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Abstract. The paper deals with boundary value problems of the form 

(0.1) x(t) - x(Q) - I A[A(s)]x(s) = f(t) - /(O), t G [0,1], 
Jo 

-1 

(0.2) Mx(0) + I K(r)d[x(T)] = r. f 
Jo Their solutions are functions regulated on [0,1] and regular on (0,1) (i.e. 2x(t) = 

x(t—)+x(t+) for all i (E (0,1)). We assume that A and K have bounded variations on 
[0,1], / is regulated on [0,1] and all of them are regular on (0,1). We derive conditions 
for the existence and uniqueness of solutions to the given problem. Furthermore, the 
relationship between the dimensions of the spaces of solutions of the corresponding 
homogeneous problem and of its adjoint is established. Special attention is paid to the 
case when the additional condition (0.2) reduces to the periodic boundary condition 
2.(0) = x(l). It is known (cf. [13]) that in the case that A and / are continuous from 
the right at t = 0 and from the left at t = 1, the equation (0.1) reduces to the 
distributional differential equation 

(0.3) x - A'x = /'. 

Related results concerning the case of solutions left-continuous on (0, 1) were 
obtained in [18] and similar questions for periodic problems and for linear differential 
equations with distributional coefficients of the form (0.3) were recently treated by Z. 
Wyderka [21], cf. also [2], [3] or [10]. 
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1. Preliminaries 

Throughout the paper R r a x m denotes the space of real n x m-matrices, 
R n = R n x l , R 1 = R . Given an n X m-matrix A G R n X m , its elements are 
denoted by a , j , det (.4) and rank(A) denote respectively its determinant and 
its rank, AT stands for its transposition and 

is its norm (In particular, yT — (y x, y 2 , y n ) for y G R n ) . The symbols I 
and 0 stand respectively for the identity and the zero matrix of the proper 
type. 

For given n X ?i-matrices Cj, j = 1,2, the symbol YVj=i^j 1S 

defined by 

p p - i 
HCJ = C1C2...CP, while Y[Cp-j = CpCp-1...C1. 

3=1 j=0 

As usual, by [0,1] and (0,1) we denote the corresponding closed and 
open intervals, respectively. Furthermore, [0,1) and (0,1] are the correspon
ding half-open intervals. 

Any function F : [0,1] >-» R " , X T O which possesses finite limits 

F(t+) = lim F ( r ) and F(s-) = lim F ( r ) 
T-tt+ T—tS — 

for all t 6 [0,1) and s G (0,1] is said to be regulated on [0,1]. The linear 
space of n x 777-matrix valued functions regulated on [0,1] is denoted by 
<Qnxn\ while <G" x m stands for the space of functions F from G n X T O which 
are regular on (0,1), i.e. which satisfy the relations 

(1.1) = | [ F ( t - ) + J F ( * + ) ] , * € (0,1). 

Instead of G n X l we write <Gn. Analogously, G ^ x l = G ^ g . For x € Gn we put 

= sup \x(t)\. 
<€[0,1] 

It is well known that both G " and G™ are Banach spaces with respect to 
this norm (cf. [7, Theorem 3.6]). Given F G G n X T O , we put 

F(O- ) = F(0) and F ( l + ) = F ( l ) 
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and, for any t G [0,1], we define 

A+F(t) = F(t+) - F(t), A~F(t) = F(t) - F(t-) 

and 
AF(t) = F{t+) - F(t-). 

As usual, the space of n x m-matrix valued functions continuous on [0,1] is 
denoted by C n X T O . 

For a function F : [0,1] R N X M and a subdivision D - (0 = Q 0 < 
Q'i < . . . < ctfc = 1} of the interval [0,1] we put 

k 
v(F,D) = V \F(otj) - F(aj^)\ and var jF = sup u(F,D), 

U D 

where the supremum is taken over all subdivisions D of [0,1]. The space of 
all functions F : [0,1] ^ R N X M such that var jF < oo is denoted by B V N X M . 
It is well known that B V N X M equipped with the norm 

F G B V N X M | | F | | B V = |F(0)| + var^F 

is a Banach space. Obviously, F G B V N X M if and only if all its compo
nents aj,j have a bounded variation on [0,1]. The space of all functions 
F G B V N X M which are regular on [0,1] (i.e. satisfy the relation (1.1)) is 
denoted by B V " X M . Instead of B V N X L or B V " X L we write B V N or BV" , 

J reg reg reg 7 

respectively. 
For more details concerning regulated functions or functions of bounded 

variation see [1], [7], [4] or [6], respectively. 
For given linear spaces X and Y , the symbol £ ( X , Y ) denotes the l i 

near space of linear bounded mappings of X into Y . If L G £ ( X , Y ) then 
1Z{L ),Ar(L ) and L * denote its range, null space and adjoint operator, re
spectively. For a given linear bounded functional £ G X * , its value on x G X 
is denoted by (x,C)x-

The integrals which occur in this paper are the Perron-Stieltjes ones. In 
particular, we make use of the equivalent definition of these integrals due to 
J . Kurzweil (cf. e.g. [8], [9], [15] and [16]). Let us recall here that if A G G n x n , 
x G G " and at least one of them has a bounded variation on [0,1] then the 
integral 

fd[A(r)]x(r) 
Jo 

exists for any t G [0,1] and the function 

h : t G [0,1] k> f d[A(r)]x(r) G Rn 

Jo 
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is regulated on [0,1] (cf. [17, Theorem 2.8]). Moreover, if A € B V n x " then 
h G WVnXn and if A € B V £ x n then h G BV r ? g , as well. Finally, let us recall 
that by [19, Theorem 2.7] the left hand side of the additional condition 

where K G B V m X n , represents the general form of a linear bounded mapping 
of the space G " g into KM. Some further details concerning the integration 
with respect to regulated functions may be found in [17]. 

Distributions are considered in this paper in the sense of L. Schwartz, i.e. 
as linear continuous (n-vector valued) functional on the topological vector 
space Vn of functions ip : R (->• Rn possessing for any j € Nu{0} a derivative 
tpM) of the order j which is continuous on E and such that <p^^(t) = 0 for 
any f C R \ (0,1). The space Vn is endowed with the topology in which 
the sequence <pk € T>n tends to <p0 G Vn in Vn if and only if 

for all non negative integers j. The space of distributions on [0,1] (i.e. the 
dual space to Vn) is denoted by Vn*. The zero distribution 0 € Vn* on [0,1] 
is identified with an arbitrary measurable function vanishing a.e. on [0,1]. 
Obviously, if / e G then / = 0 € Vn* only if / (*-) = f(s+) = 0 for all 
t € (0,1] and all s € [0,1). Consequently, if / G <Gr?g and /(0+) = /(0) and 
/ ( 1 - ) = / ( l ) , then / = 0 G Vn* if and only if f{t) = 0 for all t g [0,1]. 
This means that for a given function g Lebesgue integrable on [0,1] there 
may exist at most one function / G G " g such that f(t) = g(t) a.e. on [0,1]. 
Given an arbitrary / G Vn*, f denotes its distributional derivative, i.e. 

For more details concerning distributions see e.g. [5] or [14]. 
Similarly as in [11] we define for given x G ©" and A G B V " X 

lim | | r f » - ^ | | = 0 

f':<p€Vn^(f',<p)Vn=-(f,ć)Vn. 

(1.2) A'x : <p G Vn^{A'x,ip)Vn = f <pT(t)d\ [ d[A(r)]x(r) 
Jo Uo 

and 

(1.3) Ax' : if G 
Jo lJo 
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It follows (cf. [13]) that the relations 

(1.4) A'x = ( f d[A(T)]x(T))' and Ax ( f A(r)d[x(r)]) 

are true. Making use of the integration-by-parts formula (cf. [17, Proposition 
1.2]) it is easy to verify that for any couple of functions x G G " g , A G B V " X n 

the relation (Ax)' = Ax' + A'x is true (cf. [13]). 

Assumptions 2.1. A € B V £ x n , / € Gr™ , M € K m X n , A' G B V m x \ 
0 < m < 2n, r € R m and 

for all t G (0,1). 
We will consider the boundary value problem (0.1), (0.2). An n-vector 

valued function x : [0,1] Rn is said to be its solution if it belongs to G " g 

and satisfies (0.1) and (0.2). 
It is known (cf. [13, Proposition 2.3]) that if 

(2.1) A(0+) = A(0), /(0+) = /(0), A ( l - ) = A(l) and / ( 1 - ) = / ( l ) , 

then x G G " is a solution to (0.1) on [0,1] if and only if the relation 

holds for all ip G T>n, i.e. if and only if x' — A'x — / ' is the zero distribu
tion. In other words, if (2.1) is true the equation (0.1) is equivalent to the 
distributional differential equation (0.3). 

It is also known (cf. e.g. [16, Section III.2] or [15, Theorems 6.15 and 
6.17]) that under our assumptions there exists a unique matrix valued func
tion U : [0,1] x [0,1] t-t RnXn possessing the following properties: 

2. General boundary value problem 

Throughout the paper we assume 

det (1 + A + A ( 0 ) ) d e t ( i - [A~A(t)}2 )det (I - A " A ( 1 ) ) / 0 

(2.2) for all t,s G [0,1]; 

l<r(i, T)U{T, S) = U{t, s) for all t, r, s G [0,1] 
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det (U{t, s)) ź O for all t, s G [0,1]. 

and x : [0. 1] i-> Rn is a solution to (0.1) on [0, 1] if and only if 
(2.3) 

x(t) = U(t,0)x(0) + f(t)-f(0)- f dT[U(t,r))(f(T)-f(0)) on [0,1]; 
Jo 

PROPOSITION 2.2. Under the assumptions 2.1 the problem (0.1), (0.2) 
possesses a unique solution for any f G <G"g and any r € R m if and only if 

(2.4) m = n and dim Ar(L ) = 0, 

or, equivalently, if and only if 

(2.5) m = n and det + A'(r )d r [ f / ( r , 0)]^ / 0. 

P R O O F . The problem (0.1), (0.2) hes a solution if and only if there is 
c G R " such that 

(2.6) Dc = 6, 

where 

£) = A / + f 
Jo 

K(r)dT[U(r,0)] 

and 

6 = r - f K(r)d[f(T)]+ f K(r)dr\ f d s[[/(r, s)](f(s) - /(0)) 
Jo Jo L Jo 

and this solution is then given by (2.3), where we put x(0) = c. Consequently, 
the problem (0.1), (0.2) has for any (/, r) € <G"g x M m a unique solution if 
and only if for any b G Rm the equation (2.6) possesses a unique solution 
c G 1". This is the case if and only if m — n and the homogeneous equation 
Dc — 0 possesses only the trivial solution c = 0, i.e. if and only if (2.5) is 
true or equivalently if and only if (2.4) is true. 

DEFINITION 2.3. For given x G <G"g and t e [0,1], we define 

(27) ( L z ) l t ) = ( X ® - X ( 0 ) - f i d [ A { T M T ) \ 
V Mx(0) + fJK(T)d[x{T)] J' 

Using Definition 2.3 we can rewrite the problem (0.1), (0.2) as the ope
rator equation 

x = ( / ( 0 - / ( 0 ) ) . 
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Furthermore, L £ £ ( G n , G " x Rm) (cf. [17, Proposition 2.16 and Theorem 
2.8]). As we noticed in Section 1 the function h given by 

h :t£ [0,1] M- / d[A(T)]x(r)£Rn 

Jo 

belongs to G £ for any x £ G n . Consequently, L £ £ ( G £ , G £ x R m ) . 
Moreover, analogously as it was done for the case of solutions left-continuous 
on (0,1] in the proof of [18, Proposition 2.6], we could utilize the formula 
(2.3) to show the following assertion. 

T H E O R E M 2.4. Let us assume 2.1 and let the operator L be given by 
(2.7). Then the range TZ{L ) of the operator L is closed in G " g x R m . • 

In virtue of [19, Theorem 2.7], B V " x R " x R m is the dual space to 
G, n

g x R r a , while for given y £ B V n , 7 € Rn and S £ R m , the corresponding 
linear bounded functional is given by 

(<?, r) £ G " x R m 4 
(2.8) 

((g,r),(y,7,S))G*gXMm := 7

Tflf(0) + J yT(r)d[g(r)} +STr. 

Let x £ G ^ g , y £ BV™, 7 £ Rn and 8 £ Rm be given. Then in virtue of (2.8) 
we have 

(Zz,(2/,7,<S))G»gXR™ 

( 2 . 9 ) = f (yT(t) + STK(t))d[x(t)] + STMx(Q) 

- t yT(t)d\ f d[A(r)]x(r) . 
Jo lJo J 

Furthermore, the Substitution Theorem (cf. [17, Theorem 2.19]) yields 

f\T(t)d\ f d[A(r)]x(T)]= f yT(t)d[A(t)]x(t) 
Jo lJo J Jo 

= -j\[j'\T(r)d[A(T)}]x(t), 

whence, integrating by parts (cf. [17, Theorem 2.15]), we obtain the relation 

j\T(t)d[J*d[A(T)]x(T)} = (j\T(T)d[A(T)])x(Q) 
(2.10) 

+ f (J' yT(r)d[A(r)} - C j (t))d[x(t)l 
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where 

( y T (0)A+.4(0) if t = 0, 

0 i f* € ( 0 , 1 ) , 
{ - y T ( l ) A - A ( l ) i f* = l 

(2-11) £ ( « ) = { 

Inserting (2.10) and (2.11) into (2.9) we obtain 

<Lz,(y,7,<5)),G»gxRm 

= jf* (yT(t) + STK(t) - C yT(r)d[A(r)] - <*(t))d[x{t)] 

+ (STM - j\R(T)d[A(r)))x(0). 

With respect to the definition of the adjoint operator this completes the 
proof of the following assertion. 

T H E O R E M 2.5. Let us assume 2.1 and let the function Cy G B V n be for 
a given y G B V n defined by (2.11). Then the operator 

L * : (yT,yT,6T) G B V n x Rn x R m 4 

(yT(t) + STK(t) - J' yT(r)d[A(r)] - <y(i) , 

8TM - j 2/T(r)d[.4(r)])) G B V " x E n 

is the adjoint operator to L . • 

C O R O L L A R Y 2.6. Let us assume 2.1 and let A be given by 

(A(0+) ift = 0, 
(2.12) A(t)=lA(t) i / t 6 ( 0 , 1 ) , 

(A(l-) ift = l. 

Then the problem (0.1), (0.2) possesses a solution in G™8 if and only if 

(2.13) l' yT(r)d[f(r)] + STr = 0 
Jo 

holds for any couple (y,S) G BV™ x R m verifying the system 

(2.14) yT(s)-yT(l)-j\T(r)d[A(T)}-6T(K(l) -K(s)) = 0, s G [0,1], 
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(2.15) y T (0) [I + A+A(0)] + 8T [K(0) - M] = 0, 

(2.16) y T ( l ) [ l - A " A ( 1 ) ] + 8TK(1) = 0. 

P R O O F . For / e G r" g and t € [0,1], let us put g(t) = f(t) - / (0) . 
By Theorems 2.4 and 2.5 (cf. (2.10), as well) the problem (0.1), (0.2) (or 
equivalently the operator equation Lx — (g, r)) has a solution if and only if 

holds for any solution (y, 7,8) 6 EVn x R n x R m of the system 

(2.17) yT(0) = f1 yT(r)d[A(r)] - <5TA"(0) - y T (0)A+A(0) , 
Jo 

(2.18) yT(s) = j\T(T)d[A(r)]-8TK(s) on (0,1), 

(2.19) yT(l) = -8TK(1) + y T ( l ) A " A ( l ) , 

(2.20) 0 = fl yT(T)d[A(T)]-8TM. 
Jo 

Consequently, the problem (0.1), (0.2) has a solution if and only if (2.13) is 
true for all solutions (y, 7, 8) e B V " X R™ X R m of the system (2.17) - (2.20). 
(Notice that for 7 we did not obtain any condition and 7 does not appear 
in the condition (2.13), as well.) 

The relation (2.19) is clearly identical with (2.16) and inserting (2.20) 
into (2.17) we obtain (2.15). 

Furthermore, inserting (2.19) into (2.16)-(2.17,) we get for any s G [0,1] 

yT(s) = yT(l) + f y T ( r )d[A(r)] - 8T(K(s) - K(l)) 
J s 

(2.21) ' y T ( 0 ) A + A ( 0 ) + y T ( l ) A - A ( l ) if s = 0 ) 
y T ( l ) A - A ( l ) if 0 < a < 1 

0 if s = 1 
- < 

Finally, in virtue of (2.12), the relation (2.21) reduces to (2.14). • 
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COROLLARY 2.7. Let us assume 2.1 and let A be given by (2.12). Then 
the periodic boundary value problem. (0.1), 

(2.22) x{0) = x(l) 

possesses a solution in G t " g if and only if 

f1 yT(S)f(s)ds = 0 
Jo 

holds for any solution y £ B V N of the system 

(2.23) yT(s)-yT(l) +j\T(T)d[A(T)] = 0, i € [0,1], 

(2.24) y T (0) [I + A+A(0)] = yT(l) [I - A " . 4 ( l ) ] . 

P R O O F . If we put 

(2.25) M = 0 and K(t) = I on [0,1] 

then the condition (2.22) takes the form (0.2). Inserting (2.25) into (2.14)-(2.16) 
we obtain (2.23) and (2.24). • 

DEFINITION 2.8. The system (2.14) - (2.16) is said to be the adjoint 
problem to (0.1), (0.2) (or to the corresponding homogeneous problem 
Lx = 0). 

R E M A R K 2.9. Obviously, y € B V " G whenever y is a solution of (2.23). 
Hence, making use of the definition (1.2) (cf. also (1.Ą) ) the equation (2.23) 
can be rewritten as the distributional differential equation y' = — (AT)'y. 

R E M A R K 2.10. If in addition to 2.1 also the relations A + . 4 (0 ) = 0 and 
A ~ A ( 1 ) = 0 are assumed, the adjoint problems (2.1Ą)-(2.16) and (2.23), 
(2.24) reduce to the systems 

(2.14), yT(0) = -ST(K(0)-M), yT(l) = -STK(1) 

and 
y' = -{AT)'y, yT(0) = yT(l), 

respectively. 
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3. Adjoint problem 

In this section we will consider the adjoint problem (2.14) - (2.16) to 
(0.1), (0.2). In addition to 2.1 we will assume also that 

(3.1) det (I - A+A(0))det (I + A~A(1) ) # 0. 

Obviously, under the assumptions 2.1 and (3.1), for the function .4 given 
by (2.12) we have 

A e B V " g

x n , .4(0+) = 1(0), A ( 1 - ) = A(1) 

A~~{A){t) = A~A(t), A+A(t) = A+A(t), t 6 (0,1), 

det ^ 1 - ( A " l ( s ) ) 2 ^ 0 o n [0,1]. 

(According to the conventions introduced in Section 1, we have A~ A(0) = 
A+A(l) = 0.) Hence, for given S € Rm and n G R n , the equation (2.14) 
possesses a unique solution y on [0,1] such that y(l) = n (cf. [16, Section 
III.4]). This solution is given on [0,1] by 

VT(s) = VTV(l,s) - 6T(K(s) - K(l)) 
(3.2) 

r)-K(l))ds[V(r,s)], se [0,1], 

where V is an n x n-matrix valued function uniquely determined on [0,1] x 
[0,1] by the relation 

(3.3) V(f ,s) = I + ^V( t , r )d[ I ( r ) ] , M € [0,1]. 

Let 0 < s < t < 1. Inserting (2.2) and (3.3) into the expression 

W(t,s) := f dT[V(t,r)]U(r,t)+ f v (« , r )d r p( r , f ) ] 
J s J s 

and making use of the Substitution Theorem (cf. [17, Theorem 2.19]) we get 

W(t,s) = J V(t,T)d[A(T)-A(r)]U(T,t) 

= V(t, s)A+ (A(s) - A(s))U(s, t) + A"(A{t) - A[t)) 

_(-A+A(0) if s = 0 \ ( 0 i f i < l \ 
~ \ 0 if s > 0 J \ A " A ( 1 ) if i = 1 J * 
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On the other hand, the integration-by-parts formula when applied to W(t, s) 
yields 

W(t, s) = l — V(t, s)U{s, t)+A-A{t)A-.4{t)-V(t, s)A+A(s)A+ A(s)U{s, t), 

where the formulas 

U(t+, s) - U(t, s) = A+A(t)U(t, s), t€ (0,1], s e [0,1], 

, 4 )
 V ^ 8+) ~ V ^ s) = -V(fi s ) ^ + -4 (^ ) , t € [0,1], s € [0,1), 

(' ' ' U{t, s) - U(t-,s) = A~A(t)U(t, s), tC (0,1], s G [0,1], 

V(t, s) - V(t, s-) = -V(t, 8)A~A(s) t e [0,1], s € (0,1], 

which follow from (2.2) and (3.3) were utilized. 
Similarly as in the proof of [16, Theorem III.4.1] we can complete the 

proof of the following assertion giving the relationship between the functions 
U and V. 

PROPOSITION 3.1. Let us assume 2.1 and (3.1) and let the functions 
U and V be respectively given by (2.2) and (3.3). Then 

V(t, s) [I - A+A(s)] [I + A+A{s)] 

= [1 +A-A(t)][l-A-A(t)]U(t,s) if 0<s<t< 1, 

(3.5) V{t, t) = U(t, t) = I for all t € [0,1], 

V(t,s)[l + A-A(s)}[l- A-A(s)} 

= [I - A+A{t)] [I + A+A(t)] U(t, s) if 0 < t < s < 1. 

• 
C O R O L L A R Y 3.2. Under the assumptions of Proposition 3.1 the follo

wing relations are true: 

n o , o ) = i/(o,o) = i , 

V( t ,0 ) [ l + A + A ( 0 ) ] = [I - (A~A(t))2]U{t,0) for t£ (0,1), 

(3.6) V(1,0)[I + A+A(0)] = [ I - A - A ( l ) ] f 7 ( l , 0 ) , 

V(l,8)[l- (A+A(s)) 2 ] = [I - A~A(l)]U(l,s) for se (0,1), 

V ( l , l ) = 17(1,1) = I. 

• 
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PROPOSITION 3.3. Let us assume 2.1 and (3.1) and let the mxn*matrix 
valued function Z be given by 

Z{s) = K(l)A-A(l)[l- A _ A ( l ) ] " V ( l , s ) 
(3.7) / - i 

+ K(s) + / K(r)dT[V(r, s)} for s € [0,1]. 
J s 

Then a couple [y, 6) € B V " X E m is a solution to the problem (2.14) - (2.16) 
if and only if 

(3.8) yT(s) = -6TZ(s) on [0,1] 

and 

(3.9) 8t(M + J A ' ( r )d T t / ( r ,0 ) ) = 0. 

P R O O F . Since ([I - A - . 4 ( l ) ] _ 1 - i ) [I - A"A(1) ] = A " A ( 1 ) , we have 

(3.10) ([I - A-Ail)}'1 - i ) = A"A(1) [ I - A - . 4 ( l ) ] - \ 

A couple (y,6) € B V " x Rm is a solution to (2.14) - (2.16) if and only if y 
is given on [0,1] by (3.2), where n G Rn is such that (2.15) and (2.16) are 
satisfied. Inserting (3.2) into (2.16) we obtain 

» ?

T = - ( 5 T A - ( 1 ) [ I - A - A ( 1 ) ] - 1 . 

Thus, making use of (3.2) and (3.10), we get 

yT(s) = -<STA'(1)([I - A - A ( l ) ] " 1 - I ) V ( M ) 

- ST (K{S) + J A ' ( r )d T [F( r , s)]) = -STZ(s) for all s e [0,1]. 

Consequently, (3.2) reduces to (3.8). In particular, we have 

y T (0) = - ć T A - ( l ) A - . 4 ( l ) [ l - A - A ( 1 ) ] " V ( 1 , 0 ) 

- ^ T ( A ' ( 0 ) + ^ A ( r ) d r [ V ( r , 0 ) ] ) . 
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(3.12) 

Taking into account (3.6), this yields 

y T (0) [I+A+ A(0)] = -6TK{l)A-A(l)U(l, 0) 

( 3 ' U ) - ST (ff(0) + £ K(r)dT[V(r, 0)]) [I + A+ A(0)]. 

Moreover, by (3.6) we also have 

f1 K(r)dT[V(T,0)][l + A+A(0)] 
Jo 

= f K(r)dT[U{r,0)]- K(1)A~ A(l)U(l,0) - A'(0)A+A(0). 
Jo 

Inserting (3.12) into (3.11) and (2.15) we finally obtain 

y T (0) [I + A+A(0)] + ST [K{0) - M] = -ST ( M + j f * K(r)dT[U(r, 0)]), 

wherefrom the proof of the proposition immediately follows. • 

COROLLARY 3.4. Let us assume 2.1 and (3.1). Then 

dim Af (L *) = m - rankf^M + j A'(r)d T [[ /(r , 0)]). 

P R O O F . Denote 

r = m mnk(M + J K(r)dT[U{r,0)]). 

Then the system (3.9) has exactly r* linearly independent solutions. It is 
easy to see that if 

is an arbitrary basis of the space of solutions to (3.9), then the set of couples 

{(-ZT(s)6W, (-ZT(s)W,fi\ . ..,(-ZT(s)S^,S^)} 

writh Z given by (3.7) is a basis in M(L *). • 

C O R O L L A R Y 3.5. Let us assume 2.1 and (3.1). Then 

(3.13) dimM(L') = dimAf(L) + m-n. 
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P R O O F . Obviously, x £ JV(L ) if and only if 

x(t) = U(t,0)con [0,1] and (M + j A"(r)d T[tf (r,0)])c = 0. 

This implies that 

timj\T(L) = n-rank(M + J K(T)AT[U{T,0)]). 

The proof of our assertion then follows by Corollary 3.4. • 

L E M M A 3.6. Let us assume 2.1 and (3.1). Let Z e B V m x n be given by 
(3.7) and let 

(3.14) rar»Jfc([A(0) - M, K{\)}) = m, 

where [A*(l), A'(0) — M] stands for the m x '2n-matrix formed in a usual 
way. Then 

(3.15) 6TZ{s) = 0 on [0,1] 

if and only if 6 = 0 6 K " \ 

P R O O F . Let 8 £ Rm be such that (3.15) holds. In particular, it is 

0 = STZ(1) = STK{1) (l + A~A(1) [I - A " A ( l ) ] _ 1 ) . 

Moreover, since ( l + A " A ( l ) [ l - A " A ( 1 ) ] _ 1 ) [I - A"A(1) ] = I, we have 

also 

(3.16) I + A - A ( 1 ) [ I - A - A ( l ) ] " 1 ) = [ I - A - A ( l ) ] " 1 

and 8TZ(l) = <5TA'(l)[l - A'A{l)]~X = 0. This is possible only if 

(3.17) 8TK(l) = 0. 

On the other hand, inserting (3.7) and 5 = 0 into (3.15) and making 
use of (3.9), (3.12) and (3.17), we obtain 

0 = 5t(K(0) + £ K(r)dT[V(T, 0)]) [I + A + A ( 0 ) ] 

= 8t(K(0) + £ A'(r)d r [t /(r ,0)]) = ^ T (A ' (0) - M ) , 

5 - Annales... 
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wherefrom according to (3.17) the relation 

£ T [ A ( 0 ) - M , A ' ( 1 ) ] = 0 

follows. By the assumption (3.14), this is possible only if S = 0. • 

R E M A R K 3.7. Obviously, in the ease of periodic conditions (2.22) (i.e. 
m = n, M = 0 and K{t) = I on [0,1],) the assumption (3.14) of Lemma 
3.6 is satisfied. The relationship between linearly independent solutions of 
the linear algebraic system (3.9) and solutions of the adjoint boundary value 
problem (2.14) - (2.16) indicated in Lemma 3.6 could be extended to the 
general case, as well. Indeed, making use of (3.17) we obtain from. (3.15) 
that z[t) = KT(s)S has to satisfy the Volterra-Stieltjes integral equation 

(3.18) zT(s) + f Zt(T)OT[V(T,S)} = 0 on [0,1]. 
Jo 

Since under our assumptions we have 

det ^1+ {V(s,s+) - K(s , s ) )^ = det (I - A + A ( s ) ) / 0 for all s € (0,1] 

07?. d 

det ^1 + (V(0, 0+) - V(0 ,0) ) ) = det (I) = 1, 

it could be shown analogously as it was done in similar situations in the proof 
of [16, Theorem 11.3.10} or of [20, Theorem 5.5] that (3.19) may be true only 
ifz(s) = 0 on [0,1]. 

4. Periodic problem 

In this section we will consider the periodic problem (0.1), (2.22) as well 
as the corresponding homogeneous problem (4.1), (2.22), where 

(4.1) x(t) - x(0) - / d[A(s)]x(s) - 0 on [0,1]. 
Jo 

Obviously, the following assertion is true. 

PROPOSITION 4.1. Let A e B V ^ x n , / € G £ and 

(4.2) det (I - A~A(t)) ^ 0 for all t e (0,1]. 
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Then a function x e <GT™ is a solution to (0.1), (2.22) if and only if there is 
e e l " such that 

(4.3) x(t) = U(t,0)c+f(t)-f(0)- I dT[U{t,r)](/(r)-/(0)) on [0,1] 
Jo 

and 

(4.4) [17(1,0)-I]c = 6, 

where 
b = T d T [ l / ( l , r)](/(r) - /(0)) - ( / ( l ) - /(0)). 

Jo 
• 

Furthermore, from Proposition 3.3, Corollary 3.4 and Lemma 3.6 the 
next assertion follows. 

PROPOSITION 4.2. Let us assume 2.1 and (3.1). Then both the homo
geneous problem (4.1), (2.22) and its adjoint (2.23),(2.24) have exactly 

77. - rank[l - U(l, 0)] 

linearly independent solutions. A function y 6 BV™ is a solution to the 
adjoint problem if and only if there is a 6 £ R" such that 

(4.5) yT(8) = -6T[l-A-A(l)]-1V(l,s) on [0,1], 

where V is given by (3.3) and 6 verifies the system 

(4.6) ST[U(1,Q)-I]=0. 

P R O O F . It remains to show that in the case of periodic boundary con
ditions (i.e. M = 0 and K(t) = 1 on [0,1]) the formula (3.7) reduces to 

Z(s)= [l - A - A ( 1 ) ] - 1 V ( 1 , s) for s£ [0,1]. 

Indeed, inserting K(t) = I on [0,1] into (3.7) and taking into account (3.16) 
we obtain 

Z(s) = A " A ( l ) [I - A - A ( l ) ] " V ( l , s) + I + V ( l , s) - V{s, s) 

= ( i + A " A ( l ) [I - A " A ( l ) ] _ 1 ) F ( 1 , s) 

= [ l - A - A ( l ) ] " V ( l , s ) f o r a l l s £ [0,1]. • 

5 * 
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DEFINITION 4.3. For a given function A G B V N X N , the symbol Ac 

stands for the continuous part of the function A. Furthermore, by <& we 
denote the fundamental matrix solution corresponding to the equation 

x(t) - x(0) - ! d[Ac(s)]x(s) = 0, t € [0,1], 
Jo 

i.e. $ is the n X n-matrix valued function defined by the relation 

(4.7) $(*) = 1+ f d [ Ą ( r ) ] $ ( r ) for t,s £ [0,1]. 
Jo 

Finally, by S (A) we denote the set of points of discontinuity of A, i.e. 

5 (A) = {t G [0,1]; A~.4(t) ^ 0 or A + A{t) ^ 0}. 

R E M A R K 4.4. Obviously, $ G BVnXn (~)Cnxn. Furthermore, if Ac is 
absolutely continuous on [0,1], i.e. if there is an n X n-matrix valued function 
B(t) Lebesgue integrable on [0,1] and such that 

Ac(t) = [ B(T)ÓT on [0,1], 
Jo 

then $ is the fundamental matrix solution of the ordinary differential equ
ation 

x' - B(t)x = 0 

such that $(0) = I. In the general case Ac G B V " X N n <CN X™, a sequence 
{Ak(t)}fL1 of piecewise linear functions may be constructed (cf. [12]) in such 
a way that $ is on [0,1] the uniform limit of the sequence of fundamental 
solutions corresponding to ordinary differential equations 

x' - A'kx = 0. 

In addition to 2.1 and (3.1) we will need the following assumptions, as 
well. 

ASSUMPTIONS 4.5. S (A) U {0} U {1} = {rk}P

k=0, where p G N and 
0 = T0 < Ti < . . . < TP = 1. 

It is easy to see that if A G B V R ^ X N fulfils (4.2) and 4.5 then there exist 
n x n-matrices Ck, k = 0 , 1 , . . . , p, such that 

1 p 

Ah(t) := A(t) - Ac(t) = 2C0(h(t) - - ) + ^ 2 C f c / » ( i - n) on [0,1], 
fe=i 
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IS 

where 

r 0 if t < 0, 
(4.8) h(r)=\ I if t = 0, 

l l i f * > l . 

Since A+A(r f c ) = A " A ( r f c ) = C f c for k = 0 , 1 , . . . , p, it i 

de t ( I -Cfc ) ^ 0 for fc = l , . . . , p . 

Furthermore, we have 

(4.9) 

[/'(*,.s) = [ I - A - . 4 ( / ) ] _ 1 $ ( t ) n j f S - ^ I + A+^s)] 

if t€ ( r j t_ i , r f c ] and S 6 [ T H , T | ) 

for some k,£ — 1 ,2 , . . . , p such that k > £ 

I, if k < I, 
where 

where 

k f I if < A 
(4.10) n ^ j n t i ^ - M ^ O t i - ^ - i ] - 1 ^ - , ) ) ^ * > ^ -

(A similar formula was derived for the case of A right-continuous on (0,1] 
by Z. Wy derka, cf. [21]). 

In particular, we have 

(4.11) £ 7 ( 1 , 0 ) - 1 = [ l - C p ] _ 1 * ( l ) n ? [ H - C o ] - I . 

This enables us to complete the proofs of the following assertions providing 
conditions for the existence of solution to the homogeneous problem (4.1), 
(2.22) in terms of $ and Ck which are analogous to the results obtained by 
Z. Wyderka in [21] for the case of A right-continuous on (0,1]. 

PROPOSITION 4.6. Let us assume 2.1, (3.1) and 4.5 and let 

np

v * = i , 2 , . . . , p + i , 

be given by (4.9). Then there exists the inverse matrix ( I l j ) - 1 to and is 
given by 

(4.12) (IT?)- 1 = fl (*-l{Ti)[l ~ Cj] [I + C j ] " 1 $ ( r i ) ) . 
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Moreover, the homogeneous problem (4.1), (2.22) has a non-trivial solution 
if and only if 

(4.13) det \ ${l)-[l-Cp][l + C0] 1 (II?)- 1 J = 0 

holds. 

P R O O F . It was mentioned above that under our assumptions all the 
matrices [I —C*] , k = 1,.. .,p, are invertible. Furthermore, the assumptions 
2.1 and (3.1) ensure the existence of the inverse matrices [I + C f c ] - 1 for 
k = 0 , 1 , . . .,p - 1, as well. Hence the matrix (4.12) is well defined and 
n ^ I I ? ) - 1 = ( n f ) _ 1 n j = I. The relation (4.11) can be modified as follows: 

1 / ( 1 , 0 ) - 1 = 

( 4 - 1 4 ) [i - cp] - 1 ( $ ( i ) - [i - cp] [i + Co] - 1 ( n ? ) - 1 ) n j [ i + Co] 

and it is easy to see that det (U(l, 0)—I) = 0 holds if and only if the condition 
(4.12) is satisfied. • 

PROPOSITION 4.7. Let the assumptions of Proposition 4.6 be satisfied 
and let 

(4.15) # ( 1 ) = [ I - C P ] [ I + C 0 ] - 1 (IT?)- 1. 

Then any solution x of (4.1) is a solution to the problem (4.1), (2.22), as 
well. 

P R O O F . Inserting (4.15) into (4.14) we get C/(1,0) = I. • 
For the nonhomogeneous problem (0.1), (2.22) we have the following 

assertions. 

PROPOSITION 4.8. Let the assumptions of Proposition 4.6 hold. Then 
the problem (0.1),(2.22) possesses a solution if and only if 

(4.16) n T m (j2 ( n " *~V)d[/(r)])^) = 0 

holds for all n £ K " such that 

(4.17) ^ ^ - [ i - C p l t i + C o J - ^ n f r ^ o . 
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P R O O F . By Corollary 2.7, Proposition 4.2 and (4.14) the problem (0.1), 
(2.22) has a solution if and only if 

(4.18) r,T / \ ( l , r ) d / ( r ) = 0 
Jo 

holds for any r\ G B.n fulfilling (4.16). By (3.6) we have 
(4.19) 
F ( 1 , 0 ) = [ I - C P ] £ / ( 1 , 0 ) [ I + C 0 ] \ 

V ( l , r) = [I - Cp] 17(1, r) [I + C o ] _ 1 [I + A + A ( r ) ] _ 1 [I - A " A ( r ) ] _ 1 if 0 < 

F(1,1) = I. 

Inserting (4.9) into (4.19) we obtain 

F ( l , r) = $ ( l ) n ? * " 1 (r) [I - A " A(r)] _ 1 

for £ = 1,2,.. .,p and r G Te). NOW, define 

W/(r) = n j ?$ - 1 ( r ) for r G [T*_I,T/] and £ = 1,2,.. .,p. 

Making use of the relations 

{[1-Ce]-1-l)=Ce[l-Ct]~\ £ = l , 2 , . . . , p - l , 
and 

n? = n ? + 1 * - x (r/) [I + C<] [I - Ct] _ 1 $ ( r , ) , £ = 1,2,.. 

we obtain for £ = 1,2,.. . , p 

V ( l , r ) - * ( l ) W ^ ( r ) = 0-if r G ( r ,_ ! , r f ) , 
V ( l , r W ) - $ ( l ) ^ - i ) = $ ( l ) n ^ - 1 ( r , _ 1 ) ( [ l - C - x ] - 1 - i ) 

= $ ( i ) n ^ - 1 ( r , _ 1 ) c , _ 1 [ i - c , _ 1 ] - 1 

if £ > 1 

and 

V(l, r,) - S ( l ) W,(r,) = *(1) ( n ^ ! * " 1 (r f) [I - CĄ _ 1 - l T ^ " 1 (r,)) 

= t m ' t + i * ' 1 ^ (t1 - c*\_1 - i 1 + 1 1 - c*\_1) 
= - * ( l ) n ? + 1 * " 1 (r£)Ce [I - Ct]_1 if i < p. 
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Moreover, 

0) - *(0)Wi(0) = V(l, 1) - *(1)W P(1) = 0. 

Thus, 

f 1 (v(i, T) - *(i)Wi(T))d[f(T)] = - * ( i ) n f ( n ) C i [i - C i ] _ 1 , 
Jo 

f ' ( V ( l , r ) - *( l )W/(r ) )d[ / ( r ) ] = *(1) ( n ? * " 1 ( T - ^ O C ^ - ! [I - C ^ ] " 1 

- n ^ ^ - ^ r ^ f l - C ' , ] " 1 ) for £ = 2 , 3 , . . . , p - l 
and 

f ( V ( l , r ) - $ ( l )W p ( r ) )d [ / ( r ) ] = ^{\)^-\TP^)CP.,[\ - C p - x ] - 1 . 
7 T p _ l 

Consequently, 

j [ V ( l , r ) d [ / ( r ) ] - ^ ( l ) ( ^ T < ^ ( r ) d [ / ( r ) ] ) 

= E (/7 ( y ( X ' r ) - * ( l ) W ( r ) ) d [ / ( r ) ] ^ 

\e=i 

wherefrora the proof of our proposition immediately follows. • 

C O R O L L A R Y 4.9. Let the assumptions of Proposition 4.6 be satisfied. 
Then the problem (0.1), (2.22) possesses a unique solution for any f £ G " g 

if and only if 

det ^ ( 1 ) - [ I - C P ] [ I + C 0 ] _ 1 (III)-1 ) r^O, 

is satisfied ivith ( T l i ) — 1 given by (4.12). 0 
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COROLLARY 4.10. Let the assumptions of Proposition 4.6 be satisfied. 
Then the problem (0.1),(2.22) possesses a solution if and only if 

^ [ i - C g t l + C o j - ^ t o ) - 1 f *-HTW(T)])) =0 

\e=i J T ( - 1 J 

holds for all n G E N verifying (4.17). 

P R O O F . Since by (4.9) and (4.12) 

(IT?)- 1 IT? = ( $ " 1 ( r j ) [I - Cj] [I + Cj}-1^)) 

3 = 1 

P-e 

H (rp-j) [I + Cp-j] [I - Cp-j] - 1 ftfo-,-)) 

= ff ( ^ ( ^ [ i - C i l P + C i ] " 1 * ^ ) ) = ( n l r 1 , 

the proof follows by inserting of 

/ $ ( ! ) = ^ [ I - C p ] [I + C o ] - 1 ^ ) - 1 

into (4.16). • 

R E M A R K 4.11. By Proposition Ą.1 the problem (0.1), (2.22) has a so
lution if and only if 

(4.20) ST[C d T [ t / ( l , r ) ] ( / ( r ) - / (0) ) - ( / ( l ) - / ( 0 ) ) ) = 0 

W a s /or any <S € E " fulfilling (4-6). According to (3.6) we have 

U(1,T)=[I-CP]~1V(1,T)[1 + Q(T)] on [0,1], 

where 
(A+A(0) ifr = 0, 

Q(r)=\ -(A+A(T))2 if re (0,1), 

l - A - A ( l ) ifr=l. 
Since Q (0+) = Q ( r+) = Q ( T - ) = Q ( l - ) = 0 /or a// r € (0,1), it is 

f d T [ K ( l , r ) Q ( r ) ] ( / ( r ) - / (0)) = V ( l , 1)Q(1)(/(1) - / (0)) 

= - F ( l , l ) A - A ( l ) ( / ( l ) - / ( 0 ) ) . 
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Thus, making use of (3.16) we obtain 

f1 dT[U(l,T)](f(r)-f(0))-(f(l)-f(0)) 
Jo 

= [I - C V ] " 1 f dT[V(l,T)}(f(T)-f(0)) 
Jo 

-(l + Cp[l-Cp}-l)(f(l)-f(0)) 

= [I - Cp] -1 ( j f 1 d r [ F ( l , r)] (/(r) - /(O)) - ( / ( l ) - / (O))) . 

Finally, integrating-by-parts and taking into account that in virtue of (3.4) 
V(l,.) £ B V r

n

g

X n , V(l, 0+) = V(l, 0) and 1-) = 1), we flrei that 

8T(j^ d T [ [ / ( l , r)](/(r) - /(O)) - ( / ( l ) - /(O))) 

= Ó ' T [ I - C P ] - 1 f V(l,r)d[f(r)] 
Jo 

is true for any S £ E " and any f £ G " g . follows that the condition (4-20) 

is satisfied for any S £ Kn fulfilling (Ą.6) if and only if (Ą.18) holds for 
any n £ E™ fulfilling (Ą.17). By the proof of Proposition Ą.8 this means that 
(4-20) holds for any 6 £ E™ verifying (4-6) if and only if (Ą.16) holds for 
any n £ E n verifying (4-17). 

R E M A R K 4.12. If 

(4.21) ( A + . 4 ( i ) ) 2 = (A~A(t))2 = 0 for all t £ (0,1) 

then 

[I - A ' A ( i ) ] [I + A+A(t)} = I - (A+A(i ) ) 2 = I for all t 6 (0,1). 

In particular, for any j — 1,2,.. . , p — 1 we have 

[i-Cjy^ii+Cj}, [i+ąr^ii-cj], 
cAi-Cj]-1 =Cj, cJ{\ + cJ}=cJ. 

and 

[ l - C j ] 2 = I - 2 C j , [1 + 0^ = 1 + 20, 
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This enables us to simplify the necessary and sufficient condition for the 
existence of a solution to the periodic problem (0.1), (2.22) given in Propo
sition Ą.8. 

COROLLARY 4.13. Let the assumptions of Proposition 4.6 be satisfied 
and let (4.22) hold. Then the problem (0.1), (2.22) possesses a solution if 
and only if 

1=1 •'Tt-l 

holds for all n £ E™ satisfying the system (4.16), where 

( n ? ) - 1 = n ( $ - 1 ( r j ) [ l - 2 C i ] $ ( r i ) ) 

and 
p-i 

n i = II ( ^ 1 ( r P - i ) [ l + 2 C p _ , ] $ ( r p _ j ) ) . 
i=i 

R E M A R K 4.14. The results obtained in this paper may be obviously 
adapted to the case of an arbitrary subinterval [to,T] in the place of [0,1]. 
Furthermore, let the functions A : [to, oo) H-» RnXn and f : [t0, oo) E™ be 
locally of bounded variation, while the set S (A) of the points of discontinuity 
of A, 

S(A) = {TJ} w where either M = N or M-{l,2,...,i/A}CN, 

is ordered in such a way that t0 < r x < . . . < Tj_i < Tj < r J + i < . . . < oo 
holds for any j £ M such that j + 1 £ M and the unique accumulation point 
of S (A) may be oo. Furthermore, us assume that 

det (I - A~A(t)) ^ 0 for all t £ [t0, oo) 

and A generates an ij-periodic measure, i.e. (u > 0) and 

A(t + u) - A(t) = const, on [to, oo). 

Let us notice that by [21, Lemma 1.Ą] the function A generates an u-periodic 
measure if and only if there is a constant matrix Bo £ E n x ™ and an u-periodic 
function B locally of bounded variation on [to, oo) and such that 

A(t) = -B0t + B(t) on [t0,oo) 



76 M. Tvrdy 

and there is ko G N such that Tj+kc = TJ, A A(Tj+k0) = A A(TJ) ana" 
A + A ( r i + f c o ) = A+A(TJ) for all j € N , 

It is easy to see that if A and f generate ^-periodic measures and if they 
are regular on (to, to + uj) then the problem to find an u-periodic solution to 
the equation (0.1) is equivalent to the boundary value problem (4-1), (2.22) 

(with the interval [to, to + to] in place of [0,1] J fulfilling the assumptions of 
this section. 

E X A M P L E 4.15. Consider the second order differential equation with 
distributional coefficients 

(4.22) u" - (at + 2qh(t - n ) ) ' u = g', 

where 0 < T\ < 1, a = a 2 , a > 0, h stands for the Heaviside type function 
given by (4.8), g € G t e g and q € K is a parameter. The corresponding periodic 
problem (4.22), 

(4.23) u(0) = u(l) , u'(0) = «'(1) 

can be rewritten in the form (4.1), where 

A(t) = A0t + 2C\h(t-T1), 

C i - ( ° o) - /<«)=(;, 
In particular, we have n = p — 2, S (A) = {r i} , where 0 = r 0 < T\ < T2 = 1. 
Moreover, it is 

C{ = 0, d e t ( I - d ) = l a n d (n?)" 1 = ( n 2 ) " 1 = * ( n ) ( I - 2 C 1 ) $ - 1 ( r 1 ) , 

where the fundamental matrix $ corresponding to Ac(t) = Aot is for any 
a > 0 given on [0,1] by 

(4.24) = 

Inserting (4.24) into ( I I 2 ) - 1 , we get 
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Denote 
M(q) ^ ( l ) - ^ ) - 1 . 

Then 

nlffl _ e-a) 
det (M{q)) = 2 - e° - e~a - ^ —± 

a 
and 

2 - e a - e" a 

det (Af (c)) = 0 if and only if q = q* := a —— 

and 
det(A/(g)) = 0 if and only if g = q" := o ^ l ; ! . ' . 

By Corollary 4.9 ź/*e problem (4.30), (4.31) has a unique solution for 
any g £ <fj„g */ and only if q ̂  q*. Furthermore, we have 

„ a „— a 

where 

e2 — e 2 

W ) = 0 , . _ a . Af0*, 
2(e2 + e 2) 

( e a _ c - o j + ( e 2 a n _ e-2aT!) ( e f + ę - f )2+( e - i + e - < r 1 ) 2 

a((e* -(- e - < t ) 2 - (e a T l + e~aTl)'2) (ea - e~a) - ( e 2 a T l - e~2aTi) 

it is easy to see that i]TM(q*) = 0 holds for n € R 2 if and only if there is 
7 € E such that 

/ e ° - ^ \ 

Consequently Corollary 4.13 yields that in the case q = q" the problem 
(4.22), (4.23) has a solution if and only if the relation 

e a - e 2 

-a • 
ea + e2 

ari \ rl 
— , l j jo ^-1(s)d[f(s)} = 0 

is satisfied. It is easy to check that under our assumptions this condition 
reduces to 

fTl ( C «M-« + e

2aTi-as)d[g(s)] + f1 (eas + e2aTl+a-as)d[g(s)} = 0. 
JO JT, 
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E X A M P L E 4.16. Consider the problem from Example 4.15, where a = 
—a2 and a > 0. In this case we have 

* W = • / *\ af *\ for t € 0 , 1 , \ - a s i n ( a £ ) cos (at) J 
and 

M ( 0 ) = $ ( i ) - ( n 2 ) - 1 

1 I COS(a1 <}sin(2aT1) sin(a) , q(cos (2a-r,)-l) 

-asin (a) + a(cos (2arj) + 1) - 1 + cos (a) + g ( s i n ( 2 a T l ) ) 

It can be verified that 

det (M(q)) = 2(1 - cos (a) - ^ - M ) 

and thus det (M(q)) = 0 if and only if either there exists k e N such that 
a — 2kir o r o / kir for all k G N and q = q* := a tan ( f ) . 

By Corollary 4.9 it follow again that the given problem has a unique 
solution for any g £ G r e g if and only if there is a k € N sue/? that a = (2fc+l)7r 
or a ̂  for all k € N and qjLq*. 

If a ^ &7T for all € N and q = q*, then 

M(c*) = 2tan(|)M 0*, 

where 
/ a . \ / a \ cos ( § + O T I ) C O S ( — a r i ) 

- s i n ( | 4-arxjcos ( f - ari) — ^ ^ — ^ — 
asin (f + ari)sin (f - ar^) -cos ( | + ari)sin (f - a7i) 

Moreover, nTM(q*) = 0 for ?? € R 2 if and only if there is a 7 G R such that 
n T = 7C T - where 

MS 

where 
nT = T C T , 

.(otan (f - an), 1) if for all £ e Z , 

(1, C ° t ( t r T l ) ) ) if n ^ i - f for all £ e Z , 
(1, 0) if n = i - for some £ <= Z , 

1(0,1) if n = I - ^ for some £e Z . 

and Z stands as usual for the set of integers. 
It can be shown that in the first case (i.e. TI 7̂  £ - /or all £ £ Z) 

the necessary and sufficient condition for the existence of a solution to the 
problem reduces to 

fn a fl a 
j0

 C O S ^ 2 ~ ~ s ^ d ^ 9 ^ + J c o s ^ 2 + a ^ T l - s ) )%(s ) ] = 0. 
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Similar necessary and sufficient conditions for the existence of a solution 
could be derived in all the remaining cases. 
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