¢ U, and = — w, ¢ U. Thus by (a) we get

(6) 2f(z +wz)f(y) = flz+y +ws) + flz —y+ws)
forye X\ K;4,_,and
(7) 2f(1""wz)f(y)=f(w+y-wz)+f(z_y_wz)

forye X\ Kp—w,_ .
Analogously, in view of (b) (substituting y = w, and taking z as x+y or z —y),
we obtain

(8) 2f(@ +y)f(ws) = flz+y+we) + f(T+y — wa)
fort+ye X\ Ly, ,ie y€ X\ (Lw, —z),and
(9) 2f(z - y)f(we) = f(z —y +wa) + f& —y —ws)

forz—y€ X\ Ly,,ie y€X\(—Lu, +2)
Let us denote

Ay, =Kz, UKz 4, U(Ly, —x)U (—Ly, + ).

Then we have u(A,,) = 0. Adding the equations (6) and (7) and then the
equations (8) and (9) side by side we obtain

2f(y)[f(m+wx)+f(z_wx)] =f(x+y+wx)+f(x_y+wx)
+flzr+y—ws)+ flz —y—wg),

2f(we)[fz+y) + flz—y)] = fz+y+ws) + flz+y—ws)
+ flz—y+w:)+ flx —y —ws).

Comparing sides we get
2fW)[f(z +wa) + f(z — wz)] = 2f(we)[f(z +y) + f(z - y)],
and taking into account that f(w,) # 0 finally we come to the equality
(10) 2f(y)9(z) = flz +y) + fz —y)
valid for y € X \ Ay,. We can find y € X \ A,,, such that f(y) # 0 and then

_ ety +fe-y)

(11) 9(z) 57)
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Consider any two element w?, w2 € X \ U, such that f(wl) # 0 and f(w?) #0.

We can find y € X \ (A1 U Ayz) such that f(y) # 0. Consequently by (11) we
obtain

flz+y) +f=z-v)
m\T) = »
9n(2) 2f(y)

where g,,, n = 1,2, are defined by (5) for w, = w?, n = 1,2. Therefore,

n=12,

g1(z) = g2(z) = g(x)

which means that g does not depend on the choice of w, € X \ U, .

Now we will show that f = g almost everywhere. Indeed, if z € X \ U, we can
find w, € X \ (U;U K,) such that f(w;) # 0 and hence on account of (a), we infer
that

2f($)f(wa:) = f(z +wz) + f(z — wa).
Consequently,
flz+ws) + flz — ws)
z) = ,
1) 2f(w:)
ie. f(z) =g(z) for X\ U.

We will verify that g satisfies the d’Alembert functional equation (1). Let us
notice that pu(U,) = 0 for every z € X. Let z,y € X be arbitrarily fixed. Thus for
b € X \ Uy such that f(b) # 0, on account de Morgan’s law, we have

Z:=[X\U] N [(X\ (Usy UUsz—y)) =B N[(X \ (Uzty UUz—y)) + 8]
(XL} 0 (X (Lys U L)) = 2] 0 X\ (@ — (Ly—s U Ly 13)]
#0.

Hence, for b € X \ Uy, there exists a € Z, f(a) # 0, which by definition of Z and
standard properties of algebra of sets, is equivalent to

ae X\U,., a+be X\ (UpyyUUz_y),
a—be X\ (Upty UUzy), z+a € X\ (Lyts U Ly_p),
z—a € X\ (Ly_sULyssp), a€ X\ Ly,

be X\, y+be X\U,
y—-be X \U

Taking into account that the definition of g(z) does not depend on choosing w, €
X\ Uz, by (10) we get

2f(a)g(z) = f(z +a) + f(z — a),

2f(b)g(y) = fly +b) + f(y - b),
2fla+byglz+y)=flz+y+a+d)+flz+y—a-b),
2fla-b)g(z+y)=flz+ty+a-b)+ flz+y—a+d),
2fla-b)g(z~y)=flz—y+a-b)+ f(z—y—a+b),
2fla+b)glz—y)=flz—y+a+b+ flzr—-y—a-1b).
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From the above equalities, we obtain

4f(a)f(b)g(z)g(y) = [f(z + a) + f(z — a)][f(y + b) + f(y — b)]
= flz+a)f(y+b)+ f(x+a)f(y—b)
+ flx—a)f(y+b) + f(z—a)f(y —b)

= @ +y+ath)+f@—y+a-b)
+3lftyta—b+fz-y+ath)
+olfety—atb) +flz—y—a—b)

+3lfety—a=—b)+ fw—y—a+b)
= [fla+b) + fla-b)llg(z +y) +9(z - y)],

thus finally we get 2g(z)g(y) = g(z + y) + g(z — v).

To prove the uniqueness part, assume that we have two functions g,: X — C,
n = 1,2 satisfying the d’Alembert functional equation (1) and p-equivalent to f.
Then g;(z) = go{z) for all z € X \ B where u(B) = 0. For an arbitrarily fixed
z€ Xwecanfindye€ X\ [BU(B—-z)U(z—B)|suchthaty ¢ B,z +y ¢ B,
z—y ¢ B and f(y) # 0, whence

0(z) = az+ty)+alc-y) gty +al-y)
! 291 (y) 292(y)

This concludes the proof. 0

= ga(z).

COROLLARY 1. Let X be an abelian complete measurable group, u(X) > 0 and
let f: X — C be a function such that f ¢ L; (X,C). The following conditions are
equivalent:

(i) A(f) € LI(X x X,C) for some p > 0;
(ii) there erists a function g: X — C satisfying the d’Alembert functional equa-
tion (1) such that g{z) = f(x) almost everywhere.

ProoF. The proof follows from the previous theorems. O

REMARK 3.2. The implication (ii) = (i) is true for any f: X — C which is
obvious.
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