ON THE EXISTENCE OF TWO SOLUTIONS
OF FUNCTIONAL BOUNDARY VALUE PROBLEMS

SVATOSLAV STANEK

Abstract. The functional differential equation (g(z'(t)))' = (Fz)(t) is considered.
Here g is an increasing homomorphism on R,g{0) = 0 and F : C'(J) — Ly(J)
is a continuous operator satisfying a growth condition with respect to z. A class of
nonlinear functional boundary conditions is considered and sufficient conditions for
the existence at least one positive and one negative solutions of the boundary value
problems are given. Results are proved by the homotopy theory, the Leray-Schauder
degree and the Borsuk theorem.

1. Introduction

Let J = [a, ] C R be a compact interval. In this paper L;(J),X,Y and
AC(J) denote the following Banach spaces:

b
Ly(J) = {z : J - R measurable and /|a'(t)|dt < oo} with norm

b
lellz, = / o (2)]de;

X = C°(J) with norm ||z|jp = max {|z(t)|: ¢ € J}
Y = C(J) with norm ||z|ly = ||zllo] + |l2'|lo;
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AC(J) = {z : J — R absolutely continuous}with norm
llellac = llllo + [12']|L,-

For each functional ¢ : X — R, I'm(y) denotes the range of .
By A we understand the set of all functionals ¢ : X — R that are
(i) continuous,
(i1) p(z) = ¢(|z]) for z € X,
(iii) v,y € X lz(t)] < Iyl())l fort € J = ¢(z) < ¢(y),
(iv)  Jim p(u) = oo;
and set Ag = {¢: ¢ € A, »(0) = 0}.
REMARK 1. The set A was introduced in [8] the first time.

EXAMPLE 1. Let p : [0,00) = R be continuous increasing and lim p(u) =
uU—00

00. Set ¢(z fp |z(t)|)dt for 2 € X (see [1]). Then ¢ € A. Next functionals

belonglng to the set A are given below:

n

max{|z(t)| : t € J1}, min{lz(®)]:t €1}, D aila(t)l,

i=1

where J; C J is a compact interval, a < ¢; < t; < ... < t, < b and
€ (0,00) (see [5)).
Let B be the set of all functionals ¢ : X — R that are
(j) continuous, ¢(0) =0, and

(i) z,y € X, z(t) < y(t) for t € J = ¢(z) < p(y).

ExaMPLE 2. Let J; C J be a compact interval, ¢ < a; < by < b and
n € N. Then the functionals

by
max {z(t) :t € Ji}, min{z(t):t € Ji}, /w2"+1(t)dt,

ay

belong to B (see [8]).
Consider the functional differential equation

(1) (9(='(1)))" = (Fz)(1),

where g and F satisfy the following assumptions:

1) We identificate the subspace of X of constant functions with R.
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1 and such

(Hy) g : R = R is an increasing homeomorphism with inverse g~
that g(0) = 0;
(Hz) F:Y — Ly(J) is a continuous operator.

Together with (1) we concern in the boundary conditions
(2) w(z) = 4,

(3) v(z") =0,

where w € A,y € Band A € R.

A function z € Y is said to be a solution of boundary value problem
(BVP for short) (1)-(3) if g(z') € AC(J), z satisfies boundary conditions
(2), (3) and (1 ) is satisfied for a.e. t € J.

REMARK 2. The special case of g in (1) is the p-Laplacian g, : R - R
defined by .
gp(u) = [ulP%u

Jor p>1 (see e.g. [3], [5] and references therein).
The special case of (1) (with g(u) = u) is the functional differential
equation

(4) 2" (t) = (Fa)(1)

Note that multiplicity results for (4) with nonlinear functional boundary
conditions were given by Brykalov ([1], [2]) and the author ([7]-[9]). In [1],
[2] results are proved under the assumption that F is bounded and in [7]-[9]
under the assumption that F satisfies a growth condition of the type

|(Fz)(8)] < f(l2"(8)])
for a. -e. t € J and each z € Y where f : [0,00) — (0,00) is nondecreasing
and f }Eiff) = oo ([9]) resp. f oo ([7], [8]). In [7]-[9] the results were
0

proved by the Bihari lemma, the theory of homotopy, the Leray—Schauder
degree and the Borsuk theorem.

In the present paper we assume that F satisfies a growth condition de-
pending only on = and give sufficient conditions for any solution of BVP
(1)—(3) does not vanish on J and there exist at least one positive and at
least one negative solutions. In contradiction to [7]-[9] we can’t now ap-
ply the Bihari lemma. Results are proved by the theory of homotopy, the
Leray-Schauder degree and the Borsuk theorem (see, e.g., [4] and [10]).
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2. Lemmas

LEMMA 1. [8]. Let ¢ € A, A € Im(p). Then
(a) ©(0) < ¢(x) for each z € X,
(b) o(r) = A for a unique nonnegative constant r,
(c) 2,y € X, |z(t)] < |y(®)] for t € T = p(x) < o(y).

LEMMA 2. [8]. Let ¢ € A and p(z) = ¢(y) for some z,y € X. Then
there exists a T € J such that

|z(m)} = ly(7)}.

LEMMA 3. [7]. Let ¢ € A and ¢(z) < ¢(y) for some z,y € X. Then
there exists a £ € J such that

[2()] < ly(€)I-

LEMMA 4. [8]. Let ¢ € B,A € Im(p). Then p(d) = A for a unique
d € R.

LEMMA 5. [8]. Let ¢ € B and c € [0,1]. Let the equality
#(2) - ep(-2) = 0
be satisfied for an x € X. Then ezists a 7 € J such that

z(r) =0.

LEMMA 6. Let assumption (H,) be satisfied and let {y,} C Y be a
bounded sequence such that

ta

(5) 9(h(02)) - (A (12))] < / P(t)dt

t

for each ty,ty € J and n € N, where 1 € Ly(J) is a nonnegative function.
Then {y,} is compact (in'Y ).

Proor. By assumption, {y,} is bounded in Y. To prove our lemma it is
sufficient to show that there exists a convergent subsequence of {y,} in X. We
see that {g(y;,) } is bounded in X, and consequently (5) and the Arzela—Ascoli
theorem imply the existence of subsequence {g(y; )} converging in X. Set
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=g(y;, )- Theny;, =g =1z, ) and since (cf. (H1)) g~! is increasing on
R ‘and {z kn} is convergent in X, {y } is convergent in X as well.

For each g satisfying (H1), define the function G™! : : [0, 00) = [0, o) by
the formula

G (v) = max {g™} (v}, ~g~"(~v)}.
Then G is continuous and increasing on [0, 0c).
REMARK 3. If g satisfying (Hy) is an odd function, then G™'(v) =
g 1 (v) for v € [0,00). In particular G~ (v) = v and G (v) = *~/v on
[0, 00) for g(u) = u and g(u) = |u|P"*u (p > 1) on R, respectively.
We assume throughout this paper that the operator F' and the function
g satisfy assumptions (H;)-(Hy), where
(Hs) There exist a continuous nondecreasing function f : [0,00) — [0, 0c)
and nonnegative functions «, 3 € Ly(J) such that

(6) |(Fz)(®)] < alt)f(lzllo) + B(t) for a.e. t € J and each 2 € Y;

(H;) The function S : [0,00) — R,

(M 5(v) =v - h(v)
is increasing on [0, 00) and
(R) lim S(v) =

where h : [0,00) = R,

(9) Mm=/G*UWMW+Wth

and

A(t) = max (ja(s)ds,ja(s)ds) ,
_max(//3 ds,/,@ )

The fact that F and g satisfy assumptions (H;)-(H,4) will be stated
explicitly only in assumptions of our theorems.

7 — Annales...
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REMARK 4. Clearly (cf. (H3)) S € C°([0,00)),5(0) < 0,5°1(0) >
0,h(v) = ||G~1(b(v)A(t) + U(t))||L,, and there exists the inverse function
S5~1:[S(0),00) = [0,00) to S Moreover, A(t) < ||lo||L,,¥(t) < |||z, for
teJ. If g(u) = u, then S(v) = v — f(v) ||A||L1 - ||\Il||Ll For g{u) = |u|P~%u

(p > 1) we have (cf. Remark 3) S{v) = v — f =Y/ f(v) U(t)dt.
LEMMA 7. Let u(t) be a solution of (1) such that u(§) = 0,u/(r) = 0
for some &, 7 € J. Then

(10)  lullo < 57H0).

PROOF. Integrating the equality
(g(v' (1)) = (Fu)(t) forae. te.J

from T to t we obtain g(u/(t)) = f!(Fu)(s)ds since g(uv/(1)) = 0, and there-
fore (for t € J)

for t € J. Since (cf. (H3))

/lFu J|dv

<G™! (f(llullo)

/a(v)dv

s

/ (Fu)(v)dv] <

T

< fllullo) +

Jooal| e

)

we see that

g! ( / (Fu)(v)dv

r

+

jﬂ(v)dv




On the existence of two solutions of functional boundary value problems 99

for s € J. Hence

t s
£/g_1 (/(Fu)(v)dv) ds

T
s

(12) / G ( (lulo) / (v)dv

< / G (F(lullo) A () + W () dt

8

//3(1v)dv

T

+

)ds

for t € J, and consequently (cf. (9) and (11)) |ju|lo < h(||u|lo). This gives
S(||u)lo) € 0 which implies (10).

COROLLARY 1. Let u(t) be a solution of (1), w'(1) =0 foraT € J and
llullo > S™1(0). Then

lu(t)] > 0 for te.J

ProorF. If not, there exists a & € J such that u(§) = 0. Then, by
Lemma 7, ||ullo < S~1(0), a contradiction.
Consider the functional differential equation

(135) (9(z'(1))" = A(Fa)(t), A€0,1]

depending on the parametr A.

LEMMA 8. Let m > 0 a constant and u(t) be a solution of (13)) for a
A € [0,1] such that |u(&)} = m,u'(t) =0 for some &, 7 € J. Then

(14) llullo < $71(m)
and
(15) lv'llo < GTH(F(S™Hm)M ez, + 1I18]lL,)-

PRrROOF. Integrating the equality (for a.e. t € J)

(9(u'(1)))" = A(Fu)(t)
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from T to { we obtain

g(u'(t)) = X | (Fu)(s)ds

ﬂ\w

and therefore

n el

dv) ds
for t € J. Using the mequalltles

e
e

)\/Fu )(s)ds

we see that (cf. proof of Lemma 7) |u(t)] < m + h(]|u]|o) for t € J. Conse-
quently, S(||u||¢) < m and inequality (14) holds. Then

u(t) = +

< fllullo)At) + ¥(2)

i

A [ (Fuyeyas

T

t

/ s)ds

T

! |

/;’3(8)(13

T

< f(llullo) + < SSTHm) |z, +1Blz,

which and (16) together imply (15).
For each # € X define z,,2_ € X by the formulas

i _Je@) for x(t) >0 _J0 for 2(t) >0
24(t) = {0 for z(t) <0, z-(1) {—x(t) for z(t) < 0.

Then 24 (t) > 0,2_(t) >0forte Jand z =24 —2_.
LEMMA 9. Letw € Ay, v € B,r, k,1,1; be positive constants, k > r and

Q={(z,0,8): (z,a,B8) € Y x R, llzllo <k, ||z'|lo < I,]a| < &, |8 < 11}
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Let
[i:0— Y xR? (i=1,2),
Ti(z,a,8) = (a4 g7 (B)(t - a),a+ w(zy) — w(p), B+ v(2),
Iy(z,0,8) = (a+ g7 (B)(t - a),a+w(z_) —w(p), 3+ 7(z).
Then

(17) D(I-T;,Q0)#0 for i=1,2.
Here "D7” denotes the Leray-Schauder degree and I is the identity operator

onY.

Proor. First of all, we see that Q is an open bounded and symmetric
subset of the Banach space Y xR? with usual norm and w(r) > 0 since
w € Ag and 7 > 0. Define (for i =1,2)

H;:[0,1]xQ—= Y xR?
by
Hi(\z,0,8) = (a+ (971 (8) — (1= N~ (=8)(t — a),
atw(ey) —w((l-N2-) = Awlp), 8+7(") ~ (1= Vy(=2).
Hy(M\ 2,0, 8) = (a+ (¢71(8) — (1= Mg~ (=d)(t - a),
atw(@) —w((l=Nzy) = Awp), B+7(2") = (1 = X)y(=2")).

Clearly,
Hi(11$1a7 6) = Fi(xvavﬁ)

for (z,a,8) € Q and i = 1,2. Hence, to prove (17) it is sufficient to verify,
by the homotopy theory and the Borsuk theorem, that (for i = 1,2)
(a) H;(0,-,-,-)is an odd operator, that is, H;(0, —2, —~a, —3) = —H;(0, z, , 3)
for (.’L‘,a,/j)éﬁ, ‘
(b) H; a compact operator, and
(¢) Hi(A2,0,8) # (v, 0,8) for (\,z,a,8) € [0,1] x 6Q.
We prove, for instance, (17) for ¢ = 1. The proof of (17) with i = 2 is
similar. Fix (z,,3) € Q. Then

Hl(Ov -z, -4, "'/8) = (—a+(g—l(_ﬁ)_g_l(ﬁ))(t—a)v _O‘+w(‘r—)_“)(‘t+))

=B+ 7(=2) = 7(2")) = —(a+ (g7 (8) = g7 (=B)) (¢ - a),
atw(zy) —w(z),B+v(2") — y(-2")) = —=H1(0, 2, o, B)
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since (—u)4 = u_ and (—u)- = uy for any u € X. Hence H,(0, -, -, -) satisfies
(a) (with ¢ =1).
We proceed to show that H; is a compact operator. Let {(An, Zn, s, 82)}
C [0,1] x Q be a sequence, Then 0 < A, < 1, ”-77n||0 < k|12t Mo < Ljan| <
k, lﬂn| < I; for each n € N. Consequently, {w({z,)+)}, {w ((T=2n)(zn)-)},
{'y( )} and {y(—=,)} are bounded sequences (in R) and, by the Bolzano-
~Weierstrass theorem wnthout restiction of generahty, we can assume that

{Ant {an} {Bn}s {w((@n) 4)}: {w((1=An)(2n) )} {7(27) } and {y(~27)} are

convergent. Hence there ex1sts limits
im (an + (971(8n) = (1= Xa)g™ (=) (t — @)
n=—r0od

in Y and

lim (an + (W{(za)+) —w((1 = An)(20)-) — Anw(7)),

in R, and consequently there exists lim o0 Hy(An, Zn, @, B,) in Y xR2.
Moreover, from the continuity od w and vy we deduce that H, is a continuous
operator. It follows that H; is a compact operator.

It remains to prove (c) (for i = 1). Assume, on the contrary, that

Hy(Xo, 20, g, 30) = (20, a0, Bo)
for a (Ao, %o, @0, Jo) € [0,1] X Q. Then

(18)  zo(t) =0+ (97 (Bo) = (1= Xo)g™'(—B0)) (t—a)  for teJ,

(19) w((zo)4) —w((1 = Ao)(20)-) = Aow(T)
and
(20) v(xp) — (1 — Ao)v(—wp) = 0.

From (20) and Lemma 5 (with ¢ = y,¢ =1 - Ag,2 = 2§) it follows that
2g(t) =0forat € J. Then (cf. (18))

g7 (Bo) = (1 = X0)g™ (=Bo) =

which is satisfied if and only if 3o = 0 since ug~(u) > 0 for all u € R\ {0};
hence

zo(t) = ag for teJ
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By our assumption (og,ag,0) = (zo, 00, F0) € 0N and therefore |ag| = &k
(> r). Assume o = k. By (19), w(k) = Aow(p), which contradicts Agw(p) <
w(p) < w(k). If ap = —k, then (cf. (19))

~w((1 = Ao)k) = Aow(p).

Since w({1— Ag)k) > 0 and w(p) > 0, the last equality is satisfied if and only
if Ao = 0 and w(k) = 0, which is impossible. This completes the proof.

3. Existence results

Existence results for BVP (1)-(3) are given in two theorem. In The-
orem 1 we assume that w € Ag. By Theorem 1, existence results for each
w € A are proved in Theorem 2.

THEOREM 1. Let assumptions (Hy )-(Hy) be satisfied and letw € Ao,y €
B. Then for each A € R such that

A > w(S7H0))

any solution of BVP (1)-(3) does not vanish on J, and there exist at least
one negative and at least one positive solutions.

ProOOF. Fix A > w(571(0)). Then (cf. Remark 4) A > 0. By Lemma
1, there exists a unique positive constant u such that w(u) = A. Hence
w(p) > w(S71(0)), and consequently

(21) r> S7H0).

Let u(t) be a solution of BVP (1)-(3). Then w(u) = A(=w(p)),v(x)
0, and so (cf. Lemma 2 and Lemma 5 with c = 0) |u(é)] = r,u/(r) =
for some &, 7 € J. Thus (cf. (21)) |lullo > S~1(0), Wthh yields |u(t)| >
for t € J by Corollary 1. We have proved that any solution of BVP (1)—(3)
(provided that one exists) does not vanish on J.

We proceed to show that then exists at least one positive solution of
BVP (1)-(3). Set

0
0

k=S 4+ 1=G7(0),

Q={(z,0,8): (2,0, 8) € Y xR |lzllo <k, ||2"llo <1, ]e] < k18] < 1},

where
L= f(S7 r)lledl, + 1181, + 1.
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Let the operator S; : [0,1] x @ = Y xR? be given by the formula

Si(A @, 3)

b s
N (*/ gt (ﬂ“ / (Fm)(v)du) ds,a+w(zy) —w(/t),ﬂ+'r(r')) :

a a

Obviously, S1(0,z,a,3) = I'1(z, o, B) for (z,a,3) € Q, where T is defined
in Lemma 9. Consider the operator equation

(22) Sihe e, 8)=(z,0,8),  A€[0,1]

depending on the parametr A\. We next prove that (22;) has a solution. As
D(I —T1,9,0) # 0 by Lemma 9, it is sufficient to check that (cf [4], [10])
(a) S is a compact operator, and
(b) Si(Az,a,B) # (x,a,3) for each (A, z,a, 8) € 0,1] x 9.

From the continuity of ¢g=!, F,w and 4 we deduce that S; is a continuous
operator. Let {(A,, Zn, @n,Bn)} C [0,1] x Q be a sequence and set

(ym Ap, bn) = ‘5’1(/\717 Tn, ana/jn)

for n € N. Then

t

(23) Yn(t) = an + / g (ﬁn o / (Fxn)(l‘)dv> ds.

a

(24) an =+ w((Tn)4) —w(p)
and
(25) b = fn + 7v(27,)

for n € N. We will prove that the sequence {y,} is compact in Y. Since
0 < Ay < Lllzallo <k Jl2hllo < I, ]an] € k and |3,] < 11, we conclude that
(cf. (23) and the definition of G~1)

lyllo <k+ (b= a)G™ (L + F(llzallo)llellz, + 1Bllz,)
<k+(b-a)G T {+ fB)lall, +118Iz,)

lynllo <G4 (1 + F(B)allz, +11BlL,)



On the existence of two solutions of functional boundary value problems 105

and, moreover,

to to
l9(yn(t1)) = 9(yn(t2))] < An| [ (Frn)(@)dt| < | [ ¢(t)dt
o=

for each n € N,t;,t; € J, where ¥(t) = f(k)a(t) + B(t) (€ Li(J)).
By Lemma 6, {y,} is compact in Y. From this and from the inequalities
(cf. (24) and (25))

lan} <k +w(k) +w(r),  [bn] <+ max{y(1),—v(-1)}
for n € N, we deduce that {(y,, an,b,)} is compact in Y xR? Hence S is

a compact operator.
To prove property (b) of S; we assume, on the contrary, that

(26) S1(Xo, o, o, Bo) = (2o, a0, So)

for a (Ao, Zo, 0o, Bo) € [0, 1] x 0Q. Then

(27)  zo(t) =0 + /g—l ([30 + Xo /(Fxo)(v)dv> ds, teJd,

(28) w((zo)4) = w(n)
and
(29) 7(zp) = 0.

By (28) and Lemma 2,

(30) (20)4(8) = r

for a £ € J, and

(31) zh(r) =0

for a 7 € J by (29) and Lemma 5 (with ¢ = 0). From (27) we see that

(g(zh(1)) = Mo(Fzo)(t)  forae. telJ
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and then Lemma 8 (with m = r and A = A¢) implies

(32) llzollo < S71(r) < &,

33)  llablo <G (F(S™H )l + IBlLL) < G (h).
Since (cf. (27))

ap = Zo(a), Bo = g(zp(a)),
we have (cf. (27), (31) and (32))

(34) lao| <k,

T

| b
(35) |30l = |g(z0(a))| = /(Fg;o)(t)dtlg/](Fg;O)(t”dt

a

< f(llzollo)lledlz, +1I8llz, < f(R)ledle, + 181z, <.

Hence (z9, o, 3o0) ¢ OQ which follows from (32)-(35), a contradiction.
We have verified that (22;) has a solution (in ), say (u, ag, Bp). Then
u is a solution of (1) satisfying boundary conditions

wuy) =4 (=wlr), ) =0.

Since |u4. ()] = r for a £ € J by Lemma 2, we see that ui(§) = r, and
consequently u(t) > 0 on J by Corollary 1. Hence w(u4) = w(u) and u is a
positive solution of BVP (1)—(3).

If the operator S : [0,1] x 02 — Y xR?,
52(/\,17,(1,/3)

= (a—l-g_l/ (ﬁ—!—/\/(Fw)(v)dv) ds,a+w(z_) —w(r),ﬂ+7(a;'))

a a

is considered instead of 51, one can prove, in the same manner as above, the
existence at least one negative solution of BVP (1)—(3).

THEOREM 2. Let assumptions (H, )-(Hy4) be satisfied and letw € A,~ €
B. Then for each A € R such that

A > w(S7H0))
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any solution of BVP (1)-(3) does not vanish on J, «nd there ezxist at least
two solutions, one negative and one positive.

ProoF. Fix A > w(S71{0)). Set &(z) = w(z) — w(0) for x € X. Then
T € Ag. Consider equation (1) subject to tle boundary conditions

(36) ey =A-w(0), (&) =0

Of course, A —w(0) > ©(5~1(0)) and applying Theorem 1 to BVP (1), (36),
any solution of this problem does not vanish on J and there exist at least
two solutions, one positive and one negative. Since u(t) is a solution of BVP
(1)-(3) if and only if that is a solution of BVP (1), (36), our theorem is
proved.

ExamPLE 3. Let p > 1,A > 0 and K > 0 be constants such that
(37) A<p-1, *VEKi{b-a) < 1.
Consider the functional differential equation
(38) (2" (@) F=2 (1))’ = (Fyz)(O)e(0); sign 2(t),

where F, : Y — Ly(J) is continuous and |[(Fy2}(t)] < K for a.e. t € J and
each t € Y. We see (cf. Remark 2) that the left side of (38) is equal to
(go(2'(1)))', where g, is the p-Laplacian, and the right side of (38) has the
Emden-Fowler form (see, e.g., [6] and references therein). Set

‘ N_JK for v e {0,1]
(39) flv) = VKvt for ve (1,00).

Then f is a nondecreasing on {0, oc) and since

[(Fy () (8|« () signz ()] < K max {1, 2]},

we have
|(Fax){t)x(t)] signz ()] < f(||zilo)

for a.e. t € J and each 2z € Y. Cousequently (cf. Remark 4),
Sv)=v— "%/ flv)(b-a), v € [0, 0c).
Hence (ct. (39))

, v— "VH{h-a) for vel0,1]
AS(U) = pmifT VA
v-— "VA(~ajor-T for vé (1,00).
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Since (cf. (37)) (v— ”'\/— b—a) P = l—p% ”'\‘/f(b—a)vﬁ_1 > 0 for

eachv>1,Sis mcreasmg on [0, oo). Moreover, lim S(v) = o0 and S(vg) =
Y—+00

0 if and only of vg = *VK(b - a) (= S~1(0)). So, equation (38) satisfies
assumptions (H;)-(Hy). Consider (38) subject to the boundary conditions

(40) l|zllo = A, min{a'(t):t € J} =0,
(41) |||, = A, max{z'(t):teJ}=0
and

b
(42) /\/1 + (z(t))%dt = A, z(a) = z(b)

which are the special cases of (2), (3) with w(z) = ||z|lo,v(z) = min {z(¢)

t € J} for (40), ( ||w[|L1,7 ) = max{z(t) : t € J} for (41) and
\/1 + (x(t))%dt,vy(z) = a(t)dt for (42). By Theorem 2, for all

4 E R SU.Ch that

A> *VEK(b—a)(resp. A> *VE(b—a)®; A > (b—a)\/l + "VE (b - 0)?)

any solution of BVP (38), (40) (resp. (38), (41); (38), (42)) does not vanish
on J and there exist at least two solutions, one positive and one negative.
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