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The Third Katowice-Debrecen Winter Seminar on Functional Equations
and I[nequalities was held from January 29 to February 1, 2002, at the Ma-
thematical Research and Conference Center of Polish Academy of Sciences,
Bedlewo, Poland.

24 participants came from the Silesian University of Katowice (Poland)
and the University of Debrecen (Hungary) at 12 from each of both cities.

Professor Roman Ger opened the Seminar and welcomed the partici-
pants to Bedlewo.

The scientific talks presented at the Seminar focused on the following to-
pics: equations in a single and several variables, iteration theory, equations on
algebraic structures, conditional equations, differential functional equations,
Hyers-Ulam stability, functional inequalities and mean values. Interesting
discussions were generated by the talks.

There was a very profitable Problem Session.

The social program consisted of visiting the palace in Kérnik, and an
excursion to the city of Poznaii where the participants of the meeting among
others visited a museum of old instruments and took part in a festive dinner.

The closing address was given by Professor Zsolt Pales. His invitation
to hold the Fourth Debrecen-Katowice Winter Seminar on Functional Equ-
ations and Inequalities in February 2004 in Hungary was gratefully accepted.

Summaries of the talks in alphabetic order of the authors follow in sec-
tion 1, problems and remarks in approximate chronological order in section
2, and the list of participants in the final section.
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1. Abstracts of talks

RoMAN Bapora: Set ideals and invariant means

In the first part of this talk we prove the existence of some generalized
invariant mean on the space of all real functions defined on an amenable
semigroup S which are essentially bounded with respect to an axiomatically
given family of subsets of S. In the second part we present an application of
our results to the study of the problem of separation of two functions by an
additive function.

KAroL BARON: A direct proof of a theorem of van der Corput for functionals
The theorem mentioned in the title concerns the Cauchy functional
congruence

(1) fat+y) - fe)-fly) ez
and reads as follows (see [3; p. 64]).
If | 'R = R satisfies (1) for all x,y € R and there exist nonempty and
open subsets U, W of R such that
(2) FU)N (W +2) =0,

then there exists a ¢ € R with

f(2) —ca €Z forevery x€R.

Using this theorem it is possible to extend it to real functionals. In this
manner the following was proved in [2].

Suppose E is a real topological vector space. If f 1 E — R salisfies (1)
Jor all v,y € E and there exist nonempty and open subsets U of E and W
of R such that (2) holds, then there exists an 2* € E* with

f(e)—a*x €Z forevery € E.

Another proof of Theorem 1 is presented in [5; Remark 4] by M. Sablik.
J.A. Baker [1; Theorem 1 and the next Remark] proved it in the case where
E 1s the additive group of any rational metric linear space. More exactly
J.A. Baker proved that if \ is a character of such a group E, then either Y is
continuous, or x(U) is dense in the unit circle for every nonempty open subset
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U of E. P. Flor [4] showed that this theorem of J.A. Baker does not hold
for an arbitrary topological group. We prove that in the case of an arbitrary
topological group we have the Baker’s alternative with the continuity of the
character replaced by the continuity of a power of it.
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LEcH BARTLOMIEICZYK: Irregular solutions of iterative functional equation
of the second order

(Joint work with Janusz Morawiec)

We describe the structure of orbits generated by two commuting bijec-
tions f,g: X — X. Using this description we construct irregular solutions
of general functional equation of the second order:

h(z, ¢(z), o(f(2)), ¢(g(x))) = 0.

Graph of such a solution is connected and almost covers the plane X x X in
the sense of measure and topology

MIHALY BESSENYEIL: Generalized Hadamard inequalities
(Joint work with Zsolt Péles)

Let I C R a nonempty interval, wy,...,w, : I = R be given functions.
A function wg : / = R is said to be (wy,...,w,)-convez if

wo(zo) ... wolay)
(1" wl(.:co) wl(.n:n) -
wp(o) .. walay)
whenever 29 < ... <z, and g, ..., 2, € . This notion is a common gene-

ralization of higher-order monotonicity and (wy,ws)-convexity, in particular,
the classical convexity, too.
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In the talk we present Hadamard-type inequalities for (w1, .. .,w,)-convex
functions.

ZOLTAN BoRros: Q-subgradient of Jensen-convex functions
(Joint work with Zsolt Péles)

Throughout this presentation D is a convex open subset of R and Q%
denotes the set of positive rationals. Moreover, let

A={A4:RY 5 R|Ais additive }.
DEFINITION. Let f: D - R, 29 € D, and u € R". The set
dof(ro) ={A € A| f(zo) + Az — x0) < f(2) for every v € D}

is called the Q-subgradient of f at xg. If the finite limit

dgf(wo, u) = Q+1i9n,}_,0 S(@o + 7*1:.‘) — (o)

exists, it is called the radial @-derivative of f at zg in the direction u. We
shall say that fis radially Q-differentiable at 2¢ if dgf(2¢, v) € R exists for
every v € R . We shall say that [ is radially Q-differentiable if f is radially
Q-differentiable at @ for every @ € D . If f is radially Q-differentiable at 2q
the set

dof(ro)={A€ AlA(v) € dgf(xo, v) for every v € RN}

is called the weak Q-subderivative of f at 2.

PROPOSITION. Suppose that [ : D — R is radially Q-differentiable at
ve D, ueRY, and g € QF. Then dof(x, qu) = qdg f(x,u).

THEOREM. Suppose that f : D — R is Jensen-convex. Then f is radially
Q-differentiable. Moreover, for every x € D, the mapping ¥(u) = dg f(x, u)
(u € RY) is subadditive and g f(x) = dgf(x) # 0.

ProposiTION. If f: D — R such that dgf(z) £ @ for every v € D,
then [ is Jensen-convex.
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PiTeER CZINDER: Inequalities for two parameter homogeneous means
(Joint work with Zsolt Pdles)

We investigate some inequalities concerning the two variable Gini and
Stolarsky means, defined (in the most general case) by the formulae

! 1
2t 23\ w=b ) T b 1
Gup(r,y) = <1—i_i> and S, p(2,y) = <1 J ) .

b 4oyt a ab—yb

After giving the summary of preliminary results (comparison theorems and
Minkowski/ reversed Minkowski-type theorems), we present some generali-
zations of them, obtained together by the authors. Finally, we show our new
—~ partial — results regarding the comparison of Gini and Stolarsky means.

BorBALA FAZEKAS: Decision functions and their properties

Our main aim is to characterize the relation between the properties of
the so called decision functions and the properties of the decision generating
functions. A function D:Jio, I* — I is called a decision function, if it is
symumetric, reflexive, regular and internal. We can generate a decision func-
tion Dy with a generalization of the least squares method using a decision
generating function d: I x I — R. The reverse statement is also true, for
every decision function D there exists a decision generating function d, that
generates it. The main result, that characterizes the monotonicity property,
is the following

THEOREM. A decision funclion Dy:Jie, It — I, generated by the deci-
sion generating function d: 1 x I — R, is monotonic if and only if

d(x1,y1) + d(x2, 2) < d(21, 32) + d(22, 1)
holds for every xy, 22,1, Y2 €1, 21 <2, Y1 S Y2-

RoMaN GER: Residual sets in amenable groups and functional equations
We are presenting some results that are complementary to those ob-
tained recently by F. C. Sdnchez (Stability of additive mappings on large
subsets, Proceedings of the American Mathematical Society 128 (2000),
1071-1077). A subset B of a group (G,4) is termed m-residual provided
that m(1p) = 1 for some invariant mean m on (G, +). Then, it seems natu-
ral to call a set B C G to be m-null whenever G'\ F is m—residual. We shall
say that a subset E of an amenable group is wniversally null if and only if
it happens to be m—null with respect to every invariant mean m on (G, +).

We prove, among others, that
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Every subset E of an amenable group (G,+) such that E — F belongs
to a proper linearly invariant set ideal of subsets of G' is untversally null

and the following

THEOREM. Let B be an m—residual subset of a group (G, 4). Given an
Abelian group (H,4+) admitting sufficiently many real characters. if @ map
a: B — H satisfies the condition

v, y,84+y € B = a(r+y) = alz) + aly),
then there exists exactly one homomorphism A : G —s H such that

A(x) = a(x) for all x € B.

ATTILA GILANYL: On convex functions of higher order
(Joint work with Zsolt Pdles)

In this talk connections between symmetrically convex functions of hi-
gher order and Wright-convex functions of higher order are investigated.
During the talk / denotes a nonempty interval, f : I — R is a function,
n 2 2 stands for an integer, and ty,...,t, are positive real numbers. The
function f is said to be symmetrically (t1,....t,)-convex on I, if

[e,e 4+t h, . a bt h 4+t hy f] >0

forall b >0, 2,2+t + - -+ t,h € I and for all permutations (i1, ..y in)
of the integers {1,...,n}. We call it (¢1,...,t,)~ Wright-convex on I, if

Ahlz . ‘At"hf(.’l,') 2 0

for h >0, z,x +th+---F+t,hel.

We prove that a symmetrically (t1,...,¢,)-convex function is also
(t1,..., ty)-Wright-convex on I. Concerning the opposite direction, we show
that there exist positive numbers ¢4, ..., t, for which (t1,...,tn)-Wright-con-
vexity does not imply symmetrical (¢1,...,t,)-convexity.

ATTILA HAZY: On approzimately t-convex funclions

(Joint work with Zsolt Piles)

A real valued function f defined on an open convex set D is called
(,9, p) t-convex if it satisfies

flla+ (1 =-0y) <tfl@)+ (1 =-)f(y)+elz—y|P+5  for z,yeD.
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Our main result shows that if 0 < p < 1, and [ is locally bounded from above
at a point of D and is (e, 6, p) t-convex then it satisfies the convexity-type
inequality '

f(/\;lr-{—(l— )\)y) <Af(2)+ (1= A) f(y) + max {ll’ —1—_1_7} S+ep(A)|z —yl?

for 2,y € D, A € [0,1], where ¢ : [0, 1] = R is a continuous function satisfy-
ing
@(A) <e(A(L=A))F

with

1 1
C<ma'x{(1_f)1)_(1_t)’t”—f}-

The particular case € = 0 of this result is due to Pdles [2]. The case p = 1
and ¢ = % was investigated in Hdzy and Péles [1].
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WIToLD JARCZYK: Invariant sets and operations

Let / = [0,1] and denote by B [B4; B_] the set of all bijections [incre-
asing bijections; decreasing bijections] of /. Given a set  C B we say that
A C I is ®—invariant if the condition

(21,...,2,) € A= (@(21), ..., p(an)) €A

holds for every ¢ € ®. A set A C I™ is called minimal &—invariant if it
contains no non-void proper $-invariant set.

Denote by &, the family of subsets of I™ defined as follows:

A € &, iff there are a permutation o of {1,...,n} and symbols o
vo ooy de€ {<, =} such that

A= {(.7;1, .. .,OJ,,l) cI™: 0 Ta(1) R Y To(n) -, 1}.

Given a set @ C B we say that a set F C B generates ® if every element
of & is a composition of a finite number of functions from F.

A set ® C By [® C B_]is called an interpolation family if for every
n € N and numbers 21,...,%n, Y1,..-,Yn € (0,1) satisfying

21 <...<2, and y <...< yYu [y1 > ... > ya)
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there is a ¢ € ¢ with

ola;))=y; for 1€{1,...,n}.

THEOREM. Let & C By be an interpolation family and let F C & ge-
nerate ¢. A set A C I" is minimal —~invariant [F—invariant] if and only if
Aes,.

If Aes, and
A={(zy,...,x,) € I™: 0 o1y He Tar Togny e 1}
for a permutation o of {1,...,n} and some o, ...,,€ {<,=} then put

H(4) = {(.’L‘l, . .,.’L‘”) € I": 0 ‘in ;L‘g(.n) _|n—1 e —|1 -Tcr(l) ‘{0 1}.

THEOREM. Let & C B_ be an interpolation family and let F C & ge-
nerale d. A sel B C " is minimal $-invariant [F—invariant] if and only if
B=AUR(A) foran A€ S,.

Given aset ¢ C B wesay that F': I — [ is ®—invariant if the condition

O(F (21, 2n)) = Fle(e1), ... 0(an)) for (x1,.. GT,) €T

holds for every o € $.
The second part of the talk deals with characterizations of invariant
functions. A number of examples is presented.

ANTAL JARAL A remark on the translation equation

A somewhat more general version of the theorem of Guzik with a new
proof is given stating that — under certain conditions — solutions f of the
functional equation

S{u+v,2) Z/z (ai(v,2), filw,b;(v,2))), 0< w0 < oo,z € X

are continuous.

ZoLTAN KAISER: On stability of the monomial functional equation in nor-
med spaces over fields with valuation

A generalized Hyers-Ulam type stability result is proved for the mono-
mial functional equation in Banach spaces over fields of characteristic zero
with arbitrary valuation.



75

7vGFRYD KOMINEK: On a problem of Wu Wei Chao

Answering a question posed by Wu Wei Chao (American Mathemati-
cal Monthly, Vol. 108, No 10, December 2001), we show that the identity
function is the only solution of the equation

f+y+ fW)=f(=)+2, wyeER

LAszL6 LosoNnczli: Homogeneous Cauchy means

Let I C R* be an open interval containing the point 1, fyg: I = R be
differentiable functions, g’ # 0 on I and suppose that h := f'/g" is strictly
monotonic. The Cauchy mean of v,y € [ is defined by

f(x) = f(v)

mm—mm) ey

Dy (x,y) = ht (

and Dy 4(z,2) := 2.
We determine the homogeneous two variable Cauchy means i.e. the
means satisfying

Dy (ta,ty) = tDy (e, y) (vyyelte L),

where [, = {t € R : ta,ty € I } assuming that f,g are seven times
continuously differentiable, i’ # 0 and certain functions built up from f, ¢
are either identically zero or nonzero on [I.

Gyura Maksa: Wright convezity of higher order

(Joint work with Zsolt Pdles)

Let p be a positive integer and @ # I C R be an open interval. A function
f: 1 — Ris p—Wright convex if

Ahl...AhP+1f(IL')2O

for all hy,...h,41 €]0,00[, z, 2+ hy +---+ hp+1 € I. I the talk we present
the following

TuEOREM. If f : 1 = R is p— Wright convex, then f = C' + P where
C I = R is a continuous and p—convex function and P : R — R is ¢
polynomial function of order p, that is, AﬁHP =0 onR forall h € R.
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JANUSZ MATKOWSKI: Regularity of functions in equality problem for Cauchy
mean values

Let I C R be an open interval and f,¢: I — R differentiable functions

such that ¢’ # 0 and 5—,’ invertible. Then the function Dy ,: 1% — I,

Droe) =1 (5) (H958) +#v |
X =1y

is correctly defined and it is called a Cauchy mean value. In a recent paper
L. Losonczi [1] determined all families of functions f.01t, f2090 0 I 5 R
satisfying the equation

(1) Dfly!]l :Df21g2

under the assumption that these functions are seven times continuously dif-
ferentiable. In the present paper we show that this strong regularity can be
assumed without any loss of generality. This gives an answer to Problem
posed by Zs. Pdles [2]. Moreover we reduce the equation (1) to the following
functional-differential equation

['(e) - 25 o) - W)Y

fily) - S8=0a) gy W)=

References
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ANDRZE) OLBRYS: Some condilions implying the continuwity of t— Wright
convex functions

Let D be a nonempty convex and open subset of a real lincar topological
space X and t € (0,1) be a fixed number. A function f: D — R is said to
be {—Wright convex if it follows the following functional inequality:

F(te+ (1= 0y)+ [((L= D +1y) < F@) + [() . or cvery a,y € D.

First result, which was given, was a generalized version of the theorem of
Z. Kominek which says that every t—Wright convex function f : (a,0) > R
continuous at least at one point is continuous everywhere. Also it was shown
that every {—Wright convex function upper semicontinuous everywhere or
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such that the restriction fjr is lower semicontinuous must be continuous
(where T is a set of positive Lebesgue measure of second category with the
Baire property). From this fact and from the Lusin theorem it follows that
every t—Wright convex function such that the restriction fir is Lebesgue or
Baire measurable is continuous everywhere.

AGoTa ORrRosZ: Sine and cosine equation on discrete polynomial hypergroups

Laszlé Székelyhidi proved, that spectral analysis and spectral synthesis
hold for any polynomial hypergroup. Actually, any translation invariant k-
near subspace of the complex valued functions on the hypergroup is finite
dimensional and it is generated by exponential monomials. By applying these
theorems the solutions of the sine equation can be described:

THuroREM. Let (N, «) is the polynomial hypergroup associated with the
sequence of polynomials (Pp)uen, [,9: N —= C and [ is not identically zero.
Then

f(nsxm) = f(n)g(m)+ f(m)g(n)

holds for all m,n € N if and only if f and g can be written in one of the
Jollowing forms:

L f(n) = aP,(X)
g(n) = %Pn(/\)
2. / n)= (L(P,l(/\ ) - 13”(/\2)) )\1 # /\2
n (P,

where a,b, A, Ay, Ay are arbitrary complex numbers.
A similar statement is true for the functional equation

J(n*m) = f(n)f(m)—g(n)g(m).

ZsoLT PALES: Solution of two variable functional inequalities
Motivated by the Jensen-convexity and Wright-convexity properties of

real functions, the following functional inequalities are investigated

f(j’\’f(:v’y)) < F(‘T’yafl[a:,y]) (.’L‘,y € [)

and

G<3:?y7f|]17,y[) < ]"I(f(’b’),f(_lj)) (TC,U € I)’

where M is a strict mean on the interval I, the functionals F and G enjoy
certain monotonicity properties, and the function f: 7 — R is considered as
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an unknown function. The first inequality generalizes Jensen-convexity, while
the second functional inequality contains Wright-convexity as a particular
case.

Assuming that the corresponding functional equations have a rich so-
lution set, we prove that a continuous function f is a solution for one of
the above functional inequalities if and only if it is Beckenbach-convex with
respect to the solution set of the corresponding functional equation.

MAcIEI SABLIK: Polynomials and divided differences
(Joint work with Thomas Riedel and Abe Sklar)

We define recursively a sequence of linear operators on the set of func-
tions [rom R to R, as follows: For fixed ¢ > 0 and any integer n, let:

fla4+¢)= flx=¢)

() )(2) = =

We ask for the functions that are differentiated by the above defined opera-
tors which leads to the equation

@ (MN@) = 1'(x)

or a more general [unctional equation

(6 (N)() = g(2). (1)
We arrive also at another functional equation connected with the problem

23

2¢(x) = Z (LE\,”) (g(x +2"Ye) +g(e — 2A’_1¢)) . (2)

We prove that functional equations (1) and (2) characterize polynomials or
polynomial functions of degree 2n and 2n + 1, respectively.
JUSTYNA SIKORSKA: On mapping preserving equilateral triangles

(Joint work with Tomasz Szostok)

Let E be a euclidean space, dimF > 2. We say that [ : I — [
preserves equilateral triangles if for all triples of points 2,y,z € F with
e = yll = lly = 2ll = [z — 2| we have

| 7@ - 1)

== sl -1
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We show that if F is a finite-dimensional euclidean space, dim I > 2
f: E = F is continuous at a point and preserves equilateral triangles, then
it is a similarity mapping (an isometry multiplied by a constant).

Some generalizations as well as some interesting examples are also pre-
sented.

Janusz WALORSKI: On homeomorphic solutions of the Schréder equation
in Banach spaces

Let X be a Banach space, f: X — X be a homeomorphism and A: X —
X be a continuous linear operator. Following the proof of the Grobman-Hart-
man theorem presented in [Z. Nitecki, An introduction to the orbil structure
of diffeomorphisms, The MIT Press, 1971] we establish conditions under
which there exists a homeomorphism ¢: X — X which solves the Schréder
equation.

2. Problems and Remarks

1. Problem. If f : I — R is a convex function then it satisfies the functional
inequality

(Z/\ (z,y)M;(a 1/) Z)\ a,y) f(Mi(z,y)) (x,y € 1),

where My, ..., M, : I* — I are two variable means on I and Aq,..., A, :
I? = R are nonnegative continuous functions with Ay +---+ X, = 1. Conver-
sely, if f is locally bounded from above then the above inequality (and certain
further properties of the data) results that f is convex (see [1] for the deta-
ils). Motivated by known regularity results for convexity (e.g., Sierpinski’s
theorem) find conditions on the data so that if f is a measurable solution
of the above equation then it must be convex. As a particular case of the
above problem prove (or disprove) that the measurable solutions of

f(n; +y+ M) <T@+ f) + J(V7D)
3 ~

3

(.’L‘, Yy < R+)

are convex functions.

Reference

[1) %Zs. Pdles, Bernstein-Doetsch-type results for general functional inequalities, Roczn. Nauk.-
-Dydakt. Akad. Ped. Krakéw 204 (2000), 197-206.

7s. PALES
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2. Problem. The following inequality plays an important role in the com-
parison of Gini and Stolarsky means (see the abstract of my talk):

VB
A AN log 1
Ve e R\ {1} — < exp s+
2T TR 41 1—=2 3

A proof of this inequality would highly be appreciated.
P. CzINDER

3. Problem. Prove that

m

. S m T
min E k™ F > —see ———
|zj=1, zeC o 2 2m+ 2

il m is an odd natural number. With = = cos ¢+ isin¢ this inequality can be
reformulated as

. 272 ) .
m + 1 (sin —n;t + msin t — sinmt]? S (m T 2
— 4 = _— —seC ———
2 2\ sin % 4sin 2 % 72 2m 4+ 2

(m odd, t € [0,7]).
Using this inequality a theorem of A. Schinzel [2] concerning the location
of zeros of some sell-inversive polynomials can be sharpened (see [1]).
Remark added on June 11, 2003. A. Schinzel proved the above inequality
if m is sufficiently large (private communication dated May 30, 2003).

References
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J. of Inequalities in Pure and Applied Math.).
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L. LosoNczi

4. Problem. Let f: Rt — R* be a given function. We consider the follo-
wing functional inequality

o AV A () <ue o

w€RY v(a)€(0,3) 2, yERY ,x<ay

The following theorem was proved in [1]
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THEOREM. Let f : (0,00) — (0,00) be an arbitrary continuous function
satisfying inequality () with some increasing function v such that

lim f(z)=0.

z~>0

/\ \/ /\ czt < f(=).

b>0¢>0,d>1 z€(b,00)

Then

As we can see the above theorem provides us with some information
concerning the solutions of the inequality (1) on the interval (b, c0). It would
be of interest to obtain a similar result on the interval (0, b).

Reference

[1] T. Szostok, On a modified version of Jensen Inequality, J. of Inequal. & Appl. 3 (1999),
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T. SzosTOK

5. Remark. During the conference Professor Zsolt Péles posed the following
problem:

Prove that if a Lebesgue measurable function f :0,00— R satisfies the
functional inequality

) f(w+\/jy+y) < f(z) + f(/2y) + f(y)

3 for all z,y €0, 0

then f is a convex function.

Péles has proved that if a function f satisfying (1) is locally bounded
above then it is convex. An easy calculation shows that the following general
“measurability implies locally boundedness above” type statement can be
applied to deduce the local boundedness from above of f from equation (1)
and hence to solve the remaining part of the problem:

STATEMENT. Suppose that

Fa(z,y)) < h(fl (01(2,9), - -7fn(9n(fv7y))))

for all (x,y) € D, where D ¢ R x R is an open set, and
(1) fi, t=1,2,...,n are real valued Lebesque measurable functions;
(2) h : R® = R and for each k > 0 there exists a K > 0 such that if
zi <k fori=1,2,...,n then h(zy,...,2,) < K;

6 Annales...
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(3) the functions g, 91, ..., g, mapping D into R are continuously diffe-
rentiable;
(4) for to there exist xg and yo such that (xo,y0) € D, to = g(20, yo),
and fori=1,2,...,n we have
Tos Yo
( ) > 4o

det < i{ (%0, 90)
(’lo,Jo)

'L))JL, (:UO’ ?JO),

W
\J Lt
]k c!b

Then f is locally bounded above at tg.

This easily follows if we introduce locally the new variable t = g(z, y)
instead of & and apply Theorem 5.1 in my book “Regularity properties of
functional equation in several variables” (to appear by Kluwer Publisher). A
similar result was proved in my paper “On measurable solutions of functional
equations™, Publ. Math. Debrecen 26 (1979), 17-35. If “Lebesgue measura-
ble™ is replaced by “have Baire property” then the Statement above remains
true. About the Baire category case, see my paper “Regularity properties of
functional equations”, Aequationes Malh 25 (1982), 52-66.
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