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O N F U N C T I O N S O F B O U N D E D N - T H V A R I A T I O N 

MAŁGORZATA W R Ó B E L 

1. Introduction 

The class of functions of bounded n-th variation, denoted by BVn[a, b], 
was introduced by M . T. Popoviciu in 1933. In 1979 A . M . Russell in [6] 
proved the Jordan-type decomposition theorem for functions from this class, 
then, applying this result, showed that each BVn[a, b], with a suitable norm, 
is a Banach space. For n = 0 and n — 1 the above facts are well known 
classical results (cf., for instance, [5], [7]). 

However, the proofs given by A . M . Russell for n > 2, based on some 
properties of divided differences, are rather complicated. The aim of this 
note, is to give an essentially simpler arguments both, for the Jordan-type 
decomposition theorem as well as for the completness of the space BVn[a, b]. 
In our proofs we apply the Popoviciu theorem and the fact that for every 
positive integer n > 2, a function / is n-convex iff the derivative / is 
(?t — l)-convex. 

Let us mention that the completness of BVn[a, b] can be applied in the 
theory of iterative functional equations (cf. [2] where the solutions of the 
class BV\[a,b] are investigated). 

2. Preliminaries 

We begin with the following definitions: 

DEFINITION 1. (cf. [8], p. 237). Let / : [a,b] -> E and let xi,...,xn+i 

be distinct points in [a, b]. The divided difference of order n of / at points 
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xi, ...,xn+i we define by reccurence: 

[xi\f] = f(xi), 

XN+1 — X\ 

DEFINITION 2. (cf. [8], p. 239). A function / : [a, b] -> R is said to be 
n-convex iff for all choices of x\ < Xi < ... < x„+2 in [fl> b]: 

[xi,...,xn+2;f] > 0. 

It is easily seen that 0-convex function is increasing and 1-convex func
tion is convex in the classical sense. 

DEFINITION 3. (cf. [8], p. 239). Let / : [a, b] -> R and let 

TO—n—1 

(2) Vn(f) := sup J2 I [xi+i> - ' a'i+n+i; /] - xi+n; f] \, 

where the supremum is taken over all the partitions 

P — {(^1) • • - i xm) • a = xx < ... < xm = b; m>n + 2). 

We say that / is of bounded n-th variation on [a, b] if and only if Vn(f) < oo, 
and denote by BVn[a, b] the class of all such functions. 

The following result by Popoviciu [4] plays a crucial role in our paper. 

L E M M A 1. / / / G BVn[a,b], n > 1, then f exists, f € J3V n _i [a, b], and 

(3) iiVn(f) = Vn-i(f), n> 1. 

If f £ BVi[a, b] then f'_ exists on (a, 6], f'+ exists on [a,b) and V\(f) = 
Vo(/+). (By f_ and f+ we denote the right and left hand derivatives of /, 
respectively). 

Lemma 1 implies that f(k\ k = l , . . . , n - 1, exist and they are finite in 
(a, b). Moreover (cf. [8], p. 27), if / G BVi[a, b] then / is absolutely continuous 
on [a, b] and it has finite derivatives exept for at most countably many points. 

Now let us quote 

L E M M A 2. (cf. [3], p. 392). For every positive integer n > 1, a function 
f : (a, 6) —> R is n-convex, iff f is of class C n _ 1 in (a, b) and the derivative 
f is (n — 1) -convex. 
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R E M A R K 1. Let n > 1 be a natural number and suppose that f : [a, 6] —> 
R is n-convex function. Then V„(/) < oo if and only if both f+ 1 (a) and 
/i"^ (b) exist and are finite. 

P R O O F . Notice that if / is ra-convex function on [a, b] then, by Definition 
3, we have 

Vn(/) = sup ( [ x m _ „ , . . . , xm-i , 6; /] - [a, x 2 , . . . , x n + 1 ; /]) 
p 

where the supremum is taken over all the partitions 

P = { ( x i , . . . , xm) : a = x i < ... < xm = 6; m> n + 2}. 

Since for n = 1 it is obvious (cf. [5], p. 569), assume that n > 1. 
According to [1] (cf. [1], Theorem 6) we have that the functions 

(•Em—ri) • • • > m—1) b', f) >• [ x m _ n , . . . , X T O _ i , 6j /] 

( a , x 2 , . . . , a ; n + i ; / ) -> [a,x2,...,xn+x;f] 

are monotonie increasing with respect to all the variables, and, consequently, 
we have 

V n ( / ) = lim [ x m _ n , . . . , x m _ ! , 6 ; / ] - lim [a, x 2 , . . . , z n + 1 ; / ] . 
xm-n-¥b- xn + i-m+ 

Thus (cf. [1], Theorem 7), if / | n ) ( a ) and / i n ) (6) are. finite then 

V„(/) = / [ n ) ( 6 ) - / i n ) ( a ) < o o . 

If / € BVn[a, b] then, by Lemma 1, we have 
/ (n- i) G BVi[a,b] and, therefore 

/+"^ («) and /I"^ (6) exist and are finite. 

According to this remark, not every ri-convex function belongs to BVn[a, b]. 

Note that, in view of Lemma 1, Lemma 2 and Remark 1 we immediately 
get 

L E M M A 3. Let n > 1 be a natural number. Suppose that a function f G 
X 

BV n _ i [ o ,6 ] is (n — l)-convex and put F(x) := / f(t)dt. Then V n ( F ) < oo. 

6 - Annates.. 
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3. A decomposition of functions of BVn[a, b] 

We are going to prove the following 

T H E O R E M 1. Every function of bounded n-th variation in a closed inte
rval is a difference of two functions which are n-convex and of n-th bounded 
variation. 

P R O O F . Suppose that / = g — h where g and h are n-convex functions on 
[a, 6] which are of bounded n-th variation. Let us remark here (cf. Definition 
2) that Vn(f) < Vn(g) + Vn(h), therefore / £ BVn[a, b]. 

The proof of the converse implication is by induction on n. It is true 
for n = 0 and n = 1 (cf. [8], Theorem 14D). Now assume that n > 1 and 
that every function / € BVk[a,b], k = 0, l , . . . , n - 1, may be represented 
as a difference g — h of two fc-convex functions such that g and h are of 
fc-th bounded variation, and take an arbitrary / £ BVn[a, b]. From Lemma 
1 it follows that / is a difTerentiable in [a,b] and / ' £ BVn^\[a,b]. By the 
induction hypothesis, there exist (n — l)-convex functions g\ and h\ such 
that f'=g\— h\ and g\,h\ € BVn-\[a,6]. Now put 

According to Lemma 2 and Lemma 3, g and h are n-convex and of bounded 
n-th variation. Since 

the induction completes the proof. 

R E M A R K 2.. It is evident that the decomposition of a BVn[a, b]-function 
in Theorem 1 is not uniquelly determined as we may add an arbitrary n-convex 
function to each component. 

a 

4. BVn[a,b] is a Banach space 

Define || • | | n : BVn[a, b] R + by the formula 

(4) II / | |« := Vn(f)+ I f(a) I + I / + ( « ) I +...+ I / i n ) ( « ) | . 
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It is easy to see that / G BVn[a, b] iff || / | | n < oo and that jBV n[a, b] is a 
real linear space with the usual addition of functions and multiplication by 
scalars. 

L E M M A 4. For every n, n = 0,1,..., the function \\ • ||n defined by (Ą) 
is a norm. 

P R O O F . If || / | | N = 0 then for every x i , . . . , x N + 2 € [a,6] such that 
xi < ... < xn+2 we have that | [ x 2 , x n + 2 \ f] - [ x i , . . . , x n + i : /] |= 0 which 
means that the divided difference [ x i , x N + 2 ; /] = 0. Thus (cf. [3], p. 398) 
/ is a polynomial of degree at most n. Since 

l/(«)H/+(«) l = - = l / i n ) ( « ) l=o, 
we have / = 0. It is obvious / = 0 implies || / | | „ = 0. 

Since 

[xlt...,xn+i;f + g] < [ x ! , . . . , x n + 1 ; / ] + [ x i , x n + 1 ; # ] 

and 
[xi , . . . , x n + i ; o ; / ] = a[xi, . . . , x n + 1 ; / ] 

f ° r fi 9 £ BVn[a,b], cv G R and x i , . . . , x n + i € [a,6], it follows that || • | | n 

defined by (4) satisfies all axioms of the norm. This completes the proof. 

Put 

BVNn[a, fc] := { / € BVn[a, b] : f(a) = / +(o) = ... = f{n)(a) = 0} 

and note that (BVnN[a, b], R, +, •, || • | | n ) is a normed linear subspace of 
(BVn[a, b], R, +, •, || • ||«) such that for / € BVn[a, b] we have || / | | „= Vn(f). 

In the sequel we write BVn[a, b] and BVnN[a, b] to denote the spaces 
( W n [ a , 6 ] , R , + , - , | | - ||„) and (BVnN[a, b],R, +, •, || • | |„) , respectively. 

L E M M A 5. For every n G {0,1,. . .}, BVnN[a, b] is a Banach space. 

P R O O F . Since the space J3Vó[a, 6] coincides with the Banach space 
BV[a, b] of functions of bounded variation, our lemma is true for n = 0. In 
the paper [5] there is the proof that it is also true for n = 1. Assume now 
that n > 1 and that BViN[a,b], i = 0, l , . . . , n - 1, are Banach spaces. In 
order to prove that BVnN[a, b] is a Banach space take a Cauchy sequence 
{fs)s€N °f elements of the space BVnN[a, b]. Thus, given £ > 0, there exists 
a number SQ G N such that 

(5) || fk - fa | l » < s, k,s>s0. 

6 * 
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In view of (3) we have 

I I I I / W J l U - i , k,se N. 

Therefore from (5) it follows that ( / ś )aeN' s a Cauchy sequence in BVn-\N[a, b]. 
By the induction hypothesis, BVN-\N[a, b] is a complete space, thus (f's)seN 

converges to an element F in BVn-iN[a,b]. Define / : [a,b] -> R by the 
formula 

/(») = J F{t)dt, x € [a, 6]. 
J a 

Obviously /(a) = 0, and since f+\a) = F | r - 1 * ( a ) for r = l , . . . , n , we also 

have /+(a) = = ... = /+ n ^(«) = 0. According to Theorem 1, there 
are (n — l)-convex and of (n — l)-bounded variation G and H such that 
F = G — H. Hence f — g — h where 

/»# rX 

g(x)= / G(t)dt, / i ( i ) = / H(t)dt, xe[o,b]. 
Ja Jo 

In view of Lemma 2 the functions g and / i are n-convex. Using Lemma 3 we 
obtain that g and h are of bounded n-th variation, therefore / € BVnN[a, b]. 
Because / 6 BVnN[a,b] and fs e BVnN[a,b], s 6 N, we have / - fs € 
.BV n Af[a, 6] and, by Lemma 1, we obtain 

\ \ f s - f \ \ n = ^ \ \ f ' a - F \ \ n . u 

and, consequently || fa — f ||„—» 0 as s - f oo. This implies that BVnN[a, b] 
is a complete space, which ends the proof. 

L E M M A 6. A function f € BVn[a,b] if and only if there exist g € 
BVnN[a, b] and A 0 , A N € R such that 

n 

f(x) = g(x) + J2Akxk. 

The function g and numbers AQ, AN ait uniquelly determined. 

P R O O F . Let us consider the system of n + 1 linear equations given by 
the formula 

«=0 V ' 
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for k = 0,1, . . . ,n, with the unknown Ao, • •., An. Because the main matric 
of this system is triangle, it is obious that the determinal reduces to the 
product of the elements of diagonal and it is easy to check that it is equal 

n 
W k\, so it is a Cramer system, and, consequently Ao,. • •, An exist and are 
k=l 
uniquelly determined. Put 

n 
g{x) := fW-J^A^-

From the definition of Ao,..-,An it is easily seen that g(a) = g'+(a) = 

... = g^(a) = 0 and, since Vn(f) = Vn(g), we have g € BVnN[a,b]. 

The proof of the converse implication follows immediately from the equ

ality V n ( / ) = Vn(g). The last equation holds true by the property that n-th 

variation of polynomials of degree at most n is equal zero (cf. [1], p.82). 

Now we are in a position to prove 

T H E O R E M 2. For every n € { 0 , 1 , } , BVn[a,b] is a Banach space. 

P R O O F . Let n be arbitrarily fixed and let {fs)seN be a Cauchy sequence 
in BVn[a, b]. Thus, for every e > 0, we can find So € N such that 

(6) \\ fs - fi \\n< e, s,l>s0. 

From Lemma 6, for every s € N , there exist a function ga € BVnN[a, b] and 
As

n,AQ such that 

fs(x) = gs{x) + Ps(x), 

where P3(x) := Anxn + ... + AQ. By (6) we hence get 

(7) \\(g,-gi) + {P,-Pi)\\n<e, 

for s, I > SQ. 
Therefore, from the Definition 4 of the norm, we obtain 

(8) Vn(gs - gi) <e, s,l> s0, 

and 

(9) (n — k)\ 
(A°n_k - Al

n_k)an~k + ... + k\(Ak - Ą ) < e, 

k = O , n . 
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According to (8), (ga)sen l s a Cauchy sequence in BVnN[a,b]. Conse
quently, there exists a function g € BVnN[a, b] such that 

|| ga - g ||n->- 0 as s oo, 

whereas (9) implies the convergence of the sequences (v4^)sepj, k = 0,...,n 
in R . Now we define 

Ak := lim Ai, k = 0,...,n, 
S-*OQ 

and put 

f(x) = g(x) + A n x n + ... + A0, x€[a,b]. 

Since g 6 BVnN[a, b] so / G BVn[a, b]. Letting / - ł oo in (7), we obtain 

II / . - / ||n< e, a > * o , 

which means that fs —> f as s -» oo. Thus we have proved that every Cauchy 
sequence in BVn[a, b] converges, and the proof is completed. 
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