ON DIVISIBILITY OF THE NUMBERS

$$
H_{n}(1), H_{n}(2) \text { AND } H_{n}(3)
$$

Jaroslav Seibert, Pavel Trojovský
Abstract. We will deal with numbers given by the relation

$$
H_{n}(k)=\frac{(k+1)^{n}-\binom{n}{2} k^{2}-n k-1}{k^{3}}
$$

where k is equal to 1,2 or 3 . These numbers arise from a generalization Bernoulli's inequality. In this paper some results about divisibility and primality of the numbers $H_{n}(1), H_{n}(2)$ and $H_{n}(3)$ are found. For example any positive integer $n>1$ does not divide $H_{n}(2)$ and $n \equiv 2 \bmod 4$ is the necessary condition for divisibility $H_{n}(1)$ and $H_{n}(3)$ by $n>2$. In addition certain properties of their divisibility are used for finding primes among these numbers.

1. Introduction

Some properties of different types of numbers arising from terms in Bernoulli's inequality $(1+x)^{n} \geqslant 1+n x$ were dealt in our previous papers [1], [2] and [3].

In [1] the numbers b_{n} (denoted by \mathcal{J}_{n} there) given by the relation

$$
b_{n}=2^{n}-n-1, n \in \mathbb{N}
$$

were studied with respect to their divisibility and primality.
In [2] we dealt with a generalization of these numbers, concretely the numbers in the form

$$
b_{n}(k)=\frac{(k+1)^{n}-n k-1}{k^{2}},
$$

Received: 8.10.2002. Revised: 4.03.2003.
(2000) Mathematics Subject Classification: Primary 11A51, 11A07, 11 Y 11.

Key words and phrases: Divisibility, congruence, primality.
where k was any positive integer and n any nonnegative integer. The main results concerning divisibility of these numbers by 2 and 3 for arbitrary k were derived. Some of them were used for testing of primality of the numbers $b_{n}(k)$ by computer.

In paper [3] some new results were shown about divisibility of the numbers $b_{n}(k)$. Specially we found a congruence for the numbers $b_{n}(a l+b)$ under $(\bmod a)$ (Theorem 1 in [3]). Further we proved that any positive integer $n>2$ does not divide $b_{n}(2)$ and $b_{n}(4)$. But for arbitrary positive integer $k>1$ there exists infinite number of integers n which divide $M_{n}(k)=\frac{(k+1)^{n}-1}{k}$. $M_{n}(k)$ are a natural generalization of Mersenne numbers $2^{n}-1$ for any positive integer k.

But it seems to be interesting to investigate a similar type of numbers close to the terms of the generalization of Bernoulli's inequality in the form $(1+x)^{n} \geqslant 1+n x+\binom{n}{2} x^{2}$. In fact, these numbers $H_{n}(k)$ are given by the following relation

$$
H_{n}(k)=\frac{(k+1)^{n}-\binom{n}{2} k^{2}-n k-1}{k^{3}}
$$

where k is any positive integer and n is any nonnegative integer. In this paper we deal with the numbers $H_{n}(k)$ only for $k=1,2,3$. For example in the case $k=1$ we get the relation to the previous types of the numbers

$$
H_{n}(1)=b_{n}(1)-\binom{n}{2}=2^{n}-\sum_{i=0}^{2}\binom{n}{i}=2^{n}-1-\frac{n(n+1)}{2}
$$

Some results about their divisibility and primality are found. Specially any positive integer $n>1$ does not divide $H_{n}(2)$ and n congruent to $2(\bmod 4)$ is the necessary condition for divisibility $H_{n}(1)$ and $H_{n}(3)$ by $n>2$.

In addition certain properties of their divisibility are used for finding primes among these numbers.

2. The main results

Theorem 1. If a positive integer $n>2$ divides $H_{n}(1)$ or $H_{n}(3)$ then $n \equiv 2(\bmod 4)$.

Theorem 2. Let $n>1$. Then

$$
n \chi H_{n}(2)
$$

3. Some lemmas and preliminary results

Lemma 1. Let p be any prime and i, l be any nonnegative integers. Then

$$
\begin{equation*}
p^{i+1} \mid(l p+1)^{p^{i}}-1 \tag{1}
\end{equation*}
$$

$$
\frac{(l p+1)^{p^{i}}-1}{p^{i+1}} \equiv\left\{\begin{array}{lc}
l(\bmod p), & p \neq 2 \tag{2}\\
0(\bmod p), & p=2,
\end{array}\right.
$$

for $i \geqslant 1$
(3) $\frac{(l p+1)^{p^{i}}-1}{p^{i+1}} \equiv\left\{\begin{array}{l}l-\frac{l^{2}}{2} p\left(\bmod p^{2}\right), \quad p \geqslant 5, \\ l-l^{2}+\frac{4}{3} l^{3}-2 l^{4} \equiv l+l^{2}\left(\bmod p^{2}\right), \quad p=2 \\ l-3 \frac{l^{2}}{2}+3 l^{3} \equiv l-6 l^{2}+3 l^{3}\left(\bmod p^{2}\right), \quad p=3 .\end{array}\right.$

Proof. We use the binomial theorem

$$
(l p+1)^{p^{i}}=1+\binom{p^{i}}{1}(l p)^{1}+\binom{p^{i}}{2}(l p)^{2}+\binom{p^{i}}{3}(l p)^{3}+\ldots+(l p)^{p^{i}}
$$

therefore

$$
\frac{(l p+1)^{p^{i}}-1}{p^{i+1}}=l+l^{2} \frac{p^{i}-1}{2} p+l^{3} \frac{\left(p^{i}-1\right)\left(p^{i}-2\right)}{2 \cdot 3} p^{2}+\ldots+l^{p^{i}} p^{p^{i}-i-1}
$$

and all assertions are clear after simplification.
Lemma 2. Let m be any nonnegative integer. Then

$$
\frac{4^{m}-1}{3} \equiv m(\bmod 3), \quad \frac{4^{m}-1}{3^{2}} \equiv \frac{3 m^{2}-m}{6}(\bmod 3) .
$$

Proof. For $m=0$ the assertion is obvious and for $m \geqslant 1$ we use the binomial theorem

$$
\begin{aligned}
\frac{4^{m}-1}{3}=\frac{(3+1)^{m}-1}{3}=3^{m-1}+ & \binom{m}{1} 3^{m-2}+\binom{m}{2} 3^{m-3}+\cdots \\
& +\binom{m}{3} 3^{2}+\binom{m}{2} 3+\binom{m}{1} .
\end{aligned}
$$

Hence,

$$
\frac{4^{m}-1}{3} \equiv\binom{m}{1}(\bmod 3), \quad \frac{4^{m}-1}{3^{2}} \equiv\binom{m}{2}+\frac{m}{3}(\bmod 3) .
$$

Lemma 3. Let m be any nonnegative integer. Then

$$
\frac{4^{m}-1}{9}-2\left(\frac{4^{m}-1}{3}\right)^{2}+\left(\frac{4^{m}-1}{3}\right)^{3}+\frac{m}{6} \equiv m(\bmod 3) .
$$

Proof. After simplification the assertion is a clear consequence of Lemma 2 and the congruence $m^{3} \equiv m(\bmod 3)$.

Lemma 4. Let i be any positive integer. Then $3^{i} \chi H_{3^{i}}(3)$.
Proof. As

$$
H_{n}(3)=\frac{4^{n}-\binom{n}{2} 3^{2}-1}{3^{3}}=\frac{4^{n}-\binom{3 n}{2}-1}{3^{3}}
$$

then

$$
3^{i} \chi H_{3^{i}}(3)=\frac{4^{3^{i}}-1-\binom{3^{i+1}}{2}}{3^{3}} \Longleftrightarrow 3^{i+3} \nless 4^{3^{i}}-1-\frac{3^{i+1}\left(3^{i+1}-1\right)}{2}
$$

Using the congruence

$$
4^{3^{i}}-1-7 \cdot 3^{i+1} \equiv 0\left(\bmod 3^{i+3}\right),
$$

which follows from (3), we obtain

$$
\begin{gathered}
4^{3^{i}}-1-\frac{3^{i+1}\left(3^{i+1}-1\right)}{2} \equiv \frac{15}{2} 3^{i+1}-\frac{1}{2}\left(3^{i+1}\right)^{2} \equiv 3^{i+2} \frac{5-3^{i}}{2} \equiv \\
3^{i+2}+3^{i+3} \frac{1-3^{i-1}}{2} \equiv 3^{i+2}\left(\bmod 3^{i+3}\right) .
\end{gathered}
$$

Hence $H_{3^{i}}(3) \equiv 3^{i-1}\left(\bmod 3^{i}\right)$ and the assertion holds.

Lemma 5. Let $n=m 3^{i}$, where m, i are any positive integers, $m \not \equiv 0(\bmod 3)$. Then $n \nmid H_{n}(3)$.

Proof.
$3^{3} \cdot I_{m 3^{i}}(3)=4^{m 3^{i}}-1-m 3^{i+1} \frac{m 3^{i+1}-1}{2}=(3 s+1)^{3^{i}}-1-\frac{m^{2}}{2}\left(3^{i+1}\right)^{2}+\frac{m}{2} 3^{i+1}$,
where we denote $s=\frac{4^{m}-1}{3}$ (it is clear that s must be an integer). Thus using (3) and Lemma 2

$$
\begin{aligned}
& 3^{3} \cdot H_{m 3^{i}}(3) \equiv s \cdot 3^{i+1}-6 s^{2} \cdot 3^{i+1}+3 s^{3} \cdot 3^{i+1}-\frac{m^{2}}{2}\left(3^{i+1}\right)^{2}+\frac{m}{2} 3^{i+1} \equiv \\
& 3^{i+2}\left(\frac{4^{m}-1}{3^{2}}-2\left(\frac{4^{m}-1}{3}\right)^{2}+\left(\frac{4^{m}-1}{3}\right)^{3}+\frac{m}{6}\right) \equiv m \cdot 3^{i+2}\left(\bmod 3^{i+3}\right)
\end{aligned}
$$

and $H_{m 3^{i}}(3) \equiv m 3^{i-1}\left(\bmod 3^{i}\right)$.

Lemma 6. Let n be any positive integer, $2 \nmid n$ and $3 \nmid n$. Then $n \nmid H_{n}(3)$.
Proof. Suppose conversely that $n \mid H_{n}(3)$ for some positive integer n which is not divisible by 2 and 3 . Such number n can be written as $n=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdots \cdot p_{s}^{a_{s}}$, where all a_{i} are positive integers and for primes p_{i} the relation $5 \leqslant p_{1}<p_{2}<\cdots<p_{s}$ holds. It is easy to see that $p_{1} \left\lvert\,\binom{ 3 n}{2}\right.$ and we show that $4^{n} \not \equiv 1\left(\bmod p_{1}\right)$. If m is the order of the cyclic group generated by 4 under multiplication $\left(\bmod p_{1}\right)$ then the congruence $4^{n} \equiv 1\left(\bmod p_{1}\right)$ may be true iff $m \mid n$. As the congruence $4^{1} \equiv 1\left(\bmod p_{1}\right)$ does not hold the number m has to be greater than 1 . Therefore $2 \leqslant m<p_{1}<p_{2}<\cdots<p_{s}$. But by Lagrange Theorem $m \mid p_{1}-1$ because $p_{1}-1$ is the order of the group of the numbers relatively prime to p_{1} under multiplication $\left(\bmod p_{1}\right)$. It means that m does not divide n, which is a contradiction.

4. The proofs of the main theorems

Proof of Theorem 1.

(i) First consider the numbers $H_{n}(1)$.

Let n be any odd positive integer, then $n \left\lvert\,\binom{ n+1}{2}\right.$ and $n \nmid 2^{n}-1$ (see the proof in [1] or in [4], [5], [6] with a proof due to A. Schinzel). Hence the fact that n has to be even follows easily from the relation $H_{n}(1)=2^{n}-1-\binom{n+1}{2}$. Suppose conversely that $n=2 m$ and m is
an even positive integer. Then

$$
H_{2 m}(1)=2^{2 m}-1-\binom{2 m+1}{2}=4^{m}-1-m(2 m+1)
$$

is an odd number, thus $2 m \nmid H_{2 m}(1)$. It means that if $2 m \mid H_{2 m}(1)$ then m must be odd. Hence if $n \mid H_{n}(1)$ then $n \equiv 2(\bmod 4)$.
(ii) The proof of the assertion for the numbers $H_{n}(3)$.

For an odd integer n the proof of the assertion is clear by Lemma 5 and Lemma 6.

Let $n=2 m$, where m is an even integer. Then in an analogous way as in (i) we can write
$H_{2 m}(3)=\frac{1}{27}\left(4^{2 m}-1-\frac{3 \cdot 2 m(6 m-1)}{2}\right)=\frac{1}{27}\left(4^{2 m}-1-3 m(2 \cdot 3 m-1)\right)$.
It means that if $2 m \mid H_{2 m}(3)$, then m is odd because $2 m \nmid H_{2 m}(3)$. The proof is complete.

Proof of Theorem 2.

Let n be a number such that $n \equiv 0(\bmod 3)$. Then n does not divide the number $H_{n}(2)=\frac{3^{n}-1-2 n^{2}}{8}$ because 3 divides n and does not divide $3^{n}-1$. Now let us assume that $n \not \equiv 0(\bmod 3)$ is odd. The number n can be written as $n=p_{1}^{a_{1}} \cdot p_{2}^{a_{2}} \cdots p_{s}^{a_{s}}$, where $a_{i}, i=1,2, \ldots, s$, are positive integers and the primes $3<p_{1}<p_{2}<\ldots<p_{s}$. Suppose there exists a number n such that $n \mid H_{n}(2)$. Thus $p_{1} \mid H_{n}(2)$. As $n \mid 3^{n}-1$, then $p_{1} \mid 3^{n}-1$, too. It means that $3^{n} \equiv 1\left(\bmod p_{1}\right)$, but we will show that this congruence does not hold. The group of numbers relatively prime to p_{1} under multiplication $\left(\bmod p_{1}\right)$ has the order $p_{1}-1$. By Lagrange Theorem $m \mid p_{1}-1$, where m is the order of the cyclic subgroup generated by number 3 under multiplication $\left(\bmod p_{1}\right)$. Thus the last congruence can be true if and only if $m \mid n$. But m has to be greater than 1 , because the congruence $3^{1} \equiv 1\left(\bmod p_{1}\right)$ does not hold. It means that $2 \leqslant m<p_{1}<p_{2}<\ldots<p_{s}$ and m cannot divide n, which is a contradiction.

If n is even it can be written in the form $n=2^{a_{0}} p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{s}^{a_{s}}$, where $a_{i}, i=0,1, \cdots, s$, are positive integers, s is a nonnegative integer and the primes $3<p_{1}<p_{2}<\ldots<p_{s}$. It is easy to see that $8 \mid 3^{n}-1$. But this relation is true for $a_{0} \geqslant 2$. Then $n \mid H_{n}(2)$ only if $2^{a_{0}+3} \mid 3^{n}-1$ because $n \left\lvert\, \frac{2 n^{2}}{8}\right.$. We can write

$$
\begin{aligned}
3^{n}-1 & =\left(3^{2^{a_{0}}}\right)^{p_{1}^{a_{1}} p_{2}^{a_{2} \ldots p_{s}^{a_{s}}}-1=} \\
& =\left(3^{2^{a_{0}}}-1\right)\left(\left(3^{2^{a_{0}}}\right)^{p_{1}^{a_{1}} \ldots p_{s}^{a_{s}}-1}+\left(3^{2^{a} 0}\right)^{p_{1}^{a_{1} \ldots p_{s}^{a_{s}}}-2}+\cdots+1\right) .
\end{aligned}
$$

The term in the parentheses is odd (the sum of an odd number of odd numbers) and the factor $3^{2^{a_{0}}}-1$ is not divisible by $2^{a_{0}+3}$ with respect to (3). But it means that n does not divide $H_{n}(2)$ for any even $n \equiv 0(\bmod 4)$.

Finally, suppose that $n \equiv 2(\bmod 4)$. Then $n=2 l$, where $l=p_{1}^{a_{1}} \cdots p_{s}^{a_{s}}$, primes $3<p_{1}<p_{2}<\cdots<p_{s}$ and $a_{i}, i=1,2, \cdots, s$, are positive integers. We can write $H_{2 l}(2)=\frac{3^{2 l}-1-2(2 l)^{2}}{2^{3}}=\frac{3^{2 l}-1}{2^{3}}-l^{2}$. It is possible to show that p_{1} does not divide $3^{2 l}-1$. Suppose conversely that $3^{2 l} \equiv 1\left(\bmod p_{1}\right)$ or $9^{l}-1 \equiv 0\left(\bmod p_{1}\right)$. But we can prove that this congruence is not true in the same way as the proof was done for $3^{l}-1$. The proof of Theorem 2 is finished.

5. Further results about divisibility of the numbers $H_{n}(1)$ and $H_{n}(3)$

Lemma 7. Let i, k be positive integers such that $k \mid(p+1)^{p^{\prime}}-1$. Then $p^{i+1} k^{j+1} \mid(p+1)^{p^{2}} k^{j}-1$ holds for all positive integers j.

Proof. For a fixed k we will prove the assertion by induction on j. The assertion for $j=1$ is a consequence of the fact that

$$
\begin{aligned}
& (p+1)^{p^{i} k}-1=\left((p+1)^{p^{i}}\right)^{k}-1= \\
& =\left((p+1)^{p^{i}}-1\right)\left(\left((p+1)^{p^{i}}\right)^{k-1}+\cdots+(p+1)^{p^{i}}+1\right)= \\
& =\left((p+1)^{p^{i}}-1\right)\left(\left((p+1)^{p^{i}}\right)^{k-1}-1\right)+\cdots+\left(\left((p+1)^{p^{i}}-1\right)+k\right)
\end{aligned}
$$

and using Lemma 1 the proof is finished since the term in the parentheses is divisible by k.

Suppose that the assertion holds for a positive integer j and we will show that it holds for $j+1$, too. We can write

$$
\begin{aligned}
& (p+1)^{p^{i} k^{j+1}}-1=\left((p+1)^{p^{i} k^{j}}\right)^{k}-1= \\
& =\left((p+1)^{p^{i} k^{i}}-1\right)\left(\left((p+1)^{p^{i} k^{j}}\right)^{k-1}+\cdots+(p+1)^{p^{i} k^{j}}+1\right)= \\
& =\left((p+1)^{p^{i} k^{j}}-1\right)\left(\left((p+1)^{p^{i} k^{j}}\right)^{k-1}-1\right)+\cdots+\left(\left((p+1)^{p^{i} k^{j}}-1\right)+k\right)
\end{aligned}
$$

and it is easy to see that this number is divisible by $p^{i+1} k^{j+1}$.

Lemma 8. Let $p \leqslant 100000$ be a prime and i a positive integer. Then the relation $p \mid 4^{3^{i}}-1$, where $i \geqslant t$, holds only for the primes p (and starting with the value t) in the following table:

p	t	p	t	p	t
3	1	487	5	52489	8
7	1	1459	5	71119	4
19	2	2593	4	80191	6
73	2	17497	7	87211	3
163	4	39367	7	97687	6

Proof. The assertion can be proved by using Lagrange theorem about the order of the cyclic subgroup. For example if $p=17$ we get the condition $4^{3^{i}}=2^{2 \cdot 3^{\prime}} \equiv 1(\bmod 17)$ and the smallest number e satisfying the condition $2^{e} \equiv 1(\bmod 17)$ is $e=8$. But as $8 \nmid 2 \cdot 3^{i}$ for ally i then $17 \not h^{3^{i}}-1$ for any positive integer i. Further if $p=19$ we get the condition $4^{3^{i}}=2^{2 \cdot 3^{i}} \equiv 1(\bmod 19)$ and the smallest number e satisfying the condition $2^{e} \equiv 1(\bmod 19)$ is $e=18$. And as $18 \mid 2 \cdot 3^{i}$ for $i \geqslant t, t=2$, then $19 \mid 4^{3^{i}}-1$ for any positive integer $i \geqslant 2$. As the proof can be done in the same way for any prime p it is possible to use computer for it.

Theorem 3. Let i, k be any positive integers such that $k \mid 4^{3^{i}}-1$ and j be any positive integer. If $n=2 \cdot 3^{i} k^{j}$ then

$$
n \mid H_{n}(1) .
$$

Proof. Since

$$
H_{2 \cdot 3^{i} k^{j}}(1)=4^{3^{i} k^{i}}-1-3^{i} k^{j}\left(2 \cdot 3^{i} k^{j}+1\right),
$$

divisibility by 2 is clear and divisibility by $3^{i} k^{j}$ follows from Lemma 7 for $p=3$.

Theorem 4. Let i be any nonnegative integer. If $n=2 \cdot 5^{i}$ then

$$
n \mid H_{n}(3)
$$

Proof. We can write

$$
H_{2 \cdot 5^{i}}(3)=\frac{16^{5^{i}}-1-3 \cdot 5^{i}\left(2 \cdot 3 \cdot 5^{i}-1\right)}{27}
$$

and we get the assertion using Lemma 1 and clear divisibility by 2 .

6. Remark on primality of the numbers $H_{n}(1), H_{n}(2)$ and $H_{n}(3)$

The following theorems are the basis for our computer testing of primality of the numbers $H_{n}(1), H_{n}(2)$ and $H_{n}(3)$.

Theorem 5. Let $n \geqslant 2$ be any positive integer. Then

$$
\begin{aligned}
2 \mid H_{n}(1) & \Longleftrightarrow n \equiv 1,2(\bmod 4), \\
3 \mid H_{n}(1) & \Longleftrightarrow n \equiv 0,1,2(\bmod 6), \\
5 \mid H_{n}(1) & \Longleftrightarrow n \equiv 0,1,2,4,13(\bmod 20), \\
7 \mid H_{n}(1) & \Longleftrightarrow n \equiv 0,1,2,6,11,19(\bmod 21), \\
11 \mid H_{n}(1) & \Longleftrightarrow n \equiv 0,1,2,7,10,31,47,52,104(\bmod 110) .
\end{aligned}
$$

Proof. All cases can be proved in a similar way. Therefore we take only the case of divisibility by 3 . Suppose $n \equiv 0(\bmod 6)$, thus $n=6 m$, where m is a positive integer. Then

$$
H_{6 m}(1)=2^{6 m}-1-3 m(6 m+1)=64^{m}-1-3 m(6 m+1)
$$

and $64^{m}-1$ is divisible by 3 for all positive integers m, which is obvious. Similarly we can prove the cases $n \leqq 1,2(\bmod 6)$.

Now suppose $n \equiv 3(\bmod 6)$, thus $n=6 m+3$, where m is a nonnegative integer. Then 3 does not divide

$$
H_{6 m+3}(1)=2^{6 m+3}-1-(3 m+2)(6 m+3)
$$

as $3 \mid 6 m+3$ and $3 \backslash 2^{6 m+3}-1$, which is obvious. We use the same procedure for $n \equiv 4,5(\bmod 6)$.

Theorem 6. Let $n \geqslant 2$ be any positive integer. Then

$$
\begin{aligned}
2 \mid H_{n}(2) & \Longleftrightarrow n \equiv 0,1,2(\bmod 4), \\
3 \mid H_{n}(2) & \Longleftrightarrow n \equiv 1,2(\bmod 3), \\
5 \mid H_{n}(2) & \Longleftrightarrow n \equiv 0,1,2,9,18(\bmod 20), \\
7 \mid H_{n}(2) & \Longleftrightarrow n \equiv 0,1,2,11,13,17,26(\bmod 42), \\
11 \mid H_{n}(2) & \Longleftrightarrow n \equiv 0,1,2,21,42(\bmod 55) .
\end{aligned}
$$

Proof. The proof is similar to the proof of Theorem 5.

Theorem 7. Let $n \geqslant 2$ be any positive integer. Then

$$
\begin{aligned}
& 2 \mid H_{n}(3) \Longleftrightarrow n \\
& 3 \mid H_{n}(3) \Longleftrightarrow n \\
& 5 \mid H_{n}(3) \Longleftrightarrow n(\bmod 4), \\
& 7 \mid H_{n}(3) \Longleftrightarrow n, 1,2(\bmod 9), \\
& 11 \mid H_{n}(3) \Longleftrightarrow n \\
& \equiv 0,1,2,4,12,17(\bmod 21), \\
& \equiv 0,1,2,15,36(\bmod 55) .
\end{aligned}
$$

Proof. Again the proof is similar to the proof of Theorem 5.
We used Theorem 5, Theorem 6 and Theorem 7 for the computer testing of primality of the numbers $H_{n}(1), H_{n}(2)$ and $H_{n}(3)$ in the following way.

The conditions of divisibility by the numbers 2,3 and 5 lead to the fact that every prime $H_{n}(1)$ must be in the form

$$
H_{60 k+4}(1), H_{60 k-20}(1), H_{60 k-8}(1), H_{60 k-9}(1), H_{60 k+3}(1), H_{60 k+11}(1)
$$ or $H_{60 k+23}(1)$, every prime $H_{n}(2)$ in the form

$$
H_{60 k+3}(2), \quad H_{60 k+15}(2), \quad H_{60 k+27}(2), \quad H_{60 k+39}(2), \quad H_{60 k+51}(2)
$$

and every prime $H_{n}(3)$ must be in the form

$$
\begin{array}{lllll}
H_{210 k+3}(3), & H_{210 k+4}(3), & H_{210 k+7}(3), & H_{210 k+8}(3), & H_{210 k+15}(3) \\
H_{210 k+16}(3), & H_{210 k+23}(3), & H_{210 k+24}(3), & H_{210 k \pm 35}(3), & H_{210 k+39}(3) \\
H_{210 k \pm 43}(3), & H_{210 k+44}(3), & H_{210 k+48}(3), & H_{210 k+59}(3), & H_{210 k \pm 67}(3) \\
H_{210 k+68}(3), & H_{210 k+75}(3), & H_{210 k+76}(3), & H_{210 k+79}(3), & H_{210 k+84}(3), \\
H_{210 k \pm 87}(3), & H_{210 k+88}(3), & H_{210 k \pm 95}(3), & H_{210 k+96}(3), & H_{210 k \pm 103}(3), \\
H_{210 k+104}(3), & H_{210 k-94}(3), & H_{210 k-86}(3), & H_{210 k-71}(3), & H_{210 k-63}(3) \\
H_{210 k-62}(3), & H_{210 k-54}(3), & H_{210 k-51}(3), & H_{210 k-42}(3), & H_{210 k-34}(3), \\
H_{210 k-31}(3) . & & & &
\end{array}
$$

We have found by computer that $H_{4}(1), H_{15}(1), H_{143}(1), H_{855}(1)$, $H_{8788}(1), H_{243}(2), H_{4}(3), H_{7}(3)$ and $H_{8}(3)$ are the only primes with the index lesser than 10000.

Acknowledgements. This paper was supported by Czech Science Foundation Grant GACR 201/01/0471.

References

[1] J. Seibert, P. Trojovský, On some properties of one special type of polynomials and numbers, Tatra Mount. Mathematical Publ. 20 (2000), 75-87.
[2] J. Seibert, P. Trojovský, On divisibility of one special type of numbers, Acta Math. Inform. Univ. Ostraviensis 9 (2001), 67-73.
[3] J. Seibert, P. Trojovský, On properties and relations of some types of the numbers derived from. Bernoulli's inequality, (submitted).
[4] W. Sierpinski, Elementary Theory of Numbers, PWN, Warszawa 1964.
[5] W. Sierpiński, 200 zadańz elementarnej tcorii liceb (200 problems in elementary numbers theory), WSziP, Warszawa 1964.
[6] W. Sierpinski, 250 zadan \approx elementarnej teorii liceb (950 problems in elementary numbers theory), WSziP, Warszawa 1964.

Department of Mathematics
University of Hradec Ḱrálové
Vita Nejedleho 573
500-03 Hradec: Králové
Czech Republic
e-mail: Pavel.Trojovsky@uhk.cz

