OPEN PROBLEMS ON THE RELATION BETWEEN ADDITIVE AND MULTIPLICATIVE STRUCTURE

Juraj Kostra

Abstract

This paper presents open problems on the relation between additive and multiplicative structures of cyclotomic fields.

Introduction

In the first part we consider units in cyclotomic fields. The first three problems are from papers [8], [9], [10] of Morris Newman. Let K be an algebraic number field of degree n over the rationals \mathbb{Q}. It is known that there are only finitely many units α of K such that $\alpha+1$ is also a unit. It was shown by Newman [7] that there cannot be more than n consecutive units in K and that this bound is the best possible in the sense that for every $n>3$ there is a field K of degree n over \mathbb{Q} containing n consecutive units.

Now let $K=\mathbb{Q}\left(\zeta_{p}\right)$, where ζ_{p} is the p-th root of unity, $p>3$ is a prime. In any such field there exist four consecutive units

$$
\zeta_{p}+\zeta_{p}^{-1}-1, \zeta_{p}+\zeta_{p}^{-1}, \zeta_{p}+\zeta_{p}^{-1}+1, \zeta_{p}+\zeta_{p}^{-1}+2
$$

Newman [9] proved the following theorem.
Theorem A. Let $p>3$ be a prime. Let R denote the maximum number of consecutive residues modulo p and N the maximum number of consecutive

Received: 5.11.2002. Revised: 8.01.2003.
AMS (1991) subject classification: Primary 11R27, 11R33, 11C20.
Key words and phrases: Unit, normal basis, circulant matrix, cyclotomic field.
The research was supported by Grant GA ČR 201/01/0471.
nonresidues modulo p. Then the maximum number k_{p} of consecutive units of $\mathbb{Q}\left(\zeta_{p}\right)$ satisfies

$$
k_{p} \leqslant \max \{4, R, N\} .
$$

This result implies that, for the primes $p>3$ under $100, k_{p}$ is exactly 4 for $p=5,7,11,13,17,19,23,29,31,37,47,73$ (and possibly for the other primes as well). Another consequence is that $k_{p}<2 p^{\frac{1}{2}}$.
This suggests the first problem of Newman.
Problem 1. Let k_{p} be the maximum number of consecutive units of p-th cyclotomic field. Is $k_{p}=4$ for all primes $p>3$?

Actually we do not know if k_{p} is bounded by a constant, that is, if k_{p} is independent of p.

In 1974 Newman asked the following question on sums of two units in $\mathbb{Q}\left(\zeta_{p}\right)$.

Problem 2. Which rational integers are sums of two units in p-th cyclotomic field $\mathbb{Q}\left(\zeta_{p}\right)$?

It was shown independently in [10] and [6] that any number m with $\operatorname{gcd}(m, p) \neq 1$ is not the sum of two units in $\mathbb{Q}\left(\zeta_{p}\right)$. In both papers the number 6 is considered. Newman [10] wrote:
"We have not managed to express 6 as the difference of two units. We do not know whether this is intrinsic to the problem or not. The integer 6 is a notorious exception in problems of this type."

In the paper [6] it is proved that for K a normal tamely ramified cubic algebraic number field, the number 6 is not the sum of two units in K. So we can ask the following question.

Problem 3. Does there exist a prime p such that 6 is the sum of two units in the p-th cyclotomic field $\mathbb{Q}\left(\zeta_{p}\right)$?

In the second part we deal with integral normal bases generated by a unit, that is, with integral bases consisting of all conjugates of a unit. In 1991 in [4] it was given the following necessary condition for the existence of such a basis for tamely ramified cyclic algebraic number fields of prime degree l over the rationals \mathbb{Q}.

Theorem B. Let K be a cyclic extension of the rationals \mathbb{Q} of a prime degree l. Let $m=p_{1} p_{2} \cdots p_{s}$ be the square free conductor of the field K. Let a unit ε generate integral normal basis of K / \mathbb{Q}. Then

$$
l^{l} \equiv 1 \quad\left(\bmod p_{i}\right)
$$

for all $i=1,2, \ldots, s$, or

$$
l^{l} \equiv-1 \quad\left(\bmod p_{i}\right)
$$

for all $i=1,2, \ldots, s$.
For a fixed l, this condition implies that there exist at most a finite number of such fields. In the papers [3],[4] all fields of degrees 2, 3, 5 and 7 with integral normal basis were determined. In each case there are two such fields specified in the following list.

1. $K=\mathbb{Q}\left(\zeta_{3}\right)$ and $K \subset \mathbb{Q}\left(\zeta_{5}\right)$ for $l=2$,
2. $K \subset \mathbb{Q}\left(\zeta_{7}\right)$ and $K \subset \mathbb{Q}\left(\zeta_{13}\right)$ for $l=3$,
3. $K=\mathbb{Q}\left(\zeta_{11}\right)$ and $K \subset \mathbb{Q}\left(\zeta_{71}\right)$ for $l=5$,
4. $K=\mathbb{Q}\left(\zeta_{29}\right)$ and $K \subset \mathbb{Q}\left(\zeta_{113}\right)$ for $l=7$.

In all of the above cases $\operatorname{Tr}_{\left(\zeta_{m}\right) / K}\left(\zeta_{m}\right)$ is a unit. We note that $\operatorname{Tr}_{\mathbb{Q}\left(\zeta_{m}\right) / K}\left(\zeta_{m}\right)$ generates an integral normal basis.

Problem 4. Let K be a tamely ramified cyclic algebraic number field of degree l over \mathbb{Q} with conductor m. Is it possible that for K / \mathbb{Q} there exists an integral normal basis generated by a unit and $\left.\operatorname{Tr} \zeta_{\zeta_{m}}\right) / K\left(\zeta_{m}\right)$ is not a unit?

The conductors of all fields in the list above are prime numbers. So we ask the following question.

Problem 5. Does there exist a tamely ramified cyclic algebraic number field of degree l over \mathbb{Q} with composite conductor m and with integral normal basis generated by a unit over \mathbb{Q} ?

Another observation is that in all cases considered in the list above, for given l, there are exactly two cyclic fields K of degree l over \mathbb{Q} with integral normal basis generated by a unit.

Problem 6. Does there exist a common upper bound for the number t of fields of given degree with an integral normal basis generated by a unit? Is $t=2$?

In the third part we discuss special circulant matrices which transform a normal basis of an order of a cyclic algebraic number field to normal bases of its suborders. In 1985 in [5] the following theorem was proved.

Theorem C. Let K be a cyclic algebraic number field of degree n over the rationals \mathbb{Q}. Let

$$
\mathbf{A}=\operatorname{circ}_{n}\left(a_{1}, a_{2}, \ldots, a_{n}\right)
$$

be a regular circulant matrix over \mathbb{Z}. For $i=1,2, \ldots, n$ let A_{i} be the algebraic complement of a_{i} in the matrix A. Assume that the following two conditions are satisfied:

$$
\sum_{i=1}^{n} a_{i}= \pm 1
$$

and

$$
a_{i} \equiv a_{j} \quad\left(\bmod \frac{|\mathbb{A}|}{\left(A_{1}, A_{2}, \ldots, A_{n}\right)}\right) .
$$

Then the matrix A transforms a normal basis of any order B of the field K to a normal basis of an order C of the field K.

Example. For $n=2$ and any integers a_{1}, a_{2} satisfying $a_{1}+a_{2}= \pm 1$ the matrix $\operatorname{circ}_{2}\left(a_{1}, a_{2}\right)$ satisfies also the additional condition in the Theorem and so transforms a normal basis of any order of a quadratic field to a normal basis of an order of the field.

The circulant matrices satisfying the conditions in Theorem C have been characterized in [1], [2] as follows.

Theorem D. Let G be a multiplicative semigroup of circulant matrices of degree n satisfying the assumptions of the Theorem C . Let U be the multiplicative group of unimodular circulant matrices of degree n. Let H be the semigroup of circulant matrices of the type $\operatorname{circ}_{n}(a, b, \ldots, b)$ such that

$$
a+(n-1) b= \pm 1
$$

Then $G=H \cdot U$.
By the above example if a circulant matrix over rational integers transforms a normal basis of an order of a quadratic field K to a normal basis of its suborder then it transforms any normal basis of any order to a normal basis of a suborder. The conjecture is that the same will hold at least for $n=3$. We have the following open problem.

Problem 7. Let K / \mathbb{Q} be a cyclic extension of degree n. Characterize all circulant matrices of degree $n>2$ over the rational integers \mathbb{Z} which transform any normal basis of any order of K to a normal basis of its suborder in K.

Conjecture. All such matrices are characterized by theorems C and D .

We do not know of any example of a circulant matrix which transforms a normal basis of an order to a normal basis of its suborder and at the same time it does not do the same for another normal basis.

Problem 8. Let K / \mathbb{Q} be a cyclic extension of degree n. Does there exist a circulant matrix \mathbb{A} over \mathbb{Z} with the property that there are orders A, B, C in K with normal bases

$$
\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\rangle, \quad\left\langle\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right\rangle, \quad\left\langle\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\rangle,
$$

respectively, and

$$
\left\langle\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}\right\rangle=\left\langle\beta_{1}, \beta_{2}, \ldots, \beta_{n}\right\rangle \mathbf{A}
$$

while

$$
\left\langle\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right\rangle \mathbf{A}
$$

is not a normal basis of any order in K ?

References

[1] Z. Divišová, J. Kostra, M. Pomp, On transformation matrix connected to normal bases in cubic field, Acta Acad. Paed. Agrriensis, Sec. Mathematicae 27 (2002), to appear.
[2] Z. Divišová, J. Kostra, M. Pomp, On transformation matrix connected to normal bases in orders, Journ. of Algebra, Number Theory and Applications, to appear.
[3] A. Dvorák, D. Jedelský, J. Kostra, The fields of degree seven over rationals with a normal basis generated by a unit, Math. Slovaca, 49, 2 (1999), 143-153.
[4] S. Jakubec, J. Kostra, K. Nemoga, On the existence of an integral normal basis generated by a unit in prime extensions of rational numbers, Math. of Comput., 56, 194 (1991), 809-815.
[5] J. Kostra, Orders with a normal basis, Czech. Math. Journ., 35(110) (1985), 391-404.
[6] J. Kostra, On sums of two units, Abh. Math. Sem. Univ. Hamburg, 64 (1994), 11-14.
[7] M. Newman, Units in arithmetic progression in an algebraic number field, Proc. of the Amer. Math. Soc., 43, 2 (1974), 266-268.
[8] M. Newman, Diophantine equations in cyclotomic fields, J. reine angew. Math, 265 (1974), 84-89.
[9] M. Newman, Consecutive units, Proc. of the Amer. Math. Soc. 108, 2 (1990), 303-306.
[10] M. Newman, Units differing by rationals in a cyclotomic field, Linear and Multilinear Algebra 34, 1 (1993) 55-57.

Department of Applied Mathematics

Faculty of Science
University of Zilina
J. M. Hurbana 15

01026 Zilina
Slovakia
e-mail: kostra@fpv.utc.cz

