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1. Introduction 

The aim of this paper is to investigate a discrete integral transform on 
the real line, which seems to be better adapted for some applications then 
the Hermite transform (see for example [6]). Another complete orthonormal 
system ( C O N ) of functions on the real line, which was introduced by Wie
ner is more appropriate for nonlinear differential equations of mathematical 
physics. The reasons are that there exist linearization formulas with respect 
to the argument as well as with respect to the index and that the functions 
tend to zero as |a;| tends to infinity as quickly as 

Notations: Let Z be the set of integers, N the set of positive integers, 
No = N U {0}, R-the field of real numbers, C-the field of complex numbers. 

Instead of «„., we will write ^ an. For abbreviation we denote Lo(R) = 

Lo, C , 0 0 (J?) = C 0 0 . By || || we will denote the norm and by (•, •) the inner 
product of Lo. 

2. The spaces A and Ak and their characterizations 

The set of functions {Qn}t=-<x>i where 

n = — oo 

(1) 
1 {-ix - |) 
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forms C O N in Lo. These functions were introduced by N . Wiener in 1949. 
For details we refer to [6], [9]. 

Obviously gn € C°° . Let S be the differential operator defined by 

(2) (Su)(x) = i{x-±i)±[(x+±i)u(x)]. 

We can easily check that, the functions gn are eigenfunctions of the differen
tial operator S belonging to the eigenvalues A n = — n; 

(3) Sgn = -ngn. 

DEFINITION 1. We consider the space A defined by: 

(4) A = {<peCoc". | | S V l l < ° ° , k€N0}. 

By integration by parts it is easy to verify that {S<p, gn) = {<p, Sgn) for 
y> € -4, n € Z . Notice that from this definition A C L->. A . H . Zemanian [10] 
proves that A is a complete countable multinormed space with the system 
of semi-norms {afc}£L0, where otkK'p) := I ^ V I I - Notice also that functions 
gn, n € Z' belong to A. S is a continuous linear operator of A into itself. 

T H E O R E M 1. For each element ip G A we have the representation 

(5) <|5 = 5 I ^ ' e n ^ B -

We have the following characterization of the space A: 

T H E O R E M 2. If <p is in A, then <p = ^2angn and J2\n\2k\an\2 is co
nvergent for each k € No, where an = (<p, gn) Conversely if Yl\n\2k\an\2 

convergent, then the series ^2,angn converges to some <p in A. 

For the proof see [10], p. 312-313 or [11], p. 268. 

DEFINITION 2. For each k e N and <p £ A we define 

(6) M l : = ( ( 5 2 + / ) V v ) . 

Immediatly we see that the following theorem holds. 

T H E O R E M 3. We have following properties of\ \k-' 

(7) M l = (kj) \\Sl<p\\2 for each keN and <p € A, 
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(8) Mfc+i > \f\k > IMI f°r each k G N and ^ e A 

Notice, that | \ k is the norm in A for each G N . 

DEFINITION 3. By .4^ we denote the completion of A in the norm | |^, 
for each k G N . 

T H E O R E M 4. 77*e norms | |^ ore compatible in the following sense: 
If a sequence {<pn} °f elements of A converges to zero with respect to the 
norm | \ m and is a Cauchy sequence in the norm \ \k (m < k), then it also 
converges to zero in the norm \ \k- {Compare [7], p. 

Since the norms \ \k are compatible, A is complete and the relation (8) 
holds, so we have 

For the proof see [4] or [7]. 
We have also a characterization of A k'. 

T H E O R E M 5. The function p belonging to L-i is in Ak if and only if the 
series Yln2k\an\2 i& convergent, where an — (<p,gn)-

For the proof see [7], p. 34. 

3. The dual spaces A1 and A'k and their characterizations 

DEFINITION 4. By A'k and A' we denote the dual space of Ak and A, 
respectively. 

It neans that A'{A'k) is the space of all continuous linear functionals on 

(9) .4 C . . . C Afc+i C Ak C . . . C A2 C At C L2, 

oo 

(10) 

A{Ak). 
For / G A' and <p G A, we use the following notation: 

T H E O R E M 6. If f £ A' then f = J2(f^°n)Qn, where the series is con
vergent in A'. 
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For the proof see [10] or [11]. 

T H E O R E M 7. The following inclusions take place: 

CO 

(11) L2CA\cĄc...C Ą C A'k+l C.CA' and A' = ( J A'k. 
k-l 

For the proof see [4]. 
We have also characterizations of A'k and A'. 

T H E O R E M 8. / / / is in A', then the series ^2angn, an = f{o~H) con
verges to f in A' and there exists an integer k G No such that the series 
Y^, \n\~2k\an\2 is convergent. 

Conversely if the series ^3 l r a l - 2 f c | a n | 2 i$ convergent, then there exists 

a continuous linear functional f in A' such that /(7/^) = an. 

For the proof see [10], p. 323-324 or [11], p. 271-272. 

T H E O R E M 9. / / / is in A', then f belongs to A'k if and only if the series 
^3 | r a | - 2 f c | a „ | ' 2 is convergent, where an = f{o~^). 

For the proof see [7], p. 36, theorem 4.9. 

4. Connection between Ak and the Sobolev space Wk,i 

DEFINITION 5. We shall denote by Wm>2 for m € N , the subspaces of 
L2 denned by 

{/ e L2 : f(u) € L2 for v € { 0 , 1 , . . . , m}, where 

is the weak derivative of / } . 

The vector space Wmo equipped with the norm: 

l l / I U . 2 = ( E H / ( i / ) U' 
\i/=0 

is called Sobolev space and it is Banach space. 

DEFINITION 6. By DL2 we shall denote the space of all smooth functions 
(p such that tp^ e L2 for v e N . 
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The convergence in DL2 may be defined by the family of norms || • | | m i 2 

for m = 0,1, 2 , . . . . 
Let A be a linear functional on DL2 continuous with respect to the norm 

|| • | | m > 2 . It is known that such functional takes the following form (see [8], p. 
201) ' 

(12) 
m „ 

A M = ] T / Mx)<Plu)(x)dx for ip G DL2, 

where fu for v G { 0 , 1 , . . . , m} are fixed elements of L2. We shall now show 
that the functional A can be extended on l f m ? 2 by continuity and formula 
(12) also holds. 

Let be 9 G Wmo- Then by virtue of density of DL2 in WM^ (see for 
example [1]), there exists a sequence {<pn}neih 9n € DL2 f ° r G N , such 
that: 

(13) 0 for v = 0,l,...,m. 

From Holder's inequality we have: 

(14) j[U{x)^]{x)-fp{x)p>[l/){x)]dx 

R 

Since (13) and (14), therefore 
m „ 

A(v?)= lim A ( 9 n ) = y / f„(x)<pM(x)dx for <p£Wm,2. 
1S = 0 R 

T H E O R E M 10. Let A : Din C be a linear functional continuous with 
respect to the norm || • ||m.j2 and g G DLi, /g{x)dx = 1 and ge(x) — e~ly ( f ) 

and Age{x) = A{g,(x - •))• 
Then 

R 

/ k9e {x)<p{x)dx tends to A((p) as e -> 0 for ip G W, 

P R O O F . An easy computation shows that: 
(15) 

/ 
R 

hg,{x)<Pn(x)dx - A{pn) = 

m „ » 

£ / [fv(x-ey)-fu{x)]g(y)dwW(x)dx iovpneDL2 

•'=°R R 
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Assume that a sequence {(fn}ne^i <Pn € Di2 for » G N , converges to <p in 
Wmt2, then 

o) I \ge{x)<fn(x)dxn-^? j A9t(x)ip{x)dx 
R R 

b) A ^ l ^ A M 

E / / L M * - ey) - fv{x))g{y)dy^{x)dx -> 

J2 U"(x ~ - U(x)]g(y)dy^\x)dx. 

From a) b) c) it follows: 

[\ac(x)p(x)dx-A(p) = JT f f[fAx-ey)-Mx)} 

g{y)dyp(u)(x)dx for ^ G Wm;2. 

The rest, part of the proof is as in the proof of Lemma 1 in [2]. 

T H E O R E M 11. 

(16) A j C H ' i , ! for k = 1 , 2 , . . . 

P R O O F . (Compare Th . 6 in [2]). Let <p be in A ^ . In accordance with 
Definition 3 <p is in Li

lt is easy to see that 

(17) g'n = -niQn-i + (2n + l ) /£„ - (ra + l)ign+i-

According to Theorem 5 the function if can be represented as follows 

9 = ^ ^ where an = (<p,gn). 

Formally differentiating this series we obtain 

^ O n ^ ' n = - * E nangn-l + * ^ ( 2 n + 1)«„£„ 

- + l)«n£ra+l -
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By virtue of Theorem 5 it follows that the series £ | « | 2 | f f l n | 2 i Yl |2 ra+l | 2 | a n | 2 

and ^2\n + l | 2 | a n | 2 are convergent so nanQn-i^i'^n + l)angn and 
Yl{n + l ) f l n £ n + i are convergent in L2- Hence f' is in L2-

Analogously we will prove theorem 14. First using the formules (26) and 
(27) it can be shown that (f^ € L 2 for v 6 { 0 , 1 , . . . , k} in the case k > 1. 

R E M A R K 1. Remark 1 If A£ D'L2 is functional continuous with respect 
to the norm || • ||m,2> then we will writte that 

T H E O R E M 12. If A belongs to W-k,2, then the restriction A of the func
tional A to Ak belongs to A'k. 

P R O O F . By virtue of Theorem 10 

tends to A{f) as s -+ 0 for f G Wk,2-
Therefore, in view of Theorem 11 we infer that the expression (19) 

converges to A(f) when e —> 0 for f 6 Ak. Taking into account that .4^ is 
complete we conclude, by the Banach-Steinhaus theorem that A belongs to 

COROLLARY 1. 7/A is in W-k,2< then A = 

(18) A e W-m,2 := (Wm,2)'. 

(19) 

R 

A(e„). 

5. Some functionals from the space A'k 

Now we are going to show the examples of functionals in A'k. 

DEFINITION 7. For H N and f 6 .4 we define the functionals: 

(20) 

(21) 
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DEFINITION 8. For k = 1 we define functional 
+ '>0 

(22) 
I f 1 

T y M — J (<p(x) - <p{-x)) — dx for p £ A. 

For k > 1 we define functional depending on evenness and oddness of k: 
for even k = 2m 

(23) 

^ r ( v ) : = / * " , B p ) + ^ ) ) 5 - ( # ) + ^ ( 0 ) ^ 2 + . . . t 

+ 
„ ( 2 m - 2 ) (0) 

1 
(2m - 2 ) ! da' for m = 1, 2 , . . . 

for odd k — 2m + 1: 
(24) 

-(2m+l) (V(«) - <p(-x)) ̂  

^ , o ) _ , + . . . + 9 l - - n ( 0 ) l _ _ ; 

for m = 1, 2 , . . . and y> 6 A. 

, 2 m - l 

Compare the definition in [5], p. 199. 
Notice that these functionals belongs to W-k,2 for appropriate A;. 

T H E O R E M 13. Functionals q^ j , T ^ - . ^ G A'J. 

T H E O R E M 14. Functionals pj^-y*, p ^ p r , <* ( f c - 1 ) € A'k \ A'k_x, 
for k > 1. 

We base on the following result (see for example [3]): 

Cauchy's representation theorem. If a simple closed curve C, positively 
oriented and lying in the region R, contains only points c of R in its interior, 
then a function f(c) analytic in R can be represented for points c interior to 
C by 

(25) 

and it's n-th derivative 

(26) 

Ż7TI J Z — C 

c 

J { ' 2m J ( 2 - c ) » + i ' 
c 
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Moreover, 

(27) j f(z)dz = 

(A region is defined as an open set which is arcwise connected.) 
We denote by and the parts of circle 

T+ ={i?e' 7 : 0 < t < TT} and r~ = {Re~H : 0 < t < TT} 
(28) 

for constant R > 0 

and we use the following property of rational functions: 

R E M A R K 2. Remark 2 If 
a) W(z) is rational function, 
b) W has no poles on the real line, 
c) lim zW(z) = 0 

then: 

(29) 

and 

(30) 

/ W(x)dx = lim / W(z)dz, 
J fl-H-oo J 

[-R,R]ur% 

j W{x)dx= Y\m j W(z)dz. 

~°° [-R,R]ur~ 

Now using the Cauehy's representation theorem and remark 2 we can 
calculate the integrals: 

L E M M A 1. For each s > 0 we have 

+f° x ( 0, for n<0 

(32) T 1 - , \a J i \ / 2 ¥ ( - l ) " ^ f ^ r 

- o o ^ 

for n < 0 

for n > 0 
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P R O O F . We want to calculate the integral 

(33) / ;Qn(x)dx= —•== / :— ' dx. 
J x + si*nK J x + st (x - l i ) n + 1 

-co — oo \ 2 i 

For n > 0 the function f(z) = — t

2 ; + 1 is analytic in the half-plane 

Inu < i , so by the Cauchy's representation theorem we have 

(34) / -J—.f(z)ds = -2irif(-ei) for R>s. 

[-/?,R]ur-

Using the remark 2 we receive 
(35) 

So from (33) and (35) we have (31) for n > 0. 
For n < 0 

(36) 
+ ° ° 1 1 + ° ° 1 ( 1 ' ) P _ 1 

:o,n(x)dx — —== / r— 2-r—„— dx where p = —n. 
— oo — oo 

Since the function /(^) = ^—jj r^i^y * s a n a lvt ic in the half-plane 

Im: > 0 so J fi^dz = 0 for each R > 0, and by the remark 2 
[-R,R]ur+ 

we have (31) for n < 0. 
It means that: 

1 r—^ (±-s)n 

( 3 7 ) ^ = ^ E ( - 1 ) n + 1 7 T — T ^ T S n ( x ) in L2 

Similary we have 

(38) ^ - = - f ^ £ ( - l ) n ( ; ~ g ) e B ( » ) in I 3 . 
n=-<x> V 2 ^~ ^ / 
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By definition 7 we have Fourier representation: 

+00 

+ 1 

1 

(39) - t t t ^ ) = ^ v ^ ^ - i r + V 
n=0 

and from theorem 9 € A ^ . 
Analogously we can receive 

- 1 

(40) —!—= t2>/27 V ( " 1 ) n e » in A j . 
• — Ik *—' 

We can also easily calculate that: 

9 0 0 

(41) , = - 3 . 5 ; < - « • • - • 
v n = —00 

Moreover, from the Sochotzki formulas: 

(42) (-l)niS + 1 1 

(•) - + 0Ś 

or 

(43) TTtS + ^ 
(•) . - 0 t ' 

we have: 

1 —1 00 

(44) - = ń/27 ^ (-1)" • e n + * V 2 ^ ( - i ) " + 1 • e „ . 
* ' n= — 00 n=0 

From the above statement and theorem 9, theorem 13 follows. 

Analogously we will prove theorem 14. First using the formulas (26) and 
(27) of the Cauchy's representation theorem and remark 2, we calculate the 
integrals. 

2 - Annales.. 
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L E M M A 2. For k > 1, k e N and e > 0 we /?ai>e: 
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This implies from definition 7 

(47) 

(. + 0 i ) f c ( ź ? n ) 

( 0, for n < 0 

}5Ei?l(_i)n 

— < (min {fc-l,n} 

E (n + 1 - / ) . . . (n + * - 1 - /) 

[for n > 0 

(48) 
1 

( • - 0 Ś ) * 

f v/2lr 

= < 

min {fc—1,—n—1} 

E 1 
(n+ / ) . . . (n + /-jfc +2) 

for n < 0 

( 0 , for n > 0 

Notice that, since Qn(x) = £„(-£)> for k > 1, A; € N we have: 

(49) * ( f c - 1 ) ( 5 „ ) = ( - I )*" 1 * = ^ ( O ) 

2 * 
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and 
(50) 

Qlnk-l)(0)=< 

i 2k 

( - l ) n - i r 
2TT 

(min {fc-l,-n-l} 

E 
/=o 

for n < 0 

ifc- 1 
( - n - / ) . . . ( - n + * - Z - 2 ) 

' min {k-l,n} 

E 
(=0 

for n > 0 

ifc - 1 
' ( n - / + l ) . . . ( n + j f c - l - / ) 

From Sochotzki formulas: 

(51) 

or 

(52) 

1 " W ^ k - i ) 
( )* (- + 0*)* ( fc-1)! 

1

 =

 1 • " ( - l ) f c

5 f f c - » 
( )fc ( .-00* (k- 1)! 

we can receive for k e N i > 1: 
(53) 

1 

O 

2r2 fc-i 

,;k 
(_!)"+* 

min {fc-l,-n-l} 

E 
;=o 

for n < 0 

2iF2*-1 

/!(*: - 1 - / ) ! 
; - n - / ) . . . ( - n + i b - / - 2 ) 

- ( -1)" 

{min{A:-l,n} 'j 

S / ! ( j f e - i - / ) ! ^ - / + 1 ) - ( n + fc-1-f)| 

for > 0 

From the previous statement and theorem 9, theorem 14 follows. 



The expansion of some distributions into the Wiener series 21 

REFERENCES 

[1] R. A. Adams, Sobolev spaces, Academic Press, New York 1975. 

[2] A. Cichocka, Wr. Kierat. An application of the Wiener Junctions to the Dirichlet problem 
of Laplace equation, to appear in Integral Transforms and Special Functions. 

[3] H. Cohn. Conformal Mapping on Riemann Surfaces, Dover Publications, Inc. New York 
1980. 

[4] I. M. Gelfand, G. E. Shilov, Generalized Functions, vol. 2, Academic Press, New York 
and London 1968. 

[5] I. M. Gelfand, G. E. Shilov, Generalized Functions, vol. 1, Academic Press, New York 
and London 1964. 

[6] H. J. Glaeske, On the Wiener-Laguerre transform of generalized functions, in: Generalized 
functions and convergence, eds. P. Antosik, A. Kamiński. 

[7] W. Kierat, Applications of quadratic forms generated by Sturm-Liouville operators in the 
theory of generalized functions, Prace Naukowe Uniwersytetu Śląskiego nr 388, Katowice 
1980. 

[8] L. Schwartz, Theorie des distributions, Hermann, Paris 1966. 

[9] N. Wiener, Extrapolation, Interpolation and Smoothing of Stationary Time Series, Tech
nological Press of MIT and J. Wiley, New York 1949. 

[10] A. H. Zemanian, Generalized Integral Transformations, Intersci. Publ., New York 1968. 

[11] Orthonormal Series Expansions of Certain Distributions and Distributional Transform. 
Calculus, J. Math. Anal. Appl. 14 (1966), 263-271. 

INSTYTUT M A T E M A T Y K I 
UNIWERSYTET ŚLĄSKI 
BANKOWA 14 
40 007 K A T O W I C E 
P O L A N D 


