MATRIX TRANSFORMATIONS IN THE SEQUENCE SPACES $L_{\infty}^{V}(P, S)$ AND $C_{0}^{V}(P, S)$

Tunay Bilgin

Abstract. The object of this paper is to obtain necessary and sufficient conditions to characterize the matrices in classes $\left(l_{\infty}^{v}(p, s), b_{\infty}(q)\right),\left(c_{0}^{u}(p, s), b_{\infty}(q)\right),\left(l_{\infty}^{v}(p, s), c_{0}(q)\right)$, and ($c_{0}^{v}(p, s), c_{0}(q)$) which will fill up a gap in the existing literature.

1. Introduction

Let $p=\left(p_{n}\right)$ be a bounded sequence of strictly positive real numbers and $v=\left(v_{n}\right)$ any fixed sequence of non-zero complex numbers such that

$$
\liminf _{n \rightarrow \infty}\left|v_{n}\right|^{1 / n}=r, \quad(0<r<\infty)
$$

We define (Bilgin [2]) the sequence spaces $c_{0}^{v}(p, s)$ and $t_{\infty}^{v}(p, s)$ as follows;

$$
c_{0}^{v}(p, s)=\left\{x=\left(x_{n}\right): n^{-s}\left|x_{n} v_{n}\right|^{p_{n}} \rightarrow \infty, s \geqslant 0\right\}
$$

and

$$
l_{\infty}^{v}(p, s)=\left\{x=\left(x_{n}\right): \sup _{n} n^{-s}\left|x_{n} v_{n}\right|^{p_{n}}<\infty, s \geqslant 0\right\} .
$$

When $s=0, v_{n}=1$ and $p_{n}=1$ for every n, the spaces $c_{0}^{\nu}(p, s)$ and $l_{\infty}^{v}(p, s)$ turn out to be, respectively, the scalar sequence spaces c_{0} and l_{∞}.

When $s=0, v_{n}=1$ for every n, these spaces are, respectively, the well known spaces $c_{0}(p)$ and $l_{\infty}(p)$ defined by Maddox [8] and Simons [11].

When $v_{n}=1$ for every n, these spaces are, respectively, the spaces $c_{0}(p, s)$ and $l_{\infty}(p, s)$ defined by Başarir [1].

Received: 20.09.2002.

AMS (1991) subject classification: Primary 46A45, 40C05, 40 H 05.
Key words and phrases: Generalized analytic sequence space, Matrix-Transformations.

When $s=0$, these spaces are, respectively, $\left(c_{0}(p)\right)$ and $\left(l_{\infty}(p)\right)$ defined by Colak and al. [5].
$c_{0}^{v}(p, s)$ is paranormed space by $g(x)=\sup _{k}\left(k^{-s}\left|x_{k} v_{k}\right|^{p_{k}}\right)^{1 / M}$, where $M=\max (I, H)$ and $H=\sup _{k} p_{k}$. Also $l_{\infty}^{\nu}(p, s)$ is paranormed by $g(x)$ if and only if inf $p_{k}>0$.

If (X, g) is a paranormed space with paranorm g, then we denote by X^{*} the continuous dual of X, i.e. the set of all continuous linear functionals on X. If E is any set of complex sequences $x=\left(x_{n}\right)$ then E^{α} will denote the α-dual of E :

$$
E^{\alpha}=\left\{a: \sum_{k}\left|a_{k} x_{k}\right|<\infty \quad \text { for all } \quad x \in E\right\}
$$

In the following lemmas we have the α - and continuous duals of $c_{0}^{v}(p, s)$ and α-dual of $l_{\infty}^{v}(p, s)$ (see Bilgin [2]).

Lemma 1. Let $0<p_{k} \leqslant \sup _{k} p_{k}<\infty$. Then
(i) $\quad\left(c_{0}^{v}(p, s)\right)^{\alpha}=M_{0}^{v}(p, s)$, where

$$
M_{0}^{v}(p, s)=\bigcup_{N>1}\left\{a=\left(a_{k}\right): \sum_{k}\left|\frac{a_{k}}{v_{k}}\right| k^{s / p_{k}} N^{-1 / p_{k}}<\infty, s \geqslant 0\right\} ;
$$

(ii) $\quad\left(c_{0}^{\nu}(p, s)\right)^{*} \quad$ is isomorphic to $\quad M_{0}^{\nu}(p, s)$.

Lemma 2. $\left(l_{\infty}^{v}(p, s)\right)=M_{\infty}^{v}(p, s)$, where

$$
M_{\infty}^{v}(p, s)=\bigcap_{N>1}\left\{a=\left(a_{k}\right): \sum_{k}\left|\frac{a_{k}}{v_{k}}\right| k^{s / p_{k}} N^{1 / p_{k}}<\infty, s \geqslant 0\right\} .
$$

2. Matrix transformations

Let X and Y be any two nonempty subsets of s, the set of all sequences of real or complex numbers, and let $A=\left(a_{n k}\right)$ be the infinite matrix of complex numbers $a_{n k}(n, k=1,2, \ldots)$. For every $x=\left(x_{k}\right) \in X$ and every integer n, we write

$$
\begin{equation*}
A_{n}(x)=\sum_{k} a_{n k} x_{k} \tag{1}
\end{equation*}
$$

The sum without limits in (1) is always taken from $k=1$ to $k=\infty$. The sequence $A x=\left(A_{n}(x)\right)$, if it exists; is called the transformation of $x=\left(x_{k}\right)$ by the matrix A. We write $A \in(X, Y)$ if and only $A x \in Y$ whenever $x \in X$. Necessary and sufficient conditions for a matrix $A=\left(a_{n k}\right)$ to be in the class (X, Y) for different sequence spaces X and Y are given by several authors.

Our results in this note characterize some of the classes like ($l_{\infty}^{v}(p, s)$, $\left.l_{\infty}(q)\right),\left(c_{0}^{\nu}(p, s), l_{\infty}(q)\right),\left(l_{\infty}^{v}(p, s), c_{0}(q)\right)$, and $\left(c_{0}^{\nu}(p, s), c_{0}(q)\right)$.

The following two theorems give the characterizations of the matrix in the classes $\left(l_{\infty}^{v}(p, s), l_{\infty}(q)\right)$ and $\left(l_{\infty}^{v}(p, s), c_{0}(q)\right)$.

Theorem 3. $A \in\left(l_{\infty}^{v}(p, s), l_{\infty}(q)\right)$ if and only if
(2) $\sup _{n}\left(\sum\left|a_{n k} / v_{k}\right| k^{s / p_{k}} N^{1 / p_{k}}\right)^{q_{n}}<\infty \quad$ for every integer $\quad N>1$.

Proof. Sufficiency: Let $x=\left(x_{k}\right) \in l_{\infty}^{v}(p, s)$. Choose an integer N such that $N>\max \left(1, \sup _{k} k^{-s}\left|v_{k} x_{k}\right|^{p_{k}}\right)$. Then

$$
\begin{aligned}
\sup _{n}\left|A_{n}(x)\right|^{q_{n}} & \leqslant \sup _{n}\left(\sum_{k}\left|a_{n k} x_{k}\right|\right)^{q_{n}} \\
& \leqslant \sup _{n}\left(\sum_{k}\left|a_{n k} / v_{k}\right| k^{s / p_{k}}\left(k^{-s}\left|x_{k} v_{k}\right|^{p_{k}}\right)^{1 / p_{k}}\right)^{q_{n}} \\
& \leqslant \sup _{n}\left(\sum_{k}\left|a_{n k} / v_{k}\right| k^{s / p_{k}} N^{1 / p_{k}}\right)^{q_{n}}<\infty
\end{aligned}
$$

Hence $A(x) \in l_{\infty}(q)$ and $A \in\left(l_{\infty}^{v}(p, s), l_{\infty}(q)\right)$.
Necessity. Let $A \in\left(l_{\infty}^{\nu}(p, s), l_{\infty}(q)\right)$. If condition (2) is not satisfied, then there exists $N>1$ such that

$$
\sup _{n}\left(\sum_{k}\left|a_{n k} / v_{k}\right| k^{s / p_{k}} N^{1 / p_{k}}\right)^{q_{n}}=\infty .
$$

So the matrix $B=\left(\left|a_{n k} / v_{k}\right| k^{s / p_{k}} N^{1 / p_{k}}\right) \notin\left(l_{\infty}, l_{\infty}(q)\right)$. Hence there exists an $x=\left(x_{k}\right)$ with $\sup _{k}\left|x_{k}\right|=1$ such that $B(x) \notin l_{\infty}(q)$.

Now choose a sequence $y=\left(y_{k}\right)$, where $y_{k}=\left(x_{k} / v_{k}\right) k^{s / p_{k}} N^{1 / p_{k}}$. Then $\sup _{k} k^{-s}\left|v_{k} y_{k}\right|^{p_{k}}=\sup _{k}\left|x_{k}\right|^{p_{k}} N<\infty$. That is, $y \in l_{\infty}^{v}(p, s)$. But

$$
A_{n}(y)=\sum_{k} a_{n k} y_{k}=\sum_{k} a_{n k}\left(x_{k} / v_{k}\right) k^{s / p_{k}} N^{1 / p_{k}},
$$

so that

$$
\sup _{n}\left|A_{n}(y)\right|^{q_{n}}=\sup _{n}\left(\sum_{k} a_{n k}\left(x_{k} / v_{k}\right) k^{s / p_{k}} N^{1 / p_{k}}\right)^{q_{n}}=\infty
$$

That is, $A(y) \notin l_{\infty}(q)$, contradicting $A \in\left(l_{\infty}^{\nu}(p, s), l_{\infty}(q)\right)$.

Corollary 4 (Bilgin [1998]). $A \in\left(l_{\infty}(p, s), l_{\infty}(q)\right)$ if and only if

$$
\sup _{n}\left(\sum_{k}\left|a_{n k}\right| k^{s / p_{k}} N^{1 / p_{k}}\right)^{q_{n}}<\infty \quad \text { for every integer } \quad N>1
$$

Proof. Follows from Theorem 3, taking $v_{k}=1$ for each k.

Corollary 5 (Sirajudeen [1981]). $A \in\left(l_{\infty}(p), l_{\infty}(q)\right)$ if and only if

$$
\sup _{n}\left(\sum_{k}\left|a_{n k}\right| N^{1 / p_{k}}\right)^{q_{n}}<\infty \quad \text { for every integer } \quad N>1
$$

Proof. Follows from Theorem 3, taking $s=0$ and $v_{k}=1$ for each k.

Corollary 6 (Basarir [1995]). Let p be bounded. Then $A \in\left(l_{\infty}(p, s), l_{\infty}\right)$ if and only if

$$
\sup _{n}\left(\sum_{n}\left|a_{n k}\right| k^{s / p_{k}} N^{1 / p_{k}}\right)<\infty \quad \text { for every integer } \quad N>1
$$

Proof. Follows from Theorem 3, taking $v_{k}=1$ and $q_{k}=1$ for each k.

Corollary 7 (Lascarides and Maddox [1970]). Let p be bounded. Then $A \in\left(l_{\infty}(p), l_{\infty}\right)$ if and only if

$$
\sup _{n}\left(\sum_{k}\left|a_{n k}\right| N^{1 / p_{k}}\right)<\infty \quad \text { for every integer } \quad N>1
$$

Proof. Follows from Theorem 3, taking $s=0$ and $v_{k}=q_{k}=1$ for each k.

Theorem 8. $A \in\left(l_{\infty}^{v}(p, s), c_{0}(q)\right)$ if and only if $\left(\sum_{k}\left|a_{n k} / v_{k}\right| k^{s / p_{k}} N^{1 / p_{k}}\right)^{\dot{q}} \rightarrow 0$ as $n \rightarrow \infty \quad$ for every integer $N>1$.

Proof. Sufficiency. Let $x \in l_{\infty}^{v}(p, s)$. So that $\sup _{k} k^{-s}\left|v_{k} x_{k}\right|^{p_{k}}<\infty$. Choose $N>\max \left(1, \sup _{k} k^{-s}\left|v_{k} x_{k}\right|^{p_{k}}\right)$. Then

$$
\begin{aligned}
\left|A_{n}(x)\right|^{q} n & \leqslant\left(\sum_{k}\left|a_{n k} / v_{k}\right|\left|v_{k} x_{k}\right|\right)^{q_{n}} \\
& \leqslant\left(\sum_{k}\left|a_{n k} / v_{k}\right| k^{s / p_{k}} N^{1 / p_{k}}\right)^{q_{n}} \rightarrow 0 \text { as } n \rightarrow \infty
\end{aligned}
$$

Hence $A_{n}(x) \in c_{0}(q)$ and $A \in\left(l_{\infty}^{v}(p, s), c_{0}(q)\right)$.
Necessity. The necessity of the condition is obtained in a similar manner as done in Theorem 9(ii) ([4]), by choosing a sequence $x=\left(x_{k}\right) \in l_{\infty}^{\nu}(p, s)$ as:

$$
\begin{aligned}
x_{k}=(N+1)^{-1 / p_{k}} v_{k}^{-1} k^{s / p_{k}} \operatorname{Sgn}\left(a_{n k} / v_{k}\right) & \text { for all } n \text { and for } 1 \leqslant k \leqslant k_{j} \\
=(N+j)^{-1 / p_{k}} v_{k}^{-1} k^{s / p_{k}} \cdot \operatorname{Sgn}\left(a_{n k} / v_{k}\right) & \text { for all } n \text { and } k_{j-1} \leqslant k \leqslant k_{j} ; \\
& j=2,3, \ldots
\end{aligned}
$$

Corollary 9 (Bilgin [1998]). $A \in\left(l_{\infty}(p, s), c_{0}(q)\right)$ if and only if

$$
\left(\sum_{k}\left|a_{n k}\right| k^{s / p_{k}} N^{1 / p_{k}}\right)^{q_{n}} \rightarrow 0 \text { as } n \rightarrow \infty \quad \text { for every integer } \quad N>1
$$

Proof. Follows from Theorem 8, taking $v_{k}=1$ for each k.

Corollary 10 (Willey [1973]). $A \in\left(l_{\infty}, c_{0}(q)\right)$ if and only if

$$
\left(\sum_{k}\left|a_{n k}\right|\right)^{q_{n}}=o(1)
$$

Proof. Follows from theorem 8, taking $s=0$ and $v_{k}=p_{k}=1$, $k=1,2, \ldots$

We now characterize the matrix transformation in $c_{0}^{\nu}(p, s)$.
Theorem 11. $A \in\left(c_{0}^{v}(p, s), l_{\infty}(q)\right)$ if and only if

$$
T=\sup _{n}\left(\sum_{k}\left|a_{n k} / v_{k}\right| k^{s / p_{k}} N^{-1 / p_{k}}\right)^{q_{n}}<\infty \quad \text { for some } \quad N>1
$$

Proof. Sufficiency. Let $x=\left(x_{k}\right) \in c_{0}^{\nu}(p, s)$. Then there exists k_{0} such that $\left|v_{k} x_{k}\right|<k^{s / p_{k}} N^{-1 / p_{k}}$ for some $N>1$ and $k>k_{0}$. Hence for every n we have

$$
\left|A_{n}(x)\right|^{q_{n}} \leqslant L\left|\sum_{k=0}^{k_{0}} a_{n k} x_{k}\right|^{q_{n}}+L\left|\sum_{k>k_{0}} a_{n k} x_{k}\right|^{q_{n}}=L\left(S_{1}+S_{2}\right)
$$

where $L=\max \left(1,2^{H-1}\right), H=\sup _{n} q_{n}$.

$$
\begin{aligned}
S_{1} & =\left(\left|\sum_{k=0}^{k_{0}} a_{n k} x_{k}\right|\right)^{q_{n}}=\left(\left|\sum_{k=0}^{k_{0}}\left(a_{n k} / v_{k}\right) v_{k} x_{k}\right|\right)^{q_{n}} \\
& \leqslant\left(\sum_{k \leqslant k_{0}}\left|a_{n k} / v_{k}\right| k^{s / p_{k}} N^{-1 / p_{k}} \max _{k \leqslant k_{0}}\left|v_{k} x_{k}\right| N^{1 / p_{k}} k^{-s / p_{k}}\right)^{q_{n}}<\infty .
\end{aligned}
$$

For the sum S_{2}, we have,

$$
S_{2}^{1 / q_{n}}=\left|\sum_{k>k_{0}} a_{n k} x_{k}\right|=\left|\sum_{k>k_{0}}\left(a_{n k} / v_{k}\right) v_{k} x_{k}\right| \leqslant \sum_{k>k_{0}}\left|a_{n k} / v_{k}\right| k^{s / p_{k}} N^{-1 / p_{k}}
$$

Hence $S_{2} \leqslant T$. Thus $A_{n}(x) \in l_{\infty}(q)$ and hence $A \in\left(c_{0}^{v}(p, s), l_{\infty}(q)\right)$.
Necessity. Using the same kind of argument to that in [4], the necessity of the condition is obtained in a similar manner as done in Theorem 1, by choosing a sequence $x \in c_{0}^{v}(p, s)$:

$$
x_{k}^{m}=\delta^{M / p_{k}} / v_{k} k^{s / p_{k}}\left(\operatorname{sgn} a_{n k} / v_{k}\right) \quad \text { if } \quad 1 \leqslant k \leqslant m
$$

and

$$
x_{k}^{m}=0 \quad \text { if } \quad k>m, \quad \text { where } \quad \delta<1 .
$$

Corollary 12 (Bilgin [2002]). $A \in\left(c_{0}^{\nu}(p, s), l_{\infty}\right)$ if and only if

$$
\sup _{n} \sum_{k}\left|a_{n k} / v_{k}\right| k^{s / p_{k}} N^{-1 / p_{k}}<\infty \quad \text { for some } \quad N>1
$$

Proof. Follows from Theorem 11, taking $q_{k}=1$ for each k.

Corollary 13 (Bilgin [1998]). $A \in\left(c_{0}(p, s), l_{\infty}(q)\right)$ if and only if

$$
\sup _{n}\left(\sum_{k}\left(\left|a_{n k}\right| k^{s / p_{k}} N^{-1 / p_{k}}\right)^{q_{n}}\right)<\infty \quad \text { for every integer } \quad N>1
$$

Proof. Follows from Theorem 11, taking $v_{k}=1$ for each k.

Corollary 14 (Başarir [1995]). $A \in\left(c_{0}(p, s), l_{\infty}\right)$ if and only if there exists $B>1$ such that

$$
\sup _{n} \sum_{k}\left|a_{n k}\right| k^{3 / p_{k}} B^{-1 / p_{k}}<\infty .
$$

Proof. Follows from Theorem 11 taking $v_{k}=q_{k}=1$ for each k.

Corollary 15 (Lascarides [1971]). $A \in\left(c_{0}(p), l_{\infty}(q)\right)$ if and only if there exists $B>1$ such that

$$
\sup _{n}\left(\sum_{k}\left|a_{n k}\right| B^{-1 / p_{k}}\right)^{q_{n}}<\infty .
$$

Proof. Follows from Theorem 11, taking $s=0$ and $v_{k}=1$ for each k.

Corollary 16 (Roles [1970]). $A \in\left(c_{0}(p), l_{\infty}\right)$ if and only if there exists $M>1$ such that

$$
\sup _{n} \sum_{k}\left|a_{n k}\right| M^{-1 / p_{k}}<\infty .
$$

Proof. Follows from Theorem 11, taking $s=0$ and $v_{k}=q_{k}=1$ for each k.

Theorem 17. $A \in\left(c_{0}^{\nu}(p, s), c_{0}(q)\right)$, if and only if

$$
\begin{equation*}
\left|a_{n k} / v_{k}\right|^{q_{n}} \rightarrow 0 \text { as } n \rightarrow \infty \quad \text { for each } k, \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{N} \underset{n}{\limsup }\left(\sum_{k}\left|a_{n k} / v_{k}\right| \dot{k}^{s / p_{k}} N^{-1 / p_{k}}\right)^{q_{n}}=0 . \tag{ii}
\end{equation*}
$$

Proof. Sufficiency. Let. $\varepsilon>0$ and $x=\left(x_{k}\right) \in c_{0}^{\nu}(p, s)$. Now by (ii) there exists integer $N>1$ such that

$$
\begin{equation*}
\underset{n}{\limsup }\left(\sum_{k}\left|a_{n k} / v_{k}\right| k^{s / p_{k}} N^{-1 / p_{k}}\right)^{q_{n}}<\varepsilon \tag{3}
\end{equation*}
$$

Since $x=\left(x_{k}\right) \in c_{0}^{v}(p, s)$, so there exists an integer k_{0} such that

$$
\begin{aligned}
&\left|v_{k} x_{k}\right|<k^{s / p_{k}} N^{-1 / p_{k}} \quad \text { for } k>k_{0} \\
&\left|A_{n}(x)\right|^{q_{n}}=\left|\sum_{k=1}^{\infty} a_{n k} x_{k}\right|^{q_{n}} \\
& \leqslant L\left[\left(\sum_{k=1}^{k_{0}}\left|a_{n k} x_{k}\right|\right)^{q_{n}}+\left(\sum_{k>k_{0}}\left|a_{n k} x_{k}\right|\right)^{q_{n}}\right] \\
& \leqslant L \max _{k \leqslant k_{0}}\left|v_{k} x_{k}\right|^{q_{n}}\left(\sum_{k=1}^{k_{0}}\left|a_{n k} / v_{k}\right|^{q_{n} / H}\right)^{H} \\
&+L\left(\sum_{k>k_{0}} a_{n k} / v_{k} \mid k^{s / p_{k}} N^{-1 / p_{k}}\right)^{q_{n}}
\end{aligned}
$$

where $L=\max \left(1,2^{H-1}\right), H=\sup _{n} q_{n}$. By taking limsup as $n \rightarrow \infty$, by (i) and (3) we see that $A(x) \in c_{0}(q)$. Hence $A \in\left(c_{0}^{v}(p, s), c_{0}(q)\right)$.

For the necessity of (i), taking $x=\left(0,0, \ldots, 0,1 /\left|v_{k}\right|, 0, \ldots\right)$ with $1 /\left|v_{k}\right|$ at the k-th place and 0 elsewhere. We get $\left|a_{n k} / v_{k}\right|^{q_{n}} \rightarrow 0$ as $n \rightarrow \infty$. The necessity of (ii) is obtained in a similar manner as done in Theorem 8.

Corollary 18 (Bilgin [1997]). $A \in\left(c_{0}(p, s), c_{0}(q)\right)$ if and only if
(i) $\left|a_{n k}\right|^{q_{n}} \rightarrow 0$ as $n \rightarrow \infty$ for each k, and
(ii) $\lim _{N} \limsup _{n}\left(\sum_{k}\left|a_{n k}\right| k^{s / p_{k}} N^{-1 / p_{k}}\right)^{q_{n}}=0$.

Corollary 19 (Maddox) [1972]). $A \in\left(c_{0}(p), c_{0}(q)\right)$ if and only if
(i) $\left|a_{n k}\right|^{q_{n}} \rightarrow 0$ as $n \rightarrow \infty$ for each k, and
(ii) $\quad \lim _{N} \limsup _{n}\left(\sum_{k}\left|a_{n k}\right| N^{-1 / p_{k}}\right)^{q_{n}}=0$.

Proof. Follows from Theorem 17, taking $s=0$ and $v_{k}=1$ for each k.

References

[1] M. Basarir, On some new sequence spaces and related matrix transformations, Indian J. Pure Appl. Math. 26, 10 (1995), 1003-1010.
[2] T. Bilgin, Dual Spaces of Certain sequence spaces, Y.Y.U Journ. of Faculty of Education 1, 2 (1996), 81-88.
[3] T. Bilgin, Matrix transformations in the sequence space $c_{0}(p, s)$ and $b_{o}(p, s)$, Analele Universitatii din Timisoara, Vol. 36 (1998), 3-12.
[4]. T. Bilgin, Matrix transformations of some generalized analytic sequence spaces, Math. Comput. Appl. 7, 2 (2002), 165-170.
[5] R. Colak, P. D. Srivastava and S. Nanda, On certain sequence spaces and their Köthe-Toeplitz duals, Rendiconti di Matematica, Serie VII, 13 (1993), 27-39.
[6] C. G. Lascarides, A study of certain sequence spaces of Maddox and a generalization of a theorem of Iyer, Pacific J. Math. 38, 2 (1971).
[7] C. G. Lascarides, I. I. Maddox, Matrix transformations between some classes of scquence spaces, Proc. Camb. Phil. Soc. 68 (1970), 99-104.
[8] I. I. Maddox, Spaces of strongly summable sequences, Quaterly J. Math. Oxford (2) 18 (1967), 345-355.
[9] I. J. Maddox, Operators on the generalized entire sequences, Proc. Cam. Phil. Soc. 71 (1972), 491-494.
[10] J. W. Roles, ph. D. Thesis, University of Lancaster, 1970.
[11] S. Simons, The sequence spaces $l\left(p_{v}\right)$ and $m\left(p_{v}\right)$, Proc. London Math. Soc. (3) 15 (1965), 422-436.
[12] S. M. Sirajudeen, Inclusion theorem of matrix transformation of some generalized sequence spaces, Soochow J. Math. 7 (1981), 165-174.
[13] M. A. I. Willey, On sequence of bounded linear functional with application to matrix transformations, J. Lond. Math. Soc. 7 (2) (1973), 19-30.

Yüzüncü Yil University
Faculty of Education
Department of Mathematics
Van-Turkey
e-mail: tbilgin@yyu.edu.tr

