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A b s t r a c t . Attractors and the associated basins of attraction for triple logistic maps 
are detected and visualized numerically (see [8]) as well as by the technique of critical 
manifolds due to C . Mira (see e.g., [7],[5]). 

1. Introduction 

The logistic maps have been often used as a paradigm for demonstrating 
many nonlinear phenomena like the chaotic behaviour. Moreover, this model 
is realistic, describing e.g. the population dynamics. In difference to the 
well-known one dimensional case, planar models have been studied rather 
rarely (see e.g., [1], [3], [4]). Besides the standard numerical simulations, the 
"analytical" method of critical curves has been applied for detecting the 
basins of attraction as well. In R2, the situation is already very complex. 
Hence, the natural question arises whether we are still able to analyze such 
models in R3 by means of the similar methods. This is the main stimulation 
and purpose of our paper. 

2. Preliminaries 

Let us consider the following cases of logistic maps: 
Classical logistic map: 

Tc : x —> Ax(l — x), 
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where A is a real parameter; 
Similar single logistic map: 

Ts : x -> (1 - A ) * + 4A.T;(1 - x), 

here and below real A belongs to interval [0,1]; 
Two-dimensional analogy—double logistic map: 

(x\ / ( l - A ) z + 4 A y ( l - y ) \ 

W A)y + 4 A . T ( l - x ) ; ' 

Three-dimensional analogy—triple logistic map: 

/x\ /(l-X)x + 4Xy(l-y)\ 
Tt:ly\->[ (l-X)y + 4Xz(l-z) 

\zj \(l-X)z + 4Xx(l-x)J 

In difference to Tc, the fixed points of Ts, Td and Tt are independent on 
the parameter A. For the triple logistic map, one can find eight fixed points 
(see Fig. la): 

-4 = [0,0,0], 
B = [0.75,0.75,0.75], 

C = Ci « [0.61,0.19,0.95], 
C-2 « [0.95,0.61,0.19], 
C3 w [0.19,0.95,0.61], 

D = Di a [0.41,0.12,0.97], 
D2 w [0.97,0.41,0.12], 
As w [0.12,0.97,0.41]. 

Fig. 1. a) Fixed points, b) new axes and c) triangular symmetry 
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Points A and B belong to the axis of symmetry A (three equal coordina­
tes), C i , C-2, C 3 and D\, Do, D 3 are the vertices of two equilateral triangles 
(orthogonal to A, they belong to planes x + y + z = const.). It will be con­
venient for us to change the axes from a usual (x, y, z)-system to another 
orthogonal system (X,Y,Z) (see Fig. lb)) in order to describe projections 
into plane x + y + z = const, directly in the (X, F)-plane. By this plotting 
we can discover the triangular symmetry of our pictures (see e.g. Fig. lc). 
For more details concerning the combination of chaos and symmetry see [2]. 
Hence, to obtain only qualitative properties we can reduce all d to C and 
all Di to D , i = 1,2,3. 

The simplest attractors in general are attracting fixed points, i.e. when 
all eigenvalues of the matrix of linearization at the fixed point have modules 
less than 1. 

The Jacobians for the triple logistic map and particularly those at the 
points A, B, C and D read approximately as follows: 

4 A ( l - 2 y ) 0 
J = I 0 1 - A 4 A ( l - 2 z ) 

0 1 - A 

1 - A 4A 0 \ . / l - A -2A 0 
JA = I 0 1 - A 4 A , JB = 0 1 - A -2A 

4A 0 1 - A / V -2A 0 1 - A , 

1 - A 2.49A 0 \ / 1 - A 3.06A 0 
Jc w I 0 1 - A -3.60A , JD« 0 1 - A -3.76A 

-0.89A 0 1 - A / \0.69A 0 1 - A 

Every fixed point has two complex conjugate eigenvalues (cev) (they 
have the same modules) and one real {rev). The situation is schematically 
sketched in the table below, where u denotes a module greater than 1 and s 
a one less than 1. 

A 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

A rev u u u u u u u u u u 
cev s s u u u u u u u u 

B rev s s s s s s u u u u 
cev u u u u u u u u u u 

C rev u « u u u u u u u u 
cev s s s s s u u u u u 

D rev s s s s s s u u u u 
cev u u u u u u u u u u 

file:///0.69A
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We can see that no fixed points are stable. They generate at least 
one-dimensional unstable manifold. 

So, every other attractor must be more complicated. There are exam­
ples of attractors for some values of parameter A in Fig. 2, represented by 
projection into the plane (A', Y). 

Fig. 2. Examples of attractors for the triple logistic map 

It is usually useful to make the bifurcation diagrams of our maps. Such 
diagrams describe the asymptotical behaviour of maps for a varying parame­
ter. Since the map is 3D and we are able to make only a ID projections, it is 
good to create more than one diagram. In Fig. 3, we can see two bifurcation 
diagrams for a single logistic map (on the left: whole and detailed) and two 
ones for the triple logistic map (on the right: for coordinates Z and A'). We 
can distinguish the interval of the same behaviour of single and triple logistic 
maps. 
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Fig. 3. Bifurcation diagrams for single and triple logistic maps 

Fig. 4. A n example of critical points technique 

3. Method of critical surfaces. 

Critical manifolds 
The rigor of the general theory of critical.manifolds has been justified 

in [5]. Here, we need only its brief restriction to differentiable noninvertible 
maps T : Rn —t Rn. Critical manifold LC (critical points for n = 1, critical 
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curves for n = 2 and critical surfaces for n — 3) is the geometrical locus 
of points x € Rn, having at least two coincident preimages, located on a 
manifold LC'_i. Since LC-i denotes the locus of the coincident preimages 
of LC. LC = T(LC-i). The LC-\ is defined by the equation 

det (J) = 0. 

Further manifolds can be defined by means of the iterates of LC or L C _ i , 
respectively. 

LCi = Ti(LC) = Ti+1(LC-1), i = 0, l ,2. . . , (LCQ = LC). 

The LC divides Rn into the subsets of points with the same number of 
preimages (see Fig. 4). Analogically, the LCi is dividing Rn into the subsets 
of points with the same number of preimages of the (i + l)-rank (i.e., the 
same number of preimages for the map T'). Such sequence of manifolds 
LC'i can define the absorbing set (i.e., the set which cannot be left by any 
trajectory after reaching it). This procedure is described in Fig. 4 (the single 
logistic map for A = 1) and Fig. 5 (there are examples for the double logistic 
map with two limit cycles and for a certain quadratic map with a chaotic 
attractor). 

Fig. 5. Examples of critical curves technique 
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4. Critical surfaces method for the triple logistic map 

As one could see above, for definition of L C _ i , we must solve the equ­
ation 

/ 1 - A 4 A ( l - 2 y ) 0 \ 
det(J)=det( 0 1 - A 4 A (1-2 2) = 0. 

\4A( l -2a?) 0 1 - A / 

For A = 1, the situation is quite simple: the LC-i is formed by three 
planes 

1 1 A 1 

x = -, y = - and * = - ; 
the LC by 

x = 1, y — 1 and 2 = 1; 

the Ld, i = 1,2,3, . . . b y 

a; = 0, y = 0 and 2 = 0. 

Thus, we can obtain the unite cube as an absorbing set (see Fig. 6). 
When parameter A decreases, the situation becomes rather complicated. 

For example, for A = 0.9, we can obtain the following: LC-\ is formed by 
the surface 

1 46657 - 93312y - 93312a,- + 186624a-y 
" ~ 93312 1 - 2y - 2x + 4xy 

_ 1 1 
~ 2 + 93312(1 -2y-2x + 4xy)' 

for LCi, i = 0,1,2,..., we are not able to find out such explicit formulas 
as for A = 1. Therefore, we tried to make the numerical iterates of LC-\. 
Nevertheless, only LC has some practical meaning (see Fig. 7). 

5. Numerical explorations 

When analytical methods cannot be applied, we try to use the numerical 
explorations (see [8]). The situation how the basins of attraction are com­
plicated, can been seen in Fig. 8. There are sections of basins of attractions 
(black) of the associated attractors (white) for some values of parameter A. 

To obtain 3D visualization, we can collect such sections to one picture. 
The example of such a technique is in Fig. 9, where A = 0.2. There are four 
attractors—limit cycles. The basins of small ones are "hidden"' in one big. 
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Fig. 6. Method of critical surfaces for A = 1: LC—\; 

LCQ; LC\; combination of LG'o and LC\ (a unite 

cube); side and front views of numerical results 

In Fig. 9, one can see the result of visualization, the attractors, front and 
back views. 

6. Concluding remarks 

The main question whether we are able to apply the method of critical 
manifolds in 3D was affirmatively answered only partially. In other cases, 
the situation is even more complicated. The numerical explorations seem to 
be more efficient here. Especially, when the analytical methods depend on 
computer aided visualizations (see Fig. 6). 
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Fig. 7. Method of critical surfaces for A = 0.9: 

LC-i; LCQ; LC\ (already rather complicated); side 

and front views of numerical results (in the side view 

on the left, the attractor is white, while the associated 

basin of attraction is black) 

Fig. 8. Sections of basins of attraction for some va­

lues of parameter A (basin of attraction of the main 

attractor—black, attractors and "subbasins" of at­

traction of other attractors—white) 
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Fig. 9. Visualization of basin of attraction for A = 0.2 
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