REMARK ON HOMOMORPHISMS OF GROUPS

Ivica Gusić

Assume that $(X,+)$ are commutative groups, and C is a subset of X fulfilling the conditions $C+C \subseteq C$ and $C-C=X$. A function $f: X \rightarrow Y$ is called C-additive function if it satisfies functional equation $f(x+y)=$ $f(x)+f(y)$, for all $x, y \in X$ such that $y-x \in C \cup(-C) \cup\{0\}$. In [1, Theorem 8.4] has been proved that every C-additive function $f: X \rightarrow Y$ is additive. In the proof the comutativity has been essentially used. Here we present a simple proof of an analogous statement in the case of arbitrary groups.

Theorem 1. Let X, Y be groups, let C be a subset of X fulfilling the conditions $C \cdot C \subseteq C$ and $C \cdot C^{-1}=X$ and let $f: X \rightarrow Y$ be a function satisfying $f(x y)=f(x) f(y)$, for all $x, y \in X$ such that $x \cdot y^{-1} \in C \cup C^{-1}$. Then f is a homomorphism of groups.

Proof. The proof is carried out through five steps.
First step: For $c \in C$ we have $f(c)=f(c e)=f(c) f(e)$, so $f(e)=e$.
Second step: We are going to prove that $f\left(x^{-1}\right)=f(x)^{-1}$, for every $x \in X$. At first suppose that $x \in C$. Then $e=f(e)=f\left(x x^{-1}\right)=f(x) f\left(x^{-1}\right)$. Let $x \in X$ be arbitrary. There exist $u, v \in C$ such that $x=u v^{-1}$. Therefore $f\left(x^{-1}\right)=f\left(v u^{-1}\right)=f(v) f\left(u^{-1}\right)=f\left(v^{-1}\right)^{-1} f(u)^{-1}=\left(f(u) f\left(v^{-1}\right)\right)^{-1}=$ $f\left(u v^{-1}\right)^{-1}=f(x)^{-1}$.

Third step: Suppose that $x, y \in C$. Then from the second step we get

$$
f(x y)=f(x y) f(y)^{-1} f(y)=f(x y) f\left(y^{-1}\right) f(y)=f\left(x y y^{-1}\right) f(y)=f(x) f(y) .
$$

[^0]Fourth step: Suppose that $c \in C$ and $x \in X$. Then by the third step $f(c x)=f\left(c u v^{-1}\right)=f\left((c u) v^{-1}\right)=f(c u) f\left(v^{-1}\right)=f(c) f(u) f\left(v^{-1}\right)=f(c) f(x)$.

From this and from the second step, we get $f\left(x c^{-1}\right)=f(x) f\left(c^{-1}\right)$, for every $c \in C$ and every $x \in X$.

Fifth step: Suppose that $x, y \in X$ are arbitrary. Then there exist $u, v, z, w \in C$ such that $x=u v^{-1}$ and $y=z w^{-1}$. By the fourth step we have

$$
\begin{aligned}
f(x y) & =f\left(u v^{-1} z w^{-1}\right)=f(u) f\left(v^{-1} z w^{-1}\right)=f(u) f\left(v^{-1} z\right) f\left(w^{-1}\right) \\
& =f(u) f\left(v^{-1}\right) f(z) f\left(w^{-1}\right)=f\left(u v^{-1}\right) f\left(z w^{-1}\right)=f(x) f(y) .
\end{aligned}
$$

The theorem is proved.
In the sequel we will show that the condition $C \cdot C \subseteq C$ in the theorem 1 can be replaced by a weaker one.

Theorem 2. Let X, Y be groups, let C be a subset of X fulfilling the conditions $C \cdot C \cdot C \subseteq C$ and $C \cdot C^{-1}=X$ and let $f: X \rightarrow Y$ be a function satisfying $f(x y)=f(x) f(y)$, for all $x, y \in X$ such that $x \cdot y^{-1} \in C \cup C^{-1}$.

Then f is a homomorphism of groups.
Proof. 1. step: $f(e)=e$, as in the first step in the proof of Theorem 1.
2. step: If $c \in C$ then $f\left(c^{-1}\right)=f(c)^{-1}$.
a) There exist $u, v \in C$ such that $c=u v^{-1}$. Therefore, $e=f\left(u u^{-1}\right)=$ $f\left(c v u^{-1}\right)=f(c v) f\left(u^{-1}\right)=f(u) f\left(u^{-1}\right)$, hence $f\left(u^{-1}\right)=f(u)^{-1}$. Since $u v^{-1} \in C$, we have $f(u v)=f(u) f(v)$. Therefore, $f(u)=f\left(u v v^{-1}\right)=$ $f(u v) f\left(v^{-1}\right)=f(u) f(v) f\left(v^{-1}\right)$, so $f\left(v^{-1}\right)=f(v)^{-1}$.
b) $f(u) f\left(u^{-2}\right)=f\left(u u^{-2}\right)=f\left(u^{-1}\right)=f(u)^{-1}$, so $f\left(u^{-2}\right)=f(u)^{-2}$. Similarly we can prove that $f\left(v^{-2}\right)=f(v)^{-2}$.
c) $f\left(u v^{-1}\right)=f\left(u v^{-1}\right) f\left(v^{-1}\right) f(v)=f\left(u v^{-2}\right) f(v)=f(u) f\left(v^{-2}\right) f(v)=$ $f(u) f(v)^{-2} f(v)=f(u) f(v)^{-1}$.
d) From a), b) and c) we have $f\left(c^{-1}\right)=f\left(v u^{-1}\right)=f\left(v u^{-1}\right) f\left(u^{-1}\right) f(u)=$ $f\left(v u^{-2}\right) f(u)=f(v) f(u)^{-2} f(u)=f(v) f(u)^{-1}=\left(f(u) f(v)^{-1}\right)^{-1}=$ $\left(f\left(u v^{-1}\right)\right)^{-1}=f(c)^{-1}$.
3. step: Let $a, b \in C$. Then, by the 2 . step we have:

$$
f(a b)=f(a b) f(b)^{-1} f(b)=f(a b) f\left(b^{-1}\right) f(b)=f\left(a b b^{-1}\right) f(b)=f(a) f(b)
$$

Especially, $f\left(c^{2}\right)=f(c)^{2}$, for every $c \in C$.
4. step: Similarly as in the 2 . step c$)$, using the 2 . step d) we get $f\left(a b^{-1}\right)=$ $f(a) f(b)^{-1}$, for all $a, b \in C$. Also, from the 3 . step and the fact $C^{-1} \cdot C^{-1}$. $C^{-1} \subseteq C^{-1}$ we obtain

$$
\begin{aligned}
f\left(a^{-1} b\right) & =f\left(a^{-1} b\right) f(b) f(b)^{-1}=f\left(a^{-1} b^{2}\right) f(b)^{-1}=f\left(a^{-1}\right) f\left(b^{2}\right) f(b)^{-1} \\
& =f\left(a^{-1}\right) f(b)^{2} f(b)^{-1}=f\left(a^{-1}\right) f(b), \quad \text { for all } \quad a, b \in C
\end{aligned}
$$

5. step: Let $x \in X$. Then $x=a b^{-1}$, for $a, b \in C$. From the 4 . step, similarly as in the proof of the 2 . step d), we get $f\left(x^{-1}\right)=f(x)^{-1}$.

The rest of the proof is as the proofs of the fourth step and the fifth step of Theorem 1.

References

[1] Z. Kominek, Convex functions in linear spaces, Katowice 1989.

University of Zagreb

Faculty of Chemical Engineering and Technology Marulićev Trg 19, p.p 177
10000 Zagreb
Ciroatia
e-mail: igusic@pierre.fkit.hr

[^0]: AMS (1991) subject classification: Primary 20 K 30.

