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ON A TWO POINT BOUNDARY VALUE PROBLEM
FOR LINEAR DIFFERENTIAL EQUATIONS
OF THE FOURTH ORDER
IN THE COLOMBEAU ALGEBRA.

JAN LiGEzA

Dedicated to Professor Tadeusz Diotko on the occasion on his seventieth birthday

Abstract. The existence and uniqueness of solutions of the two point boun-
dary value problem for ordinary linear differential equations of fourth order in the
Colombeau algebra are considered.

1. Introduction
We examine the following problem

(1.0) L(z) = 2" () +p1(t)=" (¢) +p2(t)z" () +p3(£) 2" (£) +pa (8)z (£) = ps (8),

(L.1) Li(z) =z(0) =dy, Ly(z)=z(T)=ds, Ls(z)=2'(0)=ds,
| Li(z)=2'(T)=dy, di€R, 0<T <o0; i=1,2,3,4.

We assume that p; (j = 1,2,3,4,5) are elements of the Colombeau

algebra G(R), d; (i = 1,...,4) are elements of the Colombeau algebra R of

generalized real numbers; z(0), z'(0), z(T), z'(T) are understood as the value

of the generalized functions z and z’ at the points 0 and T respectively (see

[1]). The elements p; (j = 1,2,...,5) are given. The multiplication, the
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derivative, the sum and the equality are meant in the Colombeau algebra
sense. We prove theorems on the existence and uniquence of solutions of
problem (1.0)—(1.1). Proved theorems generalize in some cases results given |
in [5].

2. Notation

Let D(R) be the set of all C* functions R — R with compact support.
For ¢=1,2,... we denote by A, the set of all functions ¢ € D(R) such that
the relations

(2.1) / p(t)dt =1, / tho(t)dt =0, 1<k<gq
—00 00

hold.

Next, £[R]is the set of all functions R : A; XR — R such that R(¢,t) €
C for every fixed ¢ € A;.

If R € E[R], then DyR(¢p,t) for any fixed ¢ denotes a differential ope-
rator in t (i.e. DxR(p,t) = j%(R(cp, t)) for k > 1 and DoR(¢p,t) = R(yp,t)).

For given ¢ € D(R) and £ > 0 we define ¢, by

1 ¢

(2.2) ee(t) = ¢ (;) :

An element R of £[R] is moderate if: for every compact interval K of

R and every differential operator Dy there is N € N such that the following
conditions holds: for every ¢ € Ay there are ¢ > 0, &g > 0 such that

(2.3) sup |DyR(pe,t)] < ce™N if 0<e<e.
teK

We denote by £[R] the set of all moderate elements of £[R].

By I" we denote the set of all the increasing functions « from Ninto Rt
such that a(g) — oo if ¢ — co.

We define an ideal N[R] in Em[R] as follows: R € AN[R] if for every
compact interval K of R and every differential operation D) there are N € N
and @ € T such that the following condition holds: for every ¢ > N and
@ € A, there are ¢ > 0 and g9 > 0 such that

(2.4) sup |DiR(@e,t)] < ce*(@-N if 0<e<e.
teK

The algebra G(R) (the Colombeau algebra of generalized functions) is
defined as quotient algebra of £a[R] with respect to MNR] (see [1]).
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For R € Ep[R] the coresponding class G = R+ N[R] € G(R) is denoted
by [R], i.e. G = [R]. Vice versa, if G € G(R), then its representative in
Em[R] is usually denoted by Rg. If G; = [Rg,] € G(R),¢ = 1,2, then we
define G1G2 := [Rg, Rg,]. (This definition does not depend on the choice of
Rg, and Rg,.)

We denote by & the set of all functions from .4, into R. Next, we denote
by &pr the set of all the so—called moderate elements of & defined by

(2.5) & = {R € & : there is N € N such that for every ¢ € AN there are
£ >0, mo > 0 such that |R(yp.)| < ce™ for 0 < & < 10}.

The ideal A of £ps is defined by

(2.6) N ={R € & : there are N € N and a € T such that for every ¢ > N
and ¢ € A, there are ¢ > 0, 7o > 0 such that |R(yp.) < e*(9)- =N for
0<e< no}

and
K=Y (see 1)
=7 (see[l]).

It is known that R is an algebra while it is not a field. Its elements are
called generalized real numbers.

If R € Epm[R]is a representative of G € G(R), then for a fixed ¢ the map
Y : ¢ = R(p,t) € Ris defined on A; and Y € Epy. This class is denoted by
G(t) and is called the value of the generalized function G at the point ¢ (see
[1]).

We say that G € G(R) is a constant generalized function on R if it
admits a representative R(ep,t) which is independent on t. With any Z € R
we associate a constant generalized function which admits R(p,t) = Z(p) as
its representative, provided we denote by Z a representative of Z (see [1]).

We denote by R (‘Pat)a ( ®y )vR:c(' (907 ) Rm(to) ((P) and Rz(')(to)(g‘o)
the representatives of elements p;, z, z(¥), z(to) and z() (¢,), respectively.

Throughont the paper K denotes a compact interval in R containing
zero and [0, T7] is the compact interval (i.e. —00 <0< ¢t < T < 00).

For z € C* we put

| Da ()% = hax |Dn(z) (), el = Z || Di() I

i=0

We say that z € G(R) is a solution of the equation (1.0) if there is
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n € N[R] such that for any representative R, of z, the relations

Ly(Rz(#,t) = DaRa(p,t) + Ry, (,1) D3Ro(e, t)
+ RP: ((P’ t)D2R-T(90, t) + RPs (99’ t) DR, (‘Pa t)+
+ RPa (‘P, t) Rz(‘P, t) = RPs ((,0, t) + 77(90, t)

are satisfied for all ¢ € A; and ¢t € R.
3. The main results
First we shall give two hypotheses.
Hypothesis H;
(3.0) | ‘pi € G(R) for 1=1,2,...,5;
the elements p, € G(R) (for v = 1,2,3,4) admit representatives Ry, (¢,t)

with the following properties: for every K there is N € N such that for every
¢ € AN there are constants ¢ > 0 and ¢¢ such that

t
(3.1) sup l/ |Rp, (¢e, 8)lds| < ¢ if 0<e<ego and v=1,2,3,4.
teK .
0

REMARK 3.0. Let & denote the generalized function which admits as
a representative the function Rs(p,t) = ¢(t), where ¢ € A;. Then é has
property (3.1).

Hypothesis H,

The elements p, € G(R) (v = 1,2, 3,4) admit representatives R, (¢, t)
with the following property: there is N € N such that for every ¢ € An
there are constants g9 > 0 and v > 0 satisfying at least one of the following
six conditions:

T T )
Io(p1, 2, 3, pa)e = b( / Ry, (e, 8)ldt + f | Ry (00, )t
(3.2) ° °

T T
+ [ 1Rns(oerlat+ [ 1Ry, )ldt) <11,
0 0
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where
T3 = 394/13-138), , 1
b—-l'z)—2'+ 162 T+§T+1 and 0<€<€0,
(3.3) Lpo)e = as [ 1Ryl < 1=,
0
where
T3
a4=]§§ and 0<€<€0,
T
(3.4) I3(p3)e = a3 / |Rp, (we, t)|dt <1 -1,
0
where
az = w T? and 0< e < g,
162
(3.5) Be)e = oz [ [Rlpe it <17,
.0
where

4
ay = 27T énd 0 < e < ey,

T
(36)  hee= [IRn(eatlit 1=y for € (0,20)
) :
(3.7) Ry (pet) >0  for t€[0,T] and € € (0,&).
Now we will give theorems on the existence and uniqueness of the solu-
tion of the problem (1.0)-(1.1). Apart from the problem (1.0)-(1.1) we will
consider the homogeneous problem of the form

(3.8) L(z)=0, Li(z)=0, i=1,23,4

4 — Annales...
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THEOREM 3.1. We assume that conditions (3.0)—(3.1) are satisfied and
x = 0 is the unique solution of the problem (3.8) in G(R). Then the problem
(1.0)-(1.1) has unique solution in G(R).

REMARK 3.1. If p; € G(R) (i = 1,2,3,4) have property (3.1), then the
problem :

(3.9) L(z) = ps (1),

(3.10) =D (tg) =r;, to €R; r; €R, j=0,1,2,3,
has a unique solution z € G(R) (see [9]). Moreover every solution = of the
equation (3.9) has a representation :

(3.11) T = cotPo + 191 + c2tp2 + 393 + Q,

where ¥; (7 =0,1,2,3) are solutions of the problems
(3.12)

L) =0, $(t)=1, ¥ (to)=0 for j#r; j,r=0,1,23,
Q is a particular solution of the equation (8.9) and ¢, ¢y, 2, c3 are genera-

lized constant functions on R. The solution x is the class of solutions of the
problems

(313) L(F’(x) = RPs (‘Pa t) .
(3.14) W (to) = Rr,(t), ¢ €A, j=0,1,2,3;
where

Ly(t) = 2™ () + Ry, (@, t)z" (t) + Rp, (¢, £)2" (2)

(315) + Ry, ((p, t):l:’(t) + R, (g, t)x(t) (see [9])

THEOREM 3.2. We assume that all assumptions of Theorem 3.1 are
satisfied. Then the problem

(3.16) " Ly (2) = Rpy (06, 1),

(3.17) Li(z) = Ry, (¢e), 1=1,2,3,4,

has ezactly one solution z(p.,t) (for sufficiently large N and for small
e > 0), z(p,t) € Em[R] and z = [Rz(p,t)] is a solution of the problem
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(1.0)—(1.1). (We put z(pe,t) = 0 if the problem (3.16)—(3.17) has no solu-
tion).

THEOREM 3.3. We assume conditions (3.1)-(3.2). Then the problem
(3.8) has only the trivial solution z in G(R).

THEOREM 3.4. We assume conditions (3.1) and (3.83). Then the problem
(3.18) z""(t) = —pa(t)z(t), Li(z)=0, i=1,23,4
has only the trivial solution z in G(R).

REMARK 3.2. Let py denote the generalized function defined by

aso(t
R,,(¢,t) = .+°°4<p( ) ’

where ¢ € Ay and ag < 1. Then py has properties (3.1) and (3.3).
THEOREM 3.5. We assume conditions (3.1) and (8.4). Then the problem
(3.19) 2" (t) = —ps(t)2'(t), Li(z)=0, i=1,2,3,4
has only the trivial solution z in G (R):
THEOREM 3.6. We assume conditions (8.1) and (3.5). Then the problem
(3.20) " (t) = ~pa(t)2"(t), Li(z)=0, i=1,2,3,4
ha.s; only the trivial solution z in G(R).
THEOREM 3.7. We assume conditions (3.1) and (8.6). Then the problem
(3.21) " (t) = —p3()z"'(t), Li(z)=0, i=1,2,3,4
has only the trivial solution z in G(R).

THEOREM 3.8. We assume conditions (3.1) and (3.7). Then the problem
(3.18) has only the trivial solution z in G(R).
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4. Proofs.

PrRooF oF THEOREM 3.1. We examine the following systems of equa-
tions

(4.1) He=10,
where
(42)  H=(H), He=Li($5"), b=(bs,...,00)7,

bi = di - LI(Q)’ ’i,f’= 1a2,3a4;

o, %1, P2, ¥3 are solutions of the problem (3.12) and T denotes the trans-
pose.

Assumptions of Theorem 3.1 and Theorem from [10] imply that det H
is an invertible element of R which completes the proof.

ProoF OF THEOREM 3.2. Let Ry, (¢c,t) (5 =0, 1,2, 3) be solutions of
the problems

Lo (¥:)=0, R{ (e, 00=1, Ry V(e 00=0
for i#r, i,r=1,2,3,4.

(3.12)"

Then every solution z(.,t) of the equation (3.16) has the representation

3
(4'3) w(‘/’s’ t) = ch (Qoe)Rile (‘Ps:t) + Q((Ps, t),
=0 '
where
t 3 .
14 Qert) = [ W) (X (R (Pert)  Dajs(51)) Ry ),
0 =0
t

(4.5) W (e, t) = exp ( /R,,, (@e 8)ds),

0

D4yjt1(s)e denote the cofactor of agj41(s)e of the matrix U, = (air(s))e
provided

(4.6) air(s) = Rf;r 11) (e, 8).
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We consider the equation (3.16) with the following conditions

(4.7) Li(z(¢e,t)) = Ra,(@e), 1=1,2,3,4.

By (3.17), (4.3) and (4.7) we obtain the systems of equations
(4.8) H(pc)e(pe) = b(ee),

where

(4.9) H(pe) = (Hir(9e)),  Hirlpe) = L) (g2, 9)),

bi(pe) = Ry, (pe)—Li(Q(pe)), c(pe) = (c1(pe)s - - €alpe))™ (657 =1,2,3,4).

Applying assumptions of Theorem 3.2 and relations (4.2)-(4.9) we conc-
lude that there is N € N such that: for every ¢ € Ay there are ¢ > 0 and
€0 > 0 such that

(4.10) |detH(p.)] > ce™  for 0<e<eg

(because det H is an invertible element of R).
Using (4.3)-(4.10) we deduce that problem (3.16)-(3.17) has exactly

one solution z(¢,,t) (for ¢ € A, ¢ > N and 0 < € < &g). By (4.8)-(4.10)
we get

(4.11) c(pe) = H™ (0:)b(pe)

(for ¢ € Ay and 0 < € < g9).
Relation (4.11) and Remark 3.1 yield (we put ¢;(¢c) = 0, z(p.,t) =0if
det H(pc) = 0)

(4.12) ¢i(¢) € Em (=0,1,2,3).
Since
(4.13) Ry,(p,1) € Em[R]  (for j=0,1,2,3)

therefore z(p,t) € EM[R], which completes the proof of Theorem 3.2.

Before giving the proof of Theorem 3.3 we will formulate a lemma.
LEMMA 4.1. Let G(t, s) be a function defined by

_[Gilt,s),  0<t<s<T,
(4.14) G(t,s) = {Gz(t, s), 0<s<t<T,
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where

3 2
(4.15)  Gi(t,s) = (_ls_+ 12 l) £y ( Lo 8 ls) 2

373 277 6 272 T 2
and
1  1s° 18 s 1 1
4.16) Gytys)= |-+ J34 (=2 S V24 252 13,
(416) * Ga(t,s) ( 3T3+2T2)t +(2T2 T)t ot gs
Then
TT T3
4.17 Gt,s)|=1G(=,=)|=—=
(@.17) t,ssel;g,r)l t.9)1=16(3.3)l 192 = %
G G (3913 — 138)T? _
where
5-—+/13 13-1
(4.19) t2=T( 6\/_)’ 32=T<\/_6 )1
0*°G 9’G T 4
(4.20) t’ssél}g,T) —a—ﬁ-(t, s)‘ = l ETD (0, §>l = ET = ag,
&
4.21 su —(t,s)| =1
(4.21) t,se(g,T) 0t3( )

and the derivatives are understood in the classical sense.

PRrOOF OF THEOREM 3.3. If = [R,(¢,t)] is a solution of the problem
(3.8), then

(4.22) L,(Rz(9,t)) = n(e,t)

and
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where

(4.24) n(p,t) ENR], mi(p) €N, p€ A, i=1,2,3,4

Hence
(4.25)
T

= - [ Gt Mulp, s+ As(O)E + M) + Ar(@)t+ Ao,

0
where
(4-26) Mx(‘p, 3) = RPx ((p’ S) Rz’“(‘P’ 3) + RP2 (SO’ S)Rl'“ ((p’ 8)

+ Ry, (¢, 8) R (e, s) + Ry, (o, 8)Rz(p, 8) — n(eps s)

and
(427) AJ(SO) EN for 7=0,1,2,3.

By virtue of relations (4.17)—(4.27) and (3.2) we have

1Rz (e, t)lIfo,1 < aal(p1s P2, B3, Pa)e - | Ra(e, D)lIfo 1y

(4.28)
+a4/|n %,S)Ids-l-ZA we)T7,
j=0

"Rz' (‘P:)t)”?o,’!‘] < a3f(plap2’p3,p4)c * ”Rz(‘Pea t)”?O,T]

(4.29) 7 \ -
+as [ e o)lds+ +31Aa(p0)IT2 + 21Ax(0O)IT + s (o),
0

"Ra:”(ﬂoea t)"?o,T] S a2i(plap21 P3,P4)e ) ”Rz‘(‘per t)”?o,T]

(4.30) , | ’
taz f [1(@er 5)]ds + 6 A3 (26| + 2| Ao (i2c)|

and

|| Rz m((p;,t)"[o < I(p1, P2, 3, P4)e | R (e )||[0T]

4.31 f
(4.31) +/|n(4pc,s)|ds+6|A3(soe)|,
0
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where

. ~ I 2,
(4.32) I(Pl,Pz,pa,p.;);: 0(p1a12bp37p4)s’

¢ is sufficiently small and ¢ € Ay (N is sufficiently large).
Taking into account (4.28)—(4.32) we get

(433) ”R-T(SOE’ t)”'[?‘O,T] S IO(plap2ap3ap4)€”R:c(()oe’t)”?(),T] + ﬁ(ﬂos);
where
(4.34) T(p) € N.

By (4.33)—(4.34) we deduce that (for ¢ > Ny, ¢ € A, and 0 < £ < &)
(4.35) : | Rz (e, V)lffo, 1y < cae™ =M1,

If to € (0,T), then (4.35) implies

(4.36) R (o, to) €N for j=12,1,2,3.

On the other hand R;(¢,,?) is a solution of the problem

(4.37) Ly, (z) = n(epe, t)

(4.38) 29 (to) = Ry0) (e o).
Applying Remark 3.1 and (4.37)-(4.38) we conclude that
(4.39) Rz (p)t) € N[R]

which completes the proof.

The proofs of Theorem 3.4-3.7 are similar to that of Theorem 3.3.
Proor oF THOREM 3.4. We start with the equalities

(4.40) R (@,t) = =Ry, (0, 8) Re(0: 1) + (e, 1),

R:(#,0) = m(p), Rz(e,T)=m(ep),

(4.41) Ry (9,0) = m3(¢), Ra(p,T) = m(p),
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where 5;(p) € N (fori =1,2,3,4), ¢ € A; and z is a solution of the problem
(3.18). Applying (4.25) we get

(4.42) | Rz (e, t)”?o,T] < I(ps)e|| R (e, t)”?o,’[‘] + n(e)s
where
(4.43) ne)eN (0<e<ey, ¢E€AN).

As in the proof of Theorem 3.3, we conclude that R.(¢,t) has property
(4.39), which completes the proof of Theorem 3.4.

PRroOOF oF THEOREM 3.5. Let z = [R(¢p,t)] be a solution of the pro-
blem (3.19). Then -

(4.44) Ry (pe,t) = — Ry, (Pert) Rer(@ey t) + n(pey t)
and
(4.45) Rz (e, 0) = M1 (pe), Rz‘(‘Pth) = 12(pe),
Ryt (¢e,0) = m3(pe)y  Ror (9, T) = nalepe),
where
(4.46) ni(p) €N (t=1,2,3,4).
Hence |
T
Ra(pe,t) = - /G(t’3)(RP3(90513)R1’(‘P5'3) = (e, 5))ds
(4.47) -0
+ Z Aj (‘Pe)tjv
j=0
where
(4.48) Al eN  (7=0,1,2,3).

According to (4.14)—(4.18) we have

(4.49) IRw (@6, )0,y < T3 (p3)ell Rar (92, D)o, 2y + ma (pe),

where

(4.50) na(p) EN.
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By (3.4) and (4.49), for ¢ > Ny, ¢ € A, and ¢ € (0,¢) we get

(4.51) ' | Rer (Soe’t)”?o,T] < ey e~
Since
t
(4.52) / Ryt (e, 5)ds+ Rao(ps) 0),
0

therefore (by the Schwartz inequality)
(4.53) 1Ba (e t)llfo,y < cop™(@~Mi

(for ¢ > Ni, p€ A; and 0 < ¢¢ < €f).
Taking into account relations (4.47)-(4.53) we infer that

(454 1B (e, 1) 7y < cac™@=e
(foquNz, (PGAq, 0<€<€2).

We see that R (¢, t) has property (4.35). Consequently R, (¢,t) € A/ [R]
which completes the proof of Theorem 3.5.

ProOOF OF THEOREM 3.6. We consider the following equality
(4.55)

3
Rolpert) = = [ Glt5) (Rpa(er )Rt (0 3) = mler s)ds + 3 As(pe)t
j=0

where 7(p,t) € N[R] and A;(¢) € N. Hence we have
(4.56) 1Bz (pe; )lfo,77 < re(D 2

(for p € Ay, ¢ > N3, 0 < e <&}). On the other hand

T
(4.57) R, (Pe, /Rxn Lps, dS+R$I(Lpe,0)
0

and

t
(458) (Psa /Rx" Pey S dS+R (80670)3
0
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(4.59) R:(»,0) €N, Ru(p,0)€N.

Therefore by the Schwartz inequality R.(yp,t) has properties (4.35) and
(4.39), which completes the proof of the theorem.

PRrROOF OF THEOREM 3.7. We examine the equality
(4.60)

R:(pe, 1) /G(t S pl(‘Psv )Rx"’(‘/’s’ (e, 8 +ZA Pe)t?,

where 17 and A; (j = 0, 1,2, 3) have properties (4.46) and (4.48). Obviously
(4'61) ”R_.L.m (Soe’t)”FO,T] S C3€a(q)_N3

(for p € Aqy ¢ > N3, 0 < € < €3). Relations (4.60)—(4.61) lead to inequalities
(4.28) and (4.35) which completes the proof of Theorem 3.7.

Proor oF THEOREM 3.8. Let z = [R;(¢,t)] be a solution of the pro-
blem (3.18). Then R,(¢,t) has properties (4.40)—(4.41). Hence we have (ha-
ving integrated by parts)

(4.62) /Rx"” (@ert) Re(pe,t)dt = Rom (e, T) Ry e, T)—

Rym (‘Ps’ 0) Ro(pe,0) — Ry (e, T)Rz (¢e, T) + Rz (@, 0) Re(e, 0)
T

+ [ Ba(ptidt == [ Roulipe 0B et + m5(e),
0 0 :

where
(4.63) 5 () € N.

Relations (4.62)-(4.63) lead to

T
(4.64) / o (Pert) dt+/Rp4 Pes t) RY(pe, t)dt = 16(pe),

0

where

(4.65) n6() € N
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Therefore
T
(4.66) / R2(p,t)dt € N
0
and
T
(4.67) / Ry, (¢, ) R2(p, ) dt € .
0
Applying the Schwarz inequality to the equalities
t
(4.68) Ryt (e, t) = / Ry (e, 8)ds + Ry (e, 0),
0
¢
(4.69) Rel@ert) = [ Ro(pes s + Rulie, 0
0
we obtain
(4.70) ”Rx'(‘Pe,t)”?o,T] < =M
and
(a.71) 1Rapes )l < coc @M

(for g € Ay, g2 Ny, 0 < <eb).
On the other hand R.(p,,t) satisfies the following equality
(4.72)

Re(pest) = = [ L5 Ry (000 Rali0r) = 1li0r )
0

R” 5,0 Rxlll E,O
+ Ra(9e,0) + Ror (00, 0)t + 28002 | B (96, 0)

3
90 TR

Hence

Ry (‘Pcv t) = —/ (t ;|8)2 (Rm (‘Pe, S)R:L‘((Psa 3) - "’(‘Psa 3))d3
(4.72') 0 )
Ryt (06, 0)

+ Rzl(QOE,O) + R '1(995,0)t+ ——2r——t .
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Taking into account (3.1), (4.41) and (4.70)~(4.72) we get a system of equ-
ations (putting t =T')
(4.73)
2 3 2
{ Berlo T2 BunlgeT — gy () R (i, 0)T -+ Rl — i),

where 77(¢) € M and 7s(p) € N. Relation (4.73) yields

12 [/ T? T3
(4.74) Ryn (e, 0) = T ("5"’77(‘19:) - ns(%)—ﬁ—)
and

12 (T?
(4.75) Ran(pe0) = 75 ( (00 - Treter))
Consequently
(4.76) Ry ((p, 0) EN and R, (90, 0) EN.

By (4.41), (4.76) and Remark 3.1 we deduce that R;(p,t) € Epm[R], which
-ompletes the proof of Thorem 3.8.

5. Remarks on Caratheodory’s and Colombeau’s
solutions of ordinary differential equations

REMARK 5.1. If g4,g92 € C°, then the classical product g1 «+ go and the
product gy o g2 in G(R) give rise to the same element of G(R).
Hence we obtain

THEOREM 5.1. We assume that
(5.1) py €C®, d;€R for v=1,2,3,4,5; i=1,23,4,

(5.2) the zero function is the unique solution of the problem (3.8) in the

classical sense,

(6.3) =1 is the solution of the problem (1.0)~(1.1) in the classical sense,
zq € G(R) s the solution of the problem

pa(t) 0 z(t) = ps(t)

(5.4) { L(z) = 2" (t) + p1(t) 0 2" (t) + p2(t) 0 2" (t) + p3(t) o2’ (t)+
o Li(z) =di, i=1,2,3,4.
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Then x, and x5 give rise to the same element of G(R).

PROOF OoF THEOREM 5.1. Let 2z, = [R,,(p,t)] be a solution of the
problem (5.4) and let z; be a solution of problem (1.0)—(1.1). Then

(5.5) L(z1) =ps(t), Li(z)=d;
and
(5.6)  L(Ray(0e,t)) = ps(t) + n(pest),  Li(Ro(@e,t)) = di + mi(ee),

where (i, t) € N[R], 7i(¢) € M and i = 1,2,3,4. Thus

(5'7) L(Rw(‘Peat)) = 77(9°=1t)9 L;(Rz((,%,t)) = "'771'(<P£)a
where
(5.8) Rz(peit) = 21(t) — Ry, (9e,t) and 1=1,2,3,4.

On the other hand R;(¢.,t) has a representation (4.3), where Q(¢.,t) is
defined by (4.4) (putting R,, (¢c, s) = (e, ). Relations (4.8)-(4.11), (4.3)
and (5.7) imply

(5'9) cJ(QD)EN? J=011’213
and consequently
(5.10) - @1(t) - Re,(9,t) € N[R]

This proves of Theorem 5.1.

REMARK 5.2. If p, € Lj,.(R), then

(o]

Ry (11) = / pr(t + cu)p(u)du = (py + ©) € Ene[R]

—00

and p, have property (3.1) for r = 1,2,3,4,5. It is known that every distri-
bution is moderate (see [1]). Multiplication in G(R) does not coincide with
usual multiplication of continuous functions in general (see [1]). As consequ-
ence solutions of differential equations in the Caratheodory sense and in the
Colombeau sense are different (in general). To repair to consistency problem
for multiplication we give the difinition introduced by J. F. Colombeau in [1].
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An element u of G(R) is said to admit a member W € D'(R) as the
associated distribution, if it has a representative R, (p,t) with the following
property: for every 1 € D(R) there is N € N such that for every ¢ € An we

~ have

-0

(5.11) lim / Ru(0, t)(t)dt = W ().

THEOREM 5.2. We assume that
(5.12) pv €L}, (R) for v=1,2,34,5
the zero function is the unique solution of the problem
(5.13) L(z)=0, Li(z)=0, i=1,2,3,4

in the Caratheodory sense,
x 1s the solution of the problem

(5.14) L(z) =ps(t), Li(z)=d;, d;eR (i=1,2,3,4);

in the Caratheodory sense,
Z € G(R) is the solution of the problem

(5.15) L(z)=ps(t), Li(x)=di (i=1,2,3,4).

Then # admits an assoctated distribution which equals z.

Proor oF THEOREM 5.2. Proof of Theorem 5.2 follows from the fact
that

Ry, (pest) = (pu * @e) (t) = pu(?)

in L} (R) and the continuous dependence of = on coefficients p, for v =
1,2,3,4,5. Indeed, let Ry, (¢c,t) (7 =0,1,2,3) be the solution of the pro-
blems (3.12)". Then we conclude that

(5.16) lim {77V (e, t) = 970 (1)

(almost uniformly) for i,r = 1,2, 3,4 and every fixed ¢ € Ay. This yields

(5.17) lim |detH.|=g#0, g€R
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for every ¢ € A; (det H, is defined by (4.10)). Let R.(p.,t) be a solution
of equation (3.16) satisfying the conditions

(5.18) L;(Rz(pe,t)) = d; for €€ (0,61),p€ Ay

(N is sufficiently large) and i = 1,2, 3,4.
By virtue of relations (4.4)—(4.6), (4.11) and (5.16)—(5.18) we get

(5.19) B_Lno Ro-1(pest) = g(r=1) (t)

(almost uniformly for every fixed ¢ € Ay and r = 1,2,3,4) and z is a
solution of the problem (5.14) in the Caratheodory sense. On the other hand
T = [Rz(p, t)] is the solution of the problem (5.15). (We put R.(p,t) = 0 if
det H, = 0). This proves of Theorem 5.3.

COROLLARY 5.1. We assume that
(5.20) py € L}, (R), v=1,23,4.
and
. T
(5.21) I(p1,p2,p3,ps) = b (E/Im(t)ldt) < 1.
v=1 0

Then the problem (3.8) has onlu the trivial solution in the Caratheodory
sense.

COROLLARY 5.2. We assume conditions (5.20) and

T

(5.22) I(ps) = a4 f Ipa(8)ldt < 1.
0

Then the problem (3.18) has only the trivial solution in the Caratheodory
sense.

COROLLARY 5.3. We assume conditions (5.20) and

T
(5.23) Is(ps) = as / Ips(t)]dt < 1.
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Then the problem (3.19) has only the trivial solution in the Caratheodory
sense.

COROLLARY 5.4. We assume conditions (5.20) and

T
(5.24) I (p2) = a; / |p2(t)ldt < 1.
0

Then the problem (3.20) has only the trivial solution in the Caratheodory
sense.

COROLLARY 5.5. We assume conditions (5.20) and

T
(5.25) hon) = [ Ims(@ld < 1.
0

Then the problem (3.21) has only the trivial solution in the Caratheodory
sense.

- COROLLARY 5.6. We assume conditions (5.20) and
(5.26) pa(t) >0  for almost all ¢ in [0, 7).

Then the problem (3.18) has only the trivial solution in the Caratheodory
sense.

REMARK 5.3. The boundary value problems for generalized differential
equations can be considered on the other way (for example: [2]-[4], [6]-[8],

[11]-[14]).

" REMARK 5.4. The definition of generalized function on an open interval
(a,b) C R is almost the same as the definition in the whole R (see [1]). It is
not difficult to observe that the proved theorems are also true in the case when
generalized functions p; and = are considered on an interval (a,b) D [0,T].
For this purpose it is necessary to formulate properties (3.0)-(3.7) on the
iterval (a,b). '

5 — Annales...
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