ON INVOLUTIONS SATISFYING A SYSTEM OF FUNCTIONAL EQUATIONS

Marta Dobosz-Smela and Marek Cezary Zdun

Abstract

In this paper we investigate a system of functional equations $$
\left\{\begin{array}{l} N \circ N=\mathrm{id} \\ N \circ f_{k}=f_{p-1-k} \circ N \quad k=0, \ldots, p-1 \end{array}\right.
$$ in finite and infinite interval, where f_{0}, \ldots, f_{p-1} are given real functions. Under suitable assumptions on f_{i} we prove that the system has a unique solution and this solution is continuous and decreasing.

Let us assume the following hypothesis
$\left(H_{1}\right) f_{0}, f_{1}, \ldots, f_{p-1}:[0,1] \rightarrow[0,1]$ are strictly increasing and continuous functions with $f_{0}(0)=0, f_{k-1}(1)=f_{k}(0), k=1, \ldots, p-1$ and $f_{p-1}(1)=1$, such that
(1) $\left|f_{k}(x)-f_{k}(y)\right|<|x-y|$, for $x, y \in(0,1), x \neq y, k=0, \ldots, p-1$.

The starting point of our considerations is the following result on generalized de Rham system.

Proposition 1. (see [4]) Let hypothesis (H_{1}) be fulfilled. Then the system

$$
\begin{equation*}
R\left(\frac{x+k}{p}\right)=f_{k}(R(x)), \quad \text { for } x \in[0,1], k=0, \ldots, p-1 \tag{2}
\end{equation*}
$$

has exactly one solution $R:[0,1] \rightarrow[0,1]$. This solution is strictly increasing and continuous.

[^0]Lemma 1. Let γ be an arbitrary homeomorphism of $[0,1]$ onto $[0,1]$. Then the formula

$$
\begin{equation*}
N(x):=\gamma\left(1-\gamma^{-1}(x)\right) \tag{3}
\end{equation*}
$$

for $x \in[0,1]$. defines a strictly decreasing involution i.e. $N^{2}(x)=x$ for all $x \in[0,1]$. Conversely, each decreasing involution on $[0,1]$ admits a representation of form (1).

Proof. Obviously, only the latter assertion requires an argument. Let $N:[0,1] \rightarrow[0,1]$ be a decreasing solution of

$$
\begin{equation*}
N^{2}(x)=x \tag{4}
\end{equation*}
$$

Then N is a surjection and consequently N is continuous. Put $\sigma(x):=$ $\frac{1}{2}(1+x-N(x)), x \in[0,1]$. Hence

$$
\begin{equation*}
\sigma(N(x))=\frac{1}{2}(1+N(x)-x)=1-\frac{1}{2}(1-N(x)+x)=1-\sigma(x), \tag{5}
\end{equation*}
$$

for $x \in[0,1]$. Clearly, σ is a strictly increasing function of $[0,1]$ onto $[0,1]$ and continuous since $N(0)=1$ and $N(1)=0$. Therefore according to (5) we get

$$
N(x)=\sigma^{-1}(1-\sigma(x))
$$

for $x \in[0,1]$. The function $\gamma(x):=\sigma^{-1}(x)$ is the desired homeomorphism.
Lemma 2. Let hypothesis $\left(H_{1}\right)$ be fulfilled and R be a solution of (2). Then the function defined by formula

$$
\begin{equation*}
N(x)=R\left(1-R^{-1}(x)\right) \tag{6}
\end{equation*}
$$

satisfies simultaneously equations (4) and

$$
\begin{equation*}
N\left(f_{k}(x)\right)=f_{p-1-k}(N(x)) k=0, \ldots, p-1 \tag{7}
\end{equation*}
$$

for $x \in[0,1]$.
Proof. First, by Lemma 1 we obtain, that N is an involution. By (2) we

$$
\begin{aligned}
N\left(f_{k}(x)\right) & =R\left(1-R^{-1}\left(f_{k}(x)\right)\right)=R\left(1-\frac{R^{-1}(x)+k}{p}\right) \\
& =R\left(\frac{p-k-1+\left(1-R^{-1}(x)\right)}{p}\right)=f_{p-1-k}\left(R\left(1-R^{-1}(x)\right)\right) \\
& =f_{p-1-k}(N(x)),
\end{aligned}
$$

have for $x \in[0,1], k=0, \ldots, p-1$.

Theorem 1. Let hypothesis (H_{1}) be fulfilled and R be a solution of (2). The only solution of the system of functional equations

$$
\left\{\begin{array}{l}
N^{2}(x)=x \tag{8}\\
N\left(f_{k}(x)\right)=f_{p-1-k}(N(x))
\end{array} \text { for } x \in[0,1], k=0, \ldots, p-1\right.
$$

is given by (6). This function is strictly decreasing and continuous.
Proof. By Lemma 2 the function N given by (6) satisfies (8). Moreover N is strictly decreasing and continuous. To prove the uniqueness, let N^{\prime} be a solution of (8). Note that $r(x):=N^{\prime}(R(1-x)), x \in[0,1]$ satisfies (2). In fact

$$
\begin{aligned}
r\left(\frac{x+k}{p}\right) & =N^{\prime}\left(R\left(1-\frac{x+k}{p}\right)\right) \\
& =N^{\prime}\left(R\left(\frac{p-k-1+(1-x)}{p}\right)\right)=N^{\prime}\left(f_{p-1-k}(R(1-x))\right) \\
& =f_{k}\left(N^{\prime}(R(1-x))\right)=f_{k}(r(x))
\end{aligned}
$$

for $x \in[0,1]$ and $k=0, \ldots, p-1$. By the uniqueness of solution of system (2) $r=R$ and consequently $N^{\prime}(x)=R\left(1-R^{-1}(x)\right)$ for all $x \in[0,1]$.

Theorem 1 generalizes result of Mayor and Torrens in paper [2].
If there exist limit $\lim _{x \rightarrow \infty} h(x)=a$ then we shall use the notation $h(\infty):=a$.

Remark 1. Let $h_{0}, h_{1}, \ldots, h_{p-1}:[0, \infty) \rightarrow[0, \infty)$ be strictly increasing and continuous functions with $h_{0}(0)=0, h_{k-1}(\infty)=h_{k}(0), k=1, \ldots, p-1$ and $h_{p-1}(\infty)=\infty$. Then for every strictly increasing homeomorphism $\alpha:[0, \infty) \rightarrow[0,1)$ and

$$
f_{k}(x):=\left\{\begin{array}{ll}
\alpha \circ h_{k} \circ \alpha^{-1} & \text { if } x \in[0,1) \\
\lim _{x \rightarrow 1^{-}} \alpha \circ h_{k} \circ \alpha^{-1}(x) & \text { if } x=1
\end{array} \quad k=0, \ldots, p-1\right.
$$

we have $f_{0}(0)=0, f_{k-1}(1)=f_{k}(0), k=1, \ldots, p-1$ and $f_{p-1}(1)=1$. Moreover relations (1) hold iff the functions $\alpha \circ h_{k}-\alpha, k=0, \ldots, p-1$ are strictly decreasing.

Assume now the following hypothesis:
$\left(H_{2}\right) h_{0}, h_{1}, \ldots, h_{p-1}:[0, \infty) \rightarrow[0, \infty)$ are strictly increasing and continuous functions with $h_{0}(0)=0, h_{k-1}(\infty)=h_{k}(0), k=1, \ldots, p-1$, $h_{p-1}(\infty)=\infty$ and there exists a strictly increasing homeomorphism $\alpha:[0, \infty) \rightarrow[0,1)$ such that functions $\alpha \circ h_{k}-\alpha, k=0, \ldots, p-1$ are strictly decreasing.

Theorem 2. Let hypothesis $\left(\mathrm{H}_{2}\right)$ be fulfilled. Then the system of functional equations

$$
\left\{\begin{array}{l}
N^{2}(x)=x \tag{9}\\
N\left(h_{k}(x)\right)=h_{p-1-k}(N(x))
\end{array} \text { for } x \in(0, \infty), k=0, \ldots, p-1\right.
$$

with the initial condition

$$
\begin{equation*}
N\left(h_{k}(0)\right)=h_{p-k}(0), k=1, \ldots, p-1 \tag{10}
\end{equation*}
$$

has a unique solution $N:(0, \infty) \rightarrow(0, \infty)$. This solution is strictly decreasing and continuous. Every continuous solution of (9) satisfies condition (10).

Proof. To prove the existence put

$$
f_{k}(x):=\left\{\begin{array}{ll}
\alpha \circ h_{k} \circ \alpha^{-1}(x) & \text { if } x \in[0,1) \\
\lim _{x \rightarrow 1^{-}} \alpha \circ h_{k} \circ \alpha^{-1}(x) & \text { if } x=1
\end{array} k=0, \ldots, p-1 .\right.
$$

By Remark 1 the function $f_{k}, k=0, \ldots, p-1$ fulfill $\left(H_{1}\right)$. Hence by Theorem 1 there exists exactly one solution M of (8). This function is strictly decreasing, continuous and $M(0)=1, M(1)=0$.

Let $N:(0, \infty) \rightarrow(0, \infty)$ be defined by

$$
N(x):=\alpha^{-1} \circ M \circ \alpha(x) .
$$

We shall show that N satisfies (9). It is easy to check, that $N^{2}(x)=x$, x in $(0, \infty)$. Moreover we have

$$
\begin{aligned}
N \circ h_{k}(x) & =\alpha^{-1} \circ M \circ \alpha \circ \alpha^{-1} \circ f_{k} \circ \alpha(x)=\alpha^{-1} \circ M \circ f_{k} \circ \alpha(x) \\
& =\alpha^{-1} \circ f_{p-1-k} \circ M \circ \alpha(x)=\alpha^{-1} \circ f_{p-1-k} \circ \alpha \circ \alpha^{-1} \circ M \circ \alpha(x) \\
& =h_{p-1-k} \circ N(x),
\end{aligned}
$$

for $x \in(0, \infty), k=0, \ldots, p-1$. For $1 \leq k \leq p-1$ we have

$$
\begin{aligned}
N \circ h_{k}(0) & =\alpha^{-1} \circ M \circ \alpha \circ h_{k}(0)=\alpha^{-1} \circ M \circ \alpha \circ \alpha^{-1} \circ f_{k} \circ \alpha(0) \\
& =\alpha^{-1} \circ M \circ f_{k}(0)=\alpha^{-1} \circ f_{p-1-k} \circ M(0)=\alpha^{-1} \circ f_{p-1-k}(1) \\
& =\alpha^{-1} \circ f_{p-k}(0)=\alpha^{-1} \circ f_{p-k} \circ \alpha(0)=h_{p-k}(0) .
\end{aligned}
$$

It remains to prove that this solution is unique. Let $\bar{N}:(0, \infty) \rightarrow(0, \infty)$ be a solution of (9) satisfying condition (10). Put

$$
\bar{M}(x):= \begin{cases}1 & \text { if } x=0 \\ \alpha \circ \bar{N} \circ \alpha^{-1}(x) & \text { if } x \in(0,1) \\ 0 & \text { if } x=1 .\end{cases}
$$

We shall show that \bar{M} verifies (8). It is easily seen that $\bar{M}^{2}(x)=x$, $x \in[0,1]$. Evidently \bar{M} satisfies (7) in (0,1). At the point $x=0$ we have 1) for $k=0$:

$$
\bar{M} \circ f_{0}(0)=\bar{M}(0)=1=f_{p-1}(1)=f_{p-1} \circ \bar{M}(0),
$$

2) for $0<k \leq p-1$:

$$
\begin{aligned}
\bar{M} \circ f_{k}(0) & =\alpha \circ \bar{N} \circ \alpha^{-1} \circ f_{k}(0)=\alpha \circ \bar{N} \circ \alpha^{-1} \circ f_{k-1}(1) \\
& =\alpha \circ \bar{N} \circ \alpha^{-1} \circ \alpha \circ h_{k-1}(\infty) \\
& =\alpha \circ \bar{N} \circ h_{k-1}(\infty)=\alpha \circ \bar{N} \circ h_{k}(0)=\alpha \circ h_{p-k}(0) \\
& =\alpha \circ h_{p-k} \circ \alpha^{-1}(0)=f_{p-k}(0)=f_{p-1-k}(1)=f_{p-1-k} \circ \bar{M}(0) .
\end{aligned}
$$

At the point $x=1$ we have

1) for $k=p-1$:

$$
\bar{M} \circ f_{p-1}(1)=\bar{M}(1)=0=f_{0}(0)=f_{0} \circ \bar{M}(1),
$$

2) for $0 \leq k<p-1$:

$$
\begin{aligned}
\bar{M} \circ f_{k}(1) & =\alpha \circ \bar{N} \circ \alpha^{-1} \circ f_{k}(1)=\alpha \circ \bar{N} \circ \alpha^{-1} \circ \alpha \circ h_{k}(\infty) \\
& =\alpha \circ \bar{N} \circ h_{k+1}(0)=\alpha \circ h_{p-1-k}(0)=f_{p-1-k}(0) \\
& =f_{p-1-k} \circ \bar{M}(1) .
\end{aligned}
$$

Thus \bar{M} satisfies (8) in $[0,1]$ and consequently by the uniqueness of solution of (8) we have $\bar{M}(x)=M(x), x \in[0,1]$. Hence $\alpha \circ \bar{N} \circ \alpha^{-1}(x)=$ $\alpha \circ N \circ \alpha^{-1}(x), x \in(0,1)$ and finally $N(x)=\bar{N}(x)$ for $x \in(0, \infty)$.

To prove the last thesis suppose N is continuous solution of (9). The equation $N^{2}(x)=x$ implies that N is strictly monotonic surjection of $(0, \infty)$ onto itself. By (9) we have

$$
\begin{gather*}
N\left[h_{0}[(0, \infty)]\right]=h_{p-1}[(0, \infty)] \\
N\left[h_{p-1}[(0, \infty)]\right]=h_{0}[(0, \infty)] . \tag{11}
\end{gather*}
$$

Let $x \in h_{0}[(0, \infty)]$ and $y \in h_{p-1}[(0, \infty)]$. Since $h_{0}(\infty) \leq h_{p-1}(0)$ we infer that $x<y$ and by (11) $N(x)>N(y)$. Thus N is strictly decreasing and consequently $N(0+)=\infty$ and $N(\infty)=0$. Hence by (9) $N\left(h_{k}(0)\right)=\lim _{x \rightarrow 0^{+}} N\left(h_{k}(x)\right)=\lim _{x \rightarrow 0^{+}} h_{p-1-k}(N(x))=h_{p-1-k}(\infty)=h_{p-k}(0)$. This ends the proof.

Further we shall deal with particular case of system (9). Given $k, k \geq 1$, consider the system

$$
\left\{\begin{array}{l}
N^{2}(x)=x \tag{12}\\
N\left(\frac{x}{k x+1}\right)=N(x)+k
\end{array} \text { for } x \in(0, \infty)\right.
$$

As an application of Theorem 2 we shall prove the following result
Theorem 3. If $k=1$ then the only solution of system (12) is the function $N(x)=1 / x$ (see [3]). If $k>1$ then for every increasing bijection $f:[0, \infty) \rightarrow[1 / k, k)$ such that

$$
\begin{equation*}
\frac{f(x)-f(y)}{1+f(x) f(y)}<\frac{x-y}{1+x y} \quad \text { for } x>y \tag{13}
\end{equation*}
$$

there exists exactly one solution of system (12) such that $N \circ f=f \circ N$ and $N(k)=\frac{1}{k}$. This solution is strictly decreasing and continuous.

Proof. The first assertion where $k=1$ is the Volkmann's theorem (see [3]) but we give a new proof of this theorem. In this case system (12) has the form

$$
\left\{\begin{array}{l}
N^{2}(x)=x \tag{14}\\
N\left(\frac{x}{x+1}\right)=N(x)+1
\end{array}\right.
$$

for $x \in(0, \infty)$. The thesis results directly from Theorem 2 for $p=2$ with $h_{0}(x)=\frac{x}{x+1}, h_{1}(x)=x+1, x \in(0, \infty)$. Observe that these functions fulfill hypothesis $\left(H_{2}\right)$ with $\alpha(x)=\frac{2}{\pi} \arctan x$. In fact, h_{0}, h_{1} are strictly increasing, continuous and $h_{0}(0)=0, h_{0}(\infty)=h_{1}(0), h_{1}(\infty)=\infty$. Moreover it is easy to check that functions

$$
\begin{aligned}
& \left(\alpha \circ h_{0}-\alpha\right)(x)=\frac{2}{\pi} \arctan \frac{x}{x+1}-\frac{2}{\pi} \arctan x \\
& \left(\alpha \circ h_{1}-\alpha\right)(x)=\frac{2}{\pi} \arctan (x+1)-\frac{2}{\pi} \arctan x
\end{aligned}
$$

are strictly decreasing in $[0, \infty)$.
We shall show that for every solution N of system (14) $N(1)=1$. By the second equation of system (14) we get that for $x<1 N(x)>1$. Moreover $N(1) \geq 1$ since otherwise $1=N(N(1))>1$ is contradiction. We shall show that $N(1)=1$. Let us note that by (14) we get

$$
N\left(\frac{N(x)}{N(x)+1}\right)=x+1
$$

for $x>0$. Suppose $N(1)>1$. Then there exists an $x_{0}>0$ such that

$$
N\left(\frac{N\left(x_{0}\right)}{N\left(x_{0}\right)+1}\right)=N(1) .
$$

Hence $\frac{N\left(x_{0}\right)}{N\left(x_{0}\right)+1}=1$, a contradiction. Thus $N(1)=1$.
By Theorem 2 there is a unique function N satisfying system (14) in $(0, \infty)$. The involution $N(x)=1 / x, x \in(0, \infty)$ is a solution of system (14). Consequently it is the only solution of this system. This ends the proof in case $k=1$.

Let $k>1$. Consider the system

$$
\left\{\begin{array}{l}
N^{2}(x)=x \tag{15}\\
f(N(x))=N(f(x)) \\
N\left(\frac{x}{k x+1}\right)=N(x)+k
\end{array}\right.
$$

for $x \in(0, \infty)$. The proof results directly from Theorem 2 for $p=3$ with $h_{0}(x)=\frac{x}{k x+1}, h_{1}(x)=f(x), h_{2}(x)=x+k, x \in(0, \infty)$. Observe that these functions fulfill hypothesis $\left(H_{2}\right)$ with $\alpha(x)=\frac{2}{\pi} \arctan (x)$. Evidently h_{0}, h_{1}, h_{2} are strictly increasing, continuous and

$$
h_{0}(0)=0, h_{0}(\infty)=h_{1}(0)=\frac{1}{k}, h_{1}(\infty)=h_{2}(0)=k, h_{2}(\infty)=\infty .
$$

Let us note, that inequality (13) is equivalent to the fact that function ($\alpha \circ$ $\left.h_{1}-\alpha\right)(x)=\frac{2}{\pi} \arctan f(x)-\frac{2}{\pi} \arctan x$ is strictly decreasing. In fact, for $x>y, x, y \in(0, \infty)$ we get

$$
\begin{aligned}
(\alpha & \circ f-\alpha)(x)-(\alpha \circ f-\alpha)(y) \\
\quad & =\frac{2}{\pi}[(\arctan f(x)-\arctan x)-(\arctan f(y)-\arctan y)] \\
& =\frac{2}{\pi}[(\arctan f(x)-\arctan f(y))-(\arctan x-\arctan y)] \\
\quad & =\frac{2}{\pi}\left[\arctan \frac{f(x)-f(y)}{1+f(x) f(y)}-\arctan \frac{x-y}{1+x y}\right]
\end{aligned}
$$

Thus $(\alpha \circ f-\alpha)(x)-(\alpha \circ f-\alpha)(y)<0$ iff

$$
\frac{f(x)-f(y)}{1+f(x) f(y)}<\frac{x-y}{1+x y} .
$$

Moreover it is easy to check that functions

$$
\begin{aligned}
& \left(\alpha \circ h_{0}-\alpha\right)(x)=\frac{2}{\pi} \arctan \frac{x}{k x+1}-\frac{2}{\pi} \arctan x \\
& \left(\alpha \circ h_{2}-\alpha\right)(x)=\frac{2}{\pi} \arctan (x+k)-\frac{2}{\pi} \arctan x
\end{aligned}
$$

are strictly decreasing in $(0, \infty)$. Since $h_{1}(0)=\frac{1}{k}$ and $h_{2}(0)=k$, the condition (10) is equivalent to the equality $N(k)=\frac{1}{k}$. By Theorem 2 there is a unique function N satisfying system (15) in $(0, \infty)$. This ends the proof.

Remark 2. If N satisfies system (15) then $N(k) \in\left\{k, \frac{1}{k}\right\}$. If moreover N is continuous, then $N(k)=\frac{1}{k}$. In fact, by (4) N is a bijection of $(0, \infty)$ onto itself. By the third equation of system (15) we get that $N\left(\left(0, \frac{1}{k}\right)\right) \subset$ (k, ∞) and further by (4), $\left(0, \frac{1}{k}\right) \subset N((k, \infty))$. Let us note that by (15) we $g \epsilon t$

$$
\frac{N(x)}{k N(x)+1}=N(x+k),
$$

whence we infer that $N((k, \infty)) \subset\left(0, \frac{1}{k}\right)$ and by $(4)(k, \infty) \subset N\left(\left(0, \frac{1}{k}\right)\right)$. Thus $N\left(\left(0, \frac{1}{k}\right)\right)=(k, \infty)$ and $N((k, \infty))=\left(0, \frac{1}{k}\right)$. Similary by equation $f \circ N=$ $N \circ f$ we obtain that $N\left(\left(\frac{1}{k}, k\right)\right)=\left(\frac{1}{k}, k\right)$. Hence by bijectivity of N we have that $N(k) \in\left\{k, \frac{1}{k}\right\}$. If N is continuous then by Theorem $2 N(k)=\frac{1}{k}$.

Example 1. Given $k>1$, consider the system

$$
\left\{\begin{array}{l}
N^{2}(x)=x \tag{16}\\
N\left(\frac{k x+1}{x+k}\right)=\frac{k N(x)+1}{N(x)+k} \\
N\left(\frac{x}{k x+1}\right)=N(x)+k
\end{array}\right.
$$

for $x \in(0, \infty)$. We apply Theorem 3 with $f(x)=\frac{k x+1}{x+k}, x \in[0, \infty)$. The function $f(x)$ is strictly increasing, continuous and $f(0)=\frac{1}{k}, f(\infty)=k$. Moreover

$$
\begin{aligned}
\frac{f(x)-f(y)}{1+f(x) f(y)} & =\frac{\left(k^{2}-1\right)(x-y)}{2 k x+2 k y+\left(k^{2}+1\right) x y+k^{2}+1} \\
& <\frac{\left(k^{2}-1\right)(x-y)}{\left(k^{2}+1\right)(1+x y)}<\frac{x-y}{1+x y},
\end{aligned}
$$

for $x>y, x, y \in(0, \infty)$. Thus by Theorem 3 there exists a unique solution N of system (16) such that $N(k)=\frac{1}{k}$. Let us note that function $\frac{1}{x}$ satisfies
(16). Consequently the only solution of system (16) such that $N(k)=\frac{1}{k}$ is given by $N(x)=\frac{1}{x}, x \in(0, \infty)$.

Example 2. Consider the system

$$
\left\{\begin{array}{l}
N^{2}(x)=x \tag{17}\\
N\left(\frac{\frac{3}{2} x+\frac{2}{3}}{x+1}\right)=\frac{\frac{3}{2} N(x)+\frac{2}{3}}{N(x)+1} \\
N\left(\frac{x}{\frac{3}{2} x+1}\right)=N(x)+\frac{3}{2}
\end{array}\right.
$$

for $x \in(0, \infty)$. We apply Theorem 3 with $k=\frac{3}{2}, f(x)=\frac{\frac{3}{2} x+\frac{2}{3}}{x+1}, x \in[0, \infty)$. The function $f(x)$ is strictly increasing, continuous and $f(0)=\frac{2}{3}, f(\infty)=\frac{3}{2}$. Moreover

$$
\begin{aligned}
\frac{f(x)-f(y)}{1+f(x) f(y)} & =\frac{\left(\frac{3}{2}-\frac{2}{3}\right)(x-y)}{2 x+2 y+\left(\left(\frac{3}{2}\right)^{2}+1\right) x y+\left(\frac{2}{3}\right)^{2}+1} \\
& <\frac{\left(\frac{3}{2}-\frac{2}{3}\right)(x-y)}{\left(\left(\frac{2}{3}\right)^{2}+1\right)(x y+1)}<\frac{x-y}{1+x y}
\end{aligned}
$$

for $x>y, x, y \in(0, \infty)$. Thus by Theorem 3 there exists a unique solution N of system (17) such that $N\left(\frac{3}{2}\right)=\frac{2}{3}$. But in this case the function $\frac{1}{x}$ does not commute with f. Consequently we get a solution, which is different from $\frac{1}{x}$.

References

[1] M. Kuczma, B. Choczewski, R. Ger, Iterative functional equations, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, New York, Port Chester, Melbourne, Sydney 1990.
[2] G. Mayor, J. Torrens, De Rham systems and the solution of a class of functional equations, Aequat. Math. 47(1994), 43-49.
[3] P. Volkmann, Charakterisierung der Function $\frac{1}{x}$ durch Functionalgleichungen, Ann. Polonici Math. 48(1988), 91-94.
[4] M. C. Zdun, On conjugacy of some systems of functions, in Aequat. Math.

Institute of Mathematics
Pedagogical University
Rejtana 16 A
PL-35-310 Rzeszów

Institute of Mathematics
Pedagogical University
Podchorążych 2
PL-30-084 KRaków

[^0]: AMS (1991) subject classification: Primary 39B62, 39B12.

