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A b s t r a c t . The functional differential equation = (Fx)(t) is considered. 
Here g is an increasing homomorphism on R,g(0) = 0 and F : C (J) —>• Li(J) 
is a continuous operator satisfying a growth condition with respect to x. A class of 
nonlinear functional boundary conditions is considered and sufficient conditions for 
the existence at least one positive and one negative solutions of the boundary value 
problems are given. Results are proved by the homotopy theory, the Leray-Schauder 
degree and the Borsuk theorem. 

1. Introduction 

Let J = [a, b] C K be a compact interval. In this paper L\(J),X, Y and 
AC {J) denote the following Banach spaces: 

•6 

Li(J) = {.T : J -> R measurable and J \x(t)\dt < oo} wi th norm 

a 
b 

\\x\\Ll = j \x{t)\dt-
a 

X = C ° ( J ) wi th norm ||x||0 = max{|ar(t)| - t e J}; 

Y = CX{J) wi th norm \\x\h = ||x|| 0| + ||x'||0; 
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AC(J) = {x : J —>• R absolutely continuous}with norm 

I k l U c = ||*||o + I k ' l U i -

For each functional <p : X —> R , Im(<p) denotes the range of </>. 
B y A we understand the set of all functionals <p : X —>• R that are 

(i) continuous, 
(ii) <p(x) = <f(\x\) for a; 6 X , 
(iii) x,y G X , < |y(t)l for i G J ^(a;) < y>(y), 
(iv) l im <p(u) = oo; 1) 

u £ £ , t i - > o o 

and set Ao = {>f • 'P £ A, <p(0) = 0}. 

R E M A R K 1. The set A was introduced in [8] the first time. 

E X A M P L E 1. Let p : [0, oo) —>• R be continuous increasing and l im p(u) = 
b 

oo. Set <f(x) = jp(\x(t)\)dt for x G X (see [1]). Then <p G A. Next functionals 
a 

belonging to the set A are given below: 

n 
max{\x(t)\ : t G J i } , min : t G J x } , ^ a ; | x ( ^ ) | , 

«=i 

where J i C J is a compact interval, a < t\ < ^ < . . . < £ „ < 6 and 
a; G (0,oo) (see [8]). 

Let B be the set of al l functionals (p : X —>• R that are 
(j) continuous, ^>(0) = 0, and 
(jj) x, y G X , < y{t) for i G J y>(a:) < ¥>(y). 

E X A M P L E 2. Let J\ C J be a compact interval, a < a i < 6j < b and 
n G N . Then the functionals 

max{x( f ) : t G J i } , min : i G J i } , jx2n+x{t)dt, 

belong to Z? (see [8]). 

Consider the functional differential equation 

(1) (g(x'(t)))' = (Fx)(t), 

where g and F satisfy the following assumptions: 

We identificate the subspace of X of constant functions wi th R . 
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(Hi) g : R - » E is an increasing homeomorphism with inverse g~l and such 
that g(0) = 0; 

(Hi) F : Y —>• L\(J) is a continuous operator. 
Together wi th (1) we concern in the boundary conditions 

(2) w(z) = A , 

(3) 7(*') = 0, 

where u> £ A,y £ B and A 6 E . 
A function x € Y is said to be a solution of boundary value problem 

( B V P for short) ( l ) - (3 ) i f g(x') e AC (J), x satisfies boundary conditions 
(2), (3) and (1) is satisfied for a.e. t € J-

R E M A R K 2. The special case of g in (1) is the p-Laplacian gp : E —)- E 
defined by 

gp{u) = \u\p~2u 

for p > 1 (see e.g. [3], [5] and references therein). 
The special case of (1) (with g(u) = u) is the functional differential 

equation 

(4) x"(t) = (Fx)(t) 

Note that mult ipl ic i ty results for (4) wi th nonlinear functional boundary 
conditions were given by Brykalov ([1], [2]) and the author ([7]-[9]). In [1], 
[2] results are proved under the assumption that F is bounded and in [7]-[9] 
under the assumption that F satisfies a growth condition of the type 

\(Fx)(t)\<f(\x'(t)\) 

for a.e. t £ J and each x € Y , where / : [0, oo) —>• (0,oo) is nondecreasing 
oo oo 

and / jffr - oo ([9]) resp. / -Mr = oo ([7], [8]). In [7]-[9] the results were 
o o 

proved by the B iha r i lemma, the theory of homotopy, the Leray-Schauder 
degree and the Borsuk theorem. 

In the present paper we assume that F satisfies a growth condition de­
pending only on x and give sufficient conditions for any solution of B V P 
( l ) - (3 ) does not vanish on J and there exist at least one positive and at 
least one negative solutions. In contradiction to [7]-[9] we can' t now ap­
ply the B i h a r i lemma. Results are proved by the theory of homotopy, the 
Leray-Schauder degree and the Borsuk theorem (see, e.g., [4] and [10]). 
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2. Lemmas 

L E M M A 1. [8]. Let tp e A, A e Im(p). Then 
(a) <p(0) < <p(x) for each x G X , 
(b) <p(r) = A for a unique nonnegative constant r, 
(c) x,yeX, \x(t)\ < \y(t)\ for t G J => <p(x) < <p(y). 

L E M M A 2 . [8]. Let <p G A and <p(x) = <p(y) for some x,y G X . Then 
there exists a T G J such that 

L E M M A 3. [7]. Let ip G A and <p(x) < <p(y) for some x,y G X . Then 
there exists a £ G J such that 

L E M M A 4. [8]. Let tp G B,A G Im(<p). Then <p(d) = A for a unique 
deR. 

L E M M A 5. [8]. Let <p G B and c G [0,1]. Let the equality 

L E M M A 6. Let assumption (Hi) be satisfied and let {yn} C Y be a 
bounded sequence such that 

for each f i , *2 G J and n £ N, where ip G L\(J) is a nonnegative function. 
Then {yn} is compact (in Y). 

P R O O F . B y assumption, {yn} is bounded in Y . To prove our lemma it is 
sufficient to show that there exists a convergent subsequence of {y'n} in X . We 
see that {g{y'n)} is bounded in X , and consequently (5) and the A r z e l a - A s c o l i 
theorem imply the existence of subsequence {g(y'kn)} converging in X . Set 

l*(r)| = |y(r)|. 

*(OI < lv(f l l -

ip{x) — ap(—x) = 0 

be satisfied for an x G X . Then exists a r G J such that 

X{T) = 0. 
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ZK = g{y'kn)- T h e n V'kn = 9 1(*kn) and since (cf. (Hi)) g 1 is increasing on 
R and {zk„} is convergent in X , {y'k } is convergent in X as well. 

For each g satisfying (Hi), define the function G~x : [0, oo) - * [0, oc) by 
the formula. 

G-1(v) = mzx{g-1(v),-g-1(-v)}. 

Then G is continuous and increasing on [0, oo). 
R E M A R K 3. If g satisfying (Hi) is an odd function, then G _ 1 ( u ) = 

g _ 1 ( i>) for v G [0,oo). In particular G~*(v) = v and G ' _ 1 ( t ' ) = p~y/v on 
[0, oc) for g(u) — u and g(u) = | w | p - 2 u (p > 1) on R, respectively. 

We assume throughout this paper that the operator F and the function 
g satisfy assumptions (Hi)-(H,i), where 

(H3) There exist a continuous nondecreasing function / : [0 ,00 ) —> [0 ,00 ) 
and nonnegative functions a,/3 G Li{J) such that 

(6) \{Fx){t)\<a(t)f{\\x\\o)+/3{t) for a.e. t G J and each x G Y ; 

(H4) The function S : [ 0 ,00 ) -»• R , 

(7) S(v) = v- h(v) 

is increasing on [0,oo) and 

(8) l im S(v) = oc, 
V—¥O0 

where h : [ 0 , 00 ) -> R , 

The fact that F and 5 satisfy assumptions (HI)-(HĄ) wi l l be stated 
explici t ly only in assumptions of our theorems. 

7 - Annales.. 
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R E M A R K 4. Clearly (cf. (H3)), 5 € C ° ( [ 0 , oo)), 5(0) < 0 , 5 - ^ 0 ) > 
0,h(v) = H G ^ - 1 (6(v)A(f) + * ( f ) ) | | i , 1 , and there exists the inverse function 
S~l : [5(0), oo) -»• [0,oo) to S. Moreover, A(t) < | | a | | L l . * ( t ) < \\0\\Ll for 
teJ. Ifg(u) = u, thenS{v) = v-f(v)\\A\\Ll-\\V\\Ll. For g(u) = \U\P~2U 

(p > I) we have (cf. Remark 3) S(v) = v - J "-{/f(v)A(t) + ^(t)dt. 
a 

L E M M A 7. Let u(t) be a solution of (1) such that u{£) = 0, « ' ( r ) = 0 
for some £, r € J. Then 

(10) l l ^ l lo < S - Ł ( 0 ) . 

P R O O F . Integrating the equality 

(g(u'{t)))'=(Fu)(t) fora .e . t e J 

from r to f we obtain g(ti'(t)) — f*T(Fu)(s)ds since </(u'(r)) = 0, and there­
fore (for t £ J) 

u'(t) = g - 1 ^j{Fu)(s)d)j , 

*(*) = J9~l (J(Fu)(v)dv\ ds. 

Then 

( 1 1 ) K O I < j g-1 U(Fu)(v)dv ds 

for t e J. Since (cf. (H3)) 

we see that 

g-1 U(Fu)(v)dv < G-1 I / (Hul lo ) 

s s 

J a(v)dv + J [3(v)dv 

s s s s 

J(Fu)(v)dv < j\(Fu)(v)\dv </(|M|0) j<x(v)dv + j/3(v)dv 

T T T T 
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for s G J. Hence 

jg-1 (j(Fu)(v)dv\ ds 

(12) < 

< jG-l(f{\\uhW) + n))dt 

for t e J , and consequently (cf. (9) and (11)) | |w| | 0 < /»(||w||o)- Th is gives 
5 ( | | « | | o ) < 0 which implies (10). 

COROLLARY 1. Let u{t) be a. solution of (1), U'(T) = 0 for a T e J and 
\\u\\0 > S ' - ^ O ) . Then 

\u(t)\>0 for t € J . 

P R O O F . If not, there exists a £ € J such that w(£) = 0. Then , by 
L e m m a 7, ||u||o < 5 _ 1 ( 0 ) , a contradiction. 

Consider the functional differential equation 

(13A) (g(x'(t))y = X(Fx)(t), A G [0,1] 

depending on the parametr A. 

L E M M A 8. Let m > 0 a constant and u(t) be a solution of (13\) for a 
A G [0,1] such that | u ( £ ) | = m , u'(r) = 0 for some £, r G J . Then 

(14) 

and 

( 1 5 ) 

|«| |o < S-l(m) 

WWo^G-Hns-Hmmiau. + wąL,). 

P R O O F . Integrating the equality (for a.e. t £ J) 

(g(u'(t))Y = X(Fu)(t) 

t I s s \ < y^G'-1 i/(iHio) y + y 0(v)dv j <fs 
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from r to t we obtain 

g(u>(t)) = \ f(Fu)(s)ds 

and therefore 

( 1 6 ) u'(t)=g-1 ^\j(Fu)(s)d.)j 

« ( 0 = « ( 0 + J O'1 U J (Fu)(v)dv\ ds 

for t G J. Using the inequalities 

Jg-1 I A j(Fu)(v)dv\ ds 

)(s)ds < / ( N | o ) A ( t ) + *(t) 

we see that (cf. proof of L e m m a 7 ) \u(t)\ < m + h(\\u\\o) for t G J. Conse­
quently, S ( | | M | | O ) < rii and inequality ( 1 4 ) holds. Then 

t 

< / ( N l o ) < / ( 5 ' - > ) ) | | a | | L l + | | / ? | | L l 

which and ( 1 6 ) together imply ( 1 5 ) . 
For each x G X define x + , x_ G X by the formulas 

x+(t) -{I f 0 for x(t) > 0 
0 for x{t) < 0, ~ \ -x(t) for x{t) < 0. 

(f) for x(t) > 0 

Then x+(t) > 0, £ - ( £ ) > 0 for t G J and ,x = a: + — X - . 

L E M M A 9. Let u £ Ao,"f £ B,r,k,l, li be positive constants, k > r and 

Q, — {(x, a, (3) : (x,a, j3) G Y x E 2 , ||x||o < k, \\x'\\0 < I, \a\ < k; \/3\ < h}. 
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Let _ 
Tt : ft -> Y x R 2 ( i = 1,2), 

r i (a;, a , /?) = (a + flT^K* - « ) , « + - w(/i) , /J + y{x')), 

T2(x, a, (3) = (a + $ _ 1 (/?)(* - a), a + w(x_) - /3 + 7 ( x ' ) ) . 

(17) D ( / - r , - , f i , 0 ) ^ 0 for i = 1,2. 

Here " D " denotes the Leray-Schauder degree and I is the identity operator 
on Y. 

P R O O F . F i r s t of a l l , we see that ft is an open bounded and symmetric 
subset of the Banach space Y x R 2 wi th usual norm and UJ(T) > 0 since 
uJ G Ao and r > 0. Define (for i = 1, 2) 

Hi : [0,1] x ft -»• Y x R 2 

by 

H1(\,x,a,,i3) = ( f t + ( 5 - 1 ( / 3 ) - ( l - A ) 5 - 1 ( - / 3 ) ) ( i - a ) , 

a + w ( x + ) - w ( ( l - A ) x _ ) - A w ( / * M + 7 ( x ' ) - (1 - A ) 7 ( - x ' ) ) • 

ff2(A,x,o,/3) = ( a + ( < , - ! ( / } ) - ( 1 - A ^ H ^ - a ) , 

a + u,(.x-_) - u , ( ( l - X)x+) - \u(fM),(3 + 7 ( x ' ) - (1 - A ) 7 ( - x ' ) ) -

Clearly, 
ffj(l,x,a,/?) = r j ( x , a , / 9 ) 

for (x.ct,/?) G ft and « = 1,2. Hence, to prove (17) it is sufficient to verify, 
by the homotopy theory and the Borsuk theorem, that (for i = 1, 2) 
(a) Hi(0, •, •, •) is an odd operator, that is, i f , ( 0 , —x, —a, —(3) = —Hi(0, x , a, (3) 

for (x, a , (3) G ft, 
(b) H i a compact operator, and 
(c) Hi(\,x,a,{3) ź {x,a,3) for (\,x,a,p) G [0,1] x 5ft. 

We prove, for instance, (17) for i = 1. The proof of (17) wi th i = 2 is 
similar . F i x (x,a,(3) G ft. Then 

/ f i ( 0 , - x , - a , - / J ) = ( - a + C f l f - ^ - / ? ) - ^ 1 ^ ) ) ^ - ^ , - a + « ( x _ ) - u ; ( x + ) , 

+ 7 ( - x ' ) - 7 ( x ' ) ) = -(a + (g-'iH) - g-1 (-/}))(* ~ «), 

a + w(x+) - w ( x _ ) , / 3 + 7 ( x ' ) - 7 ( - a f ' ) ) = - # i ( 0 , x , a,/?) 
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since (—w)+ = » - and (-w)_ = u+ for any u G X . Hence i / i (0, •, •, •) satisfies 
(a) (with t'= 1). 

We proceed to show that Hi is a compact operator. Let {(A n, ,xn, ctn, 
C [0,1] X ft be a sequence, Then 0 < A,,, < 1, ||xn||o < k, \\x'n\\0 < /, |a„| < 
k, < ^i for each n G N. Consequently, {u;((a;„)+)}, {u;((l - A„)(a; r i)_)}, 
{y(x'n)} and {7(-a''„)} are bounded sequences (in R) and, by the Bolzano-
-Weierstrass theorem, without restiction of generality, we can assume that 
{A,J, {a„}, {/?„}, M ( z n ) + ) } , { w ( ( l - A „ ) ( 2 - „ ) _ ) } . { 7(<)} and { 7 ( -<)} are 
convergent. Hence there exists limits 

Hm K + ( 5 _ 1 ( ^ ) - (1 - Aft)*/"1 (-/?„))(* - «)) 

in Y and 

lim (an + (w((ar„)+) - w((l - A n ) (« n )_) - A nw(r)), 
'ft—»-00 

lim d3n + 1(x'n)-(l-Xnhi-x'n)) 
ft-rOO 

in R, and consequently there exists lim „ - x x , i/i(A„, a;„, ofn, /3n) in Y x R 2 . 
Moreover, from the continuity od OJ and 7 we deduce that i f 1 is a continuous 
operator. It follows that Hi is a compact operator. 

It remains to prove (c) (for i = 1). Assume, on the contrary, that 

Hi (A0, x0, a0, ,30) = (.TO, "o, A ) ) 

for a (A0,x0,o;o,^o) G [0,1] x dQ. Then 

(18) x0(t) = a0 + (g-1(l30)-{l-\0)g-1(-i3o))(t-a) for t g j , 

(19) w((*o)+) - w((l - Ao)(ar0)-) = A0u;(r) 

and 

(20) 7(4) - (1 - A 0 ) 7 ( - 4 ) = 0. 

From (20) and Lemma 5 (with 9 = 7, c = 1 — An, x = x'Q) it follows that 
X'0(T) = 0 for a r G J. Then (cf. (18)) 

g-\(30)-(l-X0)g-1(-f30) = 0 

which is satisfied if and only if /30 = 0 since u<7_1(«) > 0 for all u G R \ {0}; 
hence 

z 0 (0 = G'o for i G J. 
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B y our assumption ( d O , a o , 0 ) = (x0,a0,l30) G 0Q and therefore |of0| = k 
(> r ) . Assume cv0 = k. B y (19), u(k) = A0u>(^), which contradicts A 0ŁJ(^) < 
*(H) < If a 0 = -k, then (cf. (19)) 

- u? ( ( l - X0)k) = A0u>(/i). 

Since u;(( l - A 0 )&) > 0 and > 0, the last equality is satisfied if and only 
if A 0 = 0 and u(k) = 0, which is impossible. Th is completes the proof. 

3. Existence results 

Existence results for B V P ( l ) - (3 ) are given in two theorem. In The­
orem 1 we assume that ui G A Q . B y Theorem 1, existence results for each 
u> G A are proved in Theorem 2. 

T H E O R E M 1. Let assumptions (H\)-(Hi) be satisfied and let u £ Ao,~f € 
B. Then for each A £R such that 

any solution of BVP (l)-(3) does not vanish on J, and there exist at least 
one negative and at least one positive solutions. 

P R O O F . F i x A > w ( S - 1 ( 0 ) ) . Then (cf. Remark 4) A > 0. B y L e m m a 
1, there exists a unique positive constant n such that u(fi) = A. Hence 
u>(fi) > u ; ( S - 1 ( 0 ) ) , and consequently 

(21) r > 5 - 1 ( 0 ) . 

Let u{t) be a solution of B V P ( l ) - ( 3 ) . T h e n w(« ) = A[= u>{p)), 7(u') = 
0, and so (cf. L e m m a 2 and L e m m a 5 with c = 0) |w(£) | = r, u'(r) = 0 
for some £, r € J. Thus (cf. (21)) | | u | | 0 > 5 _ 1 ( 0 ) , which yields \u(t)\ > 0 
for t G J by Corol la ry 1. We have proved that any solution of B V P ( l ) - (3 ) 
(provided that one exists) does not vanish on J . 

We proceed to show that then exists at least one positive solution of 
B V P ( l ) - ( 3 ) . Set 

k = S~1(r) + r, / = G " 1 ( / i ) , 

Cl = {(x, a, (3) : (x, a,(3) G Y x R 2 , ||ar||0 < k, \\x'\\0 < /, |«| < k, \(3\ < h}, 

where 

/ ^ / ( s - V ) ) ! ! ^ + 11/311̂  + 1. 
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Let the operator Si : [0,1] x ft -> Y x R 2 be given by the formula 

5 i ( A , x, a, 3) 

= (a + Jg-1 (f3 + X j(Fx)(v)di\ ds, a + u(x+) - u(fi), [3 + y{x') 

Obviously, Si(0, x,a, j3) = Ti(x,a,/j) for (x,a,j3) £ ft, where T i is defined 
in L e m m a 9. Consider the operator equation 

(22 A ) Si(X,x,a,!3)=(x,a,i3), X £ [0,1] 

depending on the parametr A. We next prove that (22i) has a solution. A s 
D{I - Ti, ft, 0) ^ 0 by L e m m a 9, it is sufficient to check that (cf [4], [10]) 
(a) Si is a compact operator, and 
(b) Si (A, ai, a, (3) / (x, a, (3) for each (A, x, a, (3) £ [0,1] x dft. 

F r o m the continuity of g~l, F, u> and 7 we deduce that Si is a continuous 
operator. Let {(Xn, xn, a n , f3n)} C [0,1] x ft be a sequence and set 

(llni &ni bn) = Si ( A n , Xn, Ct n , /3n) 

for B G N . Then 

(23) y. n{t) =an + jg 1 j j3n + Xn j{Fxn){v)dv \ ds, 

(24) an = an +u{(xn) + ) - u(fi) 

and 

(25) bn = Qn + 7 « ) 

for n £ N . We wi l l prove that the sequence {yn} is compact in Y . Since 
0 < A n < 1, | |x„ | |o < k, \\x'n\\o < I, \an\ < k and \j3n\ < li, we conclude that 
(cf. (23) and the definition of G _ 1 ) 

\\y\\0 <k+(b- a)G~l (h + f(\\xn\\0)\\a\\Ll + | | /3 | | L l ) 

< k + { h _ a)G-i { h + f(k)\\a\\Ll + \\(3\\Ll), 

l l y ^ l l o ^ G " 1 (li + f(k)a\\Ll + \\i3\\Ll) 
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and, moreover, 

\g(y'n(h)) -9(y'n(t2))\ < K 

t2 t2 

j{Fxn){t)dt < j^{t)dt 

for each n 6 N,tut2 € J, where i^t) = f{k)a{t) + 0{t) (€ Li{J)). 
B y L e m m a 6, {yn} is compact in Y . F rom this and from the inequalities 
(cf. (24) and (25)) 

\an\ <k + u{k)+u(r), | 6 „ | < / 1 + m a x { 7 ( / ) , - 7 ( - / ) } 

for n G N , we deduce that {(yn,an,bn)} is compact in Y x K 2 . Hence Si is 
a compact operator. 

To prove property (b) of Si we assume, on the contrary, that 

(26) Si(\0,xo,ao,Po) = {x0,a0,l30) 

for a ( A 0 , x0, an, A)) € [0,1] x 8Q. Then 

(27) x0(t) = a0 + J g - 1 f/3 0 + A 0 j (Fx0){v)dv\ ds, t € J, 

(28) L,{(X0)+)=UM 

and 

(29) 7 (4) = 0. 

B y (28) and L e m m a 2, 

(30) (aro)+(0 = »-

for a £ € and 

(31) X'O(T) = 0 

for a T € J by (29) and L e m m a 5 (with c = 0). F r o m (27) we see that 

(g{x'0{t))y = X0(Fx0){t) fo ra .e . t £ j 
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and then L e m m a 8 (with m = r and A = A 0 ) implies 

(32) Ikollo < S~l(r) < A;, 

(33) | |4 | |o < G-1 (f(S-l(r))\\a\\Ll + \\0\\Lx) < G - 1 ( / i ) . 

Since (cf. (27)) 

a0 = x0(a), fa = g(x'0(a)), 

we have (cf. (27), (31) and (32)) 

(34) K | < k, 

(35) 
\lh\ = \9(x'0(a))\ = 

T b 

J(Fx0)(t)dt < J \(Fx0)(t)\dt 

< f(\\xo\\o)\\a\\Ll + \\l3\\Ll < f(k)\\a\\Ll + \\0\\Ll < k. 

Hence (x0, a 0 , flo) # dQ, which follows from (32)-(35), a contradict ion. 
We have verified that (22 x) has a solution (in ft), say (u,ao,Po). Then 

u is a solution of (1) satisfying boundary conditions 

o(u+) = A ( = « ( r ) ) , 7 ( « ' ) = 0. 

Since (^)j = r for a ( 6 J by L e m m a 2, we see that u + ( £ ) = r, and 
consequently u(t) > 0 on J by Corol la ry 1. Hence w ( u + ) = u(u) and w is a 
positive solution of B V P ( l ) - ( 3 ) . 

If the operator S2 : [0,1] x dft -4 Y x K 2 , 

S2{X,x,a,i3) 

= ^a + g-1 J (^ + XJ(Fx)(v)d»j rfs,a + w(ar_) -w(r),/3 + 7(ar')j 

is considered instead of S\, one can prove, in the same manner as above, the 
existence at least one negative solution of B V P ( l ) - ( 3 ) . 

T H E O R E M 2. Let assumptions (Hi)-(Ht) be satisfied and let u> e A, 7 G 
B. Then for each A g R such that 

A>u(S-l(Q)) 
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any solution of BVP (1)~(3) does not vanish on J. and there exist at least 
two solutions, one negative and one positive. 

P R O O F . F i x A > w f S - ^ O ) ) . Set, u(x) = u(x) - w(0) for x £ X . Then 
u; G Ao- Consider equation (1) subject to the boundary conditions 

(36) u{x) = A - w ( O ) , 7(ar') = 0. 

O f course, A-u>{0) > w ( 5 _ 1 ( 0 ) ) and applying Theorem 1 to B V P (1), (36), 
any solution of this problem does not vanish on J and there exist at least 
two solutions, one positive and one negative. Since u(t) is a solution of B V P 
( l ) - (3 ) i f and only if that is a solution of B V P (1), (36), our theorem is 
proved. 

E X A M P L E 3. Let p > 1, A > 0 and K > 0 be constants such that 

(37) A < i > - 1 , "-\/K[h-a) <l. 

Consider the functional differential equation 

(38) {\x'{t)\p-2x'{t))' = {FlX){t)\x(t)\x sign x(t), 

where F i : Y —>• L\[J) is continuous and |(Fi.i')(/)| < K for a.e. t £ J and 
each x G Y . We see (cf. Remark 2) that the left side of (38) is equal to 
{gp(x'(t))Y, where gp is the p -Lap lac ian , and the right side of (38) has the 
Emden-Fowler form (see. e.g., [6] and references therein). Set 

(39) flv) - [K - for v G [0,1] 
{ i J > J ( > \ KvA for i. G (1, oo). 

Then / is a nondecreasing on [0, oc) and since 

| (F ł ( a ; )(0 | ; C (ź) i A sign.r(<.)! < A ' m a x i l , ! ! * ! ^ } , 

we have 

|(Faa:)(0 |x(*)|ARigna:(t)| < f(\W\\o) 

for a.e. t £ J and each x £ Y . Consequently (cf. Remark 4), 

S{v) = v - p-yf(v)(b - a), v £ [0, oc). 

Hence (cf. (39)) 

- r-\/K{b - a) for v £ [0,1] 

-- p~\/l\(b — t ^ y p - i for t ' G ( l , o o ) . 
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Since (cf. (37)) ( t ' - p _ >/ t f ( 6 - a > F ^ ) ' = 1 - ^ p~\/K(b-a)v^T-1 > 0 for 

each v > 1, 5 is increasing on [0, oo). Moreover, l im S(v) = oo and S(t'o) = 

0 i f and only of VQ = r~\/K(b — a) (= S - 1 ( 0 ) ) . So, equation (38) satisfies 
assumptions (//^-(.fiU). Consider (38) subject to the boundary conditions 

(40) | | z | | 0 = A, min {x'{t) : t e J} = 0, 

(41) | | . r | | L l = A, max {x'(t) : t e J} = 0 

and 

6 

(42) Jy/T+MWdt = A, x(a) = x{b) 
a 

which are the special cases of (2), (3) w i t h UJ(X) = | |a;| |o,7(x) = min {x(t) : 
t € J} for (40), m(x) = II^Hz.!,T(^) = max{a;(t) : t € J} for (41) and 
u{x) = / a

6 ^ 1 + (z(t))2dt,f(x) = )b

ax{t)dt for (42). B y Theorem 2, for al l 
A € R such that 

A > p _ v / F ( 6 - a ) ( r e s p . A > ' _ v ^ ( 6 - o ) 2 ; A > {b-a)y/l + P~\/l0(b - a ) 2 ) 

any solution of B V P (38), (40) (resp. (38), (41); (38), (42)) does not vanish 
on J and there exist at least two solutions, one positive and one negative. 
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