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Abst ract . We introduce the notion of iterative equivalence of two classes of map
pings on metric spaces and we demonstrate its utility in metric fixed-point theory. In 
particular, we show that the fixed-point theorem for Matkowski's contractions can be 
derived from the corresponding theorem for Browder's contractions, though the first 
class of mappings is essentially wider than the second one. 

1. Introduction 

A selfmap / of a metric space (X, d) is said to have the contractive 
fixed point property (abbr., C F P P ) if / has a unique fixed point XQ € X and 
lim fn{x) = XQ for all x G X, where fn denotes the nth iterate of /. Let 

us recall the following simple extension of the Banach contraction principle, 
which may be found, e.g., in Dugundji-Granas [3, p. 17]. 

P R O P O S I T I O N 1. Let (X,d) be a complete metric space and f be a self-
map of X such that for some positive integer k, fk is a Banach contraction. 
Then f has the CFPP. 

In fact, it suffices here to assume that fk has the C F P P . In this case we 
may also drop the assumption on completeness of (Xx d). 

Let F and G denote two classes of selfmaps of metric spaces. We treat 
elements of these classes as pairs of the form (/, d), where d is a metric for 
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the domain of a map /. We say that classes F and G are iteratively equivalent 
if given (/, d) e F there exists k G N such that (fk, d) e G and, conversely, 
given (g, p) G G there is m G N such that (gm, p) G F . We say that F has the 
C F P P if each map in F has the CFPP. The following result is an immediate 
consequence of a remark, which follows Proposition 1. 

P R O P O S I T I O N 2. Let F and G be classes of selfmaps of metric spaces 
such that F and G are iteratively equivalent. Then F has the CFPP if and 
only if G has the CFPP. 

Proposition 2 gives us a tool for proving fixed-point theorems involving 
the CFPP. If we know that some two classes of selfmaps are iteratively 
equivalent, then it suffices to prove a fixed-point theorem only for one of 
them and then we may conclude from Proposition 2 that both classes have 
the CFPP. Moreover, fixed-point theorems for such two classes are, in some 
sense, equivalent even if one of these classes is a proper subclass of the other. 
We will discuss this fact with details in a sequel. 

Given an a € (0,1), a selfmap / is said to be an a-contraction if 
d(fx,fy) < a d(x,y) for all x, y G X. f is a Banach contraction if it is 
an a-contraction for some a G (0,1). 

We give the simplest reasonable example of two iteratively equivalent 
classes (the simplest one deals with two identical classes; incidentally, the 
iterative equivalence is an equivalence relation). 

E X A M P L E 1. For any fixed a G (0,1) the class B a of all Banach con
tractions and the class of all a-contractions are iteratively equivalent. 

Some less trivial examples for the iterative equivalence phenomenon will 
be given in the next sections. We will examine classes of maps, which satisfy 
a nonlinear contractive condition, that is, for each such a map / there exists 
a function tp from R + , the set of all nonnegative reals, into R + , such that 
ip(t) < t for t > 0 and 

Afxjy) < (f(d{x,y)) for all x,y£X. 

We also say then that a map / is <p- contractive. In the sequel we will consider 
the following classes Br , B W and M of maps satisfying nonlinear contractive 
condition. 

A selfmap / of a metric space (X, d) is a Browder contraction ((/, d) G 
Br) if there exists a non-decreasing and right continuous function if such 
that / is (/3-contractive (cf. [2] or [3, p. 18]). 

A selfmap / of a metric space (X, d) is a Boyd- Wong contraction ((/, d) G 
B W ) if there exists a right upper semicontinuous function (p such that / is 
(^-contractive (cf. [1] or [11, p. 38]). 
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A selfmap / of a metric space (X, d) is a Matkowski contraction ((/, d) £ 
M ) if there exists a non-decreasing function </? such that lim <pn (t) = 0 for 

n-»oo 
all t e R+ and / is ^-contractive (cf. [13], [3,p. 12] or [11, p. 39]). 

It is known that each of the above classes has the CFPP. Moreover, B a 
C B r C B W and B r C M , and all these inclusions are proper. Classes B W 
and M are incomparable. A comprehensive study of nonlinear contractive 
conditions is given in [8] (also cf. [6], [9] and references therein). Here we will 
show that classes B r and M are iteratively equivalent (cf. Section 3), whereas 
classes B W and M are not iteratively equivalent (cf. Section 4). Also we 
will give a complete characterization of these non-decreasing functions <p, 
for which C^,, the class of all ^-contractive maps, and the class B a are 
iteratively equivalent (cf. Section 2). 

Throughout this paper the letter <p denotes a function from K + into K + 

such that f(t) < t for t > 0 and <p(0) = 0. 

2. Comparison of classes Ba , B r and C^, 

We omit a standard proof of the following 

L E M M A 1. Let X be a nonempty subset o / R + and for x,y 6 X, 

d(x, y) := max {a;, y} if x^y, and d(x,x):=0. 

Then (X, d) is a metric space. Moreover, (X, d) is complete if and only if 
either 0 $ X, the closure of X in K+ endowed with the Euclidean topology, or 
0 € X. Further, let a function <p be non-decreasing and such that <p(X) C X. 
Then a map f defined by f := <p\x, the restriction of<p to X, is ip-contractive. 

Observe that the metric d denned in Lemma 1 satisfies the inequality 

y) < max {d(x, z), d(z, y)} for all x,y, z £ X. 

Such a metric is called an ultrametric or a non-Archimedean metric (cf. [4, 
p. 504]). 

The following result shows that, contrary to the linear case (cf. Exam
ple 1), there does not exist a function <p, for which classes Cv and B r would 
be iteratively equivalent. 

T H E O R E M 1. Given a function ip, there exist a complete metric space 
(X, d) and a map f : X i - > - X such that (/, d) 6 B r and for all k € N, fk is 
not <p-contractive. 
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P R O O F . We will define a strictly increasing and continuous function 
i> : R+ R+ such that ip(t) < t for t > 0 and ipn(n) > <p{n) for all n £ N. 
Then if we apply Lemma 1 to the ultrametric space (X, d) with X := R + 

and the map / := ij), we will be able to conclude that 

d(fnn, fn0) = i>n(n) > <p{n) = <p{d{n, 0)) for all n £ N 

so fn is not (^-contractive, and the proof will be completed. 
By induction we will define ^ ( n - i . n ] and a family of strictly increasing 

finite sequences (t^])]=l with G (n -1 , n] for n G N. Let t[l) := 1. Define 
t/jj[o,i] as the segment with endpoints (0,0) and (1, (1 + <p(l))/2). Assume 
that n G N and ip\(n-i,n] is defined. Then we define a sequence 
and V'lcn.n+i] as follows: 

/ » + l +¥>(» + 1)1 7„ + l> .(n+1) ( 1 

max -jn, ^ > < t\ ' < n + l , ; := n + 1, 

and for n > 2 and j = 2, • • •, n, i $ n + 1 ) G (tj""^ > » + l ) ! 

:= m a x { » , W + 1 +
2

y ( w + 1 ) ] and for j = 2, • • . , » + 1 , 

^ ( ^ ) ) : = t ( ^ ) , 

and ^(n.n+i] is polygonal line with nodes (n, V>(n)) and ( £ j n + 1 \ V ,(4™ + 1^)) 
for j = 1, • • - ,71+ 1. 

Since all nodes of this polygonal line lie in the convex set {(0,0)} U 
{(x, y) : x > 0, 0 < y < x], we may infer that %l)(t) < t for t > 0. Since for 

all n G N tp(n - 1) < -0(4"') and both (t^)]^ and (^(4 n )))j=i are strictly 
increasing, so is ip. Obviously, rp is continuous. Moreover, 

V>"(») > > y, („ ) for aU n G N 

so ^ has all the properties we need. • 

In the sequel we compare classes Cv and Ba. 

T H E O R E M 2. Let a function <p be non-decreasing. The following state
ments are equivalent: 

(i) classes B a and Cv are iteratively equivalent; 
(ii) inf {cp(t)/t : t > 0} > 0 and there exists k £ N such that sup 

{<pk(t)/t :t > 0} < 1. 



On iterative equivalence of some classes of mappings 153 

P R O O F , (i) => (ii). Consider the Euclidean space ( E + , de) and the map 
/ defined by fx :— x/2 for x G K+. Obviously, / G B a so by (i), there is 
k G N such that fk G Cv. In particular, 

|- = de{fkx,fk0) < <p{de(x,Q)) = <p(x) foraU x G R+. 

Hence <p(x)/x > \/2k for x > 0 and since k does not depend on x, we may 
infer that inf {<p{t)/t : t > 0} > 0. 

Now consider the ultrametric space (X, d) with X := R+ and the map 
/ as in Lemma 1. Then / G Cv so by (i), there exist ł E N and a G (0,1) 
such that fk is an a-contraction. In particular, 

^ ( i ) = (f (/' !i ,/ f c0)<a(l(i ,0) = a j ; for all x G R+, 

which impUes that sup {<pk(t)/t : t > 0} < a < 1. Therefore, (ii) holds. 
(ii) =̂  (i). Let / € Cv. By monotonicity of y>, fk is ̂ ^-contractive and 

by (ii), <pk(t) < a t, where a := sup{<pk(t)/t : t > 0} < 1, which implies 
that fk G Ba . On the other hand, if / G B a and a is a contractive constant 
of / then, by (ii), there is k G N such that ak < inf {<p{t)/t : t > 0}. Then 
fk G C„ . • 

A natural question arises whether in condition (ii) of Theorem 2 we 
could substitute the inequality "sup {<p(t)/t : t > 0} < 1" for the condition 
"sup {<pk(t)/t : t > 0} < 1 for some k G N". Our Example 2 given below 
shows that, in general, this is not possible. Nevertheless, such a substitution 
can be made under some additional assumptions on a function ip as is done 
in the following lemma. The right upper Dini derivative of a function <p is 
denoted by D+<p, that is, 

(D+<p)(s) :=limsu P ^ ~ 

L E M M A 2. Let a function <p be non-decreasing and such that 
sup{(p(t)/t : t > 0} = 1. Then there exists a strictly monotonie sequence 
{tn)%Li of positive reals such that lim <p(tn)/tn = 1. // lim tn+i/tn — 1, 

n—>oo n—¥oo 
then for all k G N sup {fk{t)/t : t > 0} = 1. 

In particular, such a sequence (tn)^_1 exists if (p is right continuous and 
it satisfies one of the following conditions: 
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(a) (p is differentiable at O and such that either there exists lim ip(t)/t, 
t—*oo 

or limsup <p(t)/t < 1; 
t-+oo 

(b) (D+(f)(0) < 1 and there exists lim <f(t)/t. 
t—YOO 

P R O O F . By hypothesis, there is a sequence (tn) of positive reals such 
that lim <p(tn)/tn = 1. Clearly, (tn) cannot be constant since <p(t)/t < 1 
for t > 0. By passing to a subsequence if necessary, we may assume that 
(tn) is strictly monotonie, hence convergent to some a e E + U {oo}. We will 
consider the case tn \ a; then a similar argument can be used in the case, 
in which (tn) is increasing. Let lim tn+i/tn = 1. We show that there exists 
lim ip(t)/t. Let sn —> a+. There is a sequence (kn) of positive integers such 

t-*a + 

that kn —>• oo and tkn+\ < sn < tkn for sufficiently large n. Then for all such 
n we have: 

¥>K) < <p{tkn) = <p{tkn) tkn _^ ^ 
Sn ~ tkn + l tkn t k n + i 

vK) > y^fcn+i) = y(*fc„+i) ^ „ + i ; 1 

sn ~~ tkn tkn + l tkn 

Hence we conclude that lim <f(t)/t = 1. In particular, tp(t) —>• a+ as t —>• a+ 

t-*a + 

because of monotonicity of <p, so given an integer k > 2 also ^(t) —>• a+ as 
t —> a+ for j = 1, • • •, k - 1. This easily implies that lim (pk(t)/t = 1 since 

^Hjfl^M f0lall (>0, 

whereas lim <p((f3(t))/'ip3(t) — 1. In particular, we conclude that sup 

{<ph(t)/t : t > 0} = 1 since by hypothesis <ph{t)/t < 1 for t > 0. 
In the sequel we assume that <p is right continuous. If (tn) is a strictly 

monotonie sequence with lim <p(tn)/tn = 1, then either (tn) decreases to 
0, or (tn) increases to oo; for otherwise, tn -> a G (0,oo) and then by 
monotonicity and right continuity of <p we have 

lim ^1 < limsup £W < *W < 1, 
n-+oo tn (_>a t a 

which yields a contradiction. To finish the proof consider the following two 
cases. 
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Assume (a). We will prove that lim ̂ p(t)/t = 1 for either a = 0, or 
t-¥a 

a = oo. If tn \ 0, then 

1= l im = y/(0) = l im ^ . 
n->oo tn <-*0 i 

If t n oo, then lim sup <p(t)/t — 1, whence, due to (a), there exists lim 

<p(t)/t. Consequently, in this case lim <p{t)/t = 1. Therefore the sequence 
t—too 

(l/n)^Ll if a = 0, or ( n ) ^ if a = oo, has the required property. 
If condition (b) holds, then each sequence (£„) satisfying lim <p(tn)/tn = 

1 converges to the infinity. Since lim <p(t)/t exists, it equals 1 and then, for 
t-*oo 

example, the sequence (n)^=l has the property we need. • 

Recall that a function <p is subadditive if 
<p(s + t) < ip{s) + ip{t) for all s,teR+; 

<p is superadditive if the reverse inequality holds. 

L E M M A 3. Let a function be non-decreasing and subadditive. Then 
<p is continuous and <p satisfies condition (a) of Lemma 2. Moreover, lim 

t—too 
<p{t)/t < 1. 

P R O O F . Since <p(0) = 0 and <p is continuous at 0, we may conclude by 
[15, Remark 1] that <p is continuous. Further, by [5, Theorem 7.11.1] there 
exists l\m+<p(t)/t. Hence ip is differentiate at 0. Finally, by [5, Theorem 

7.6.1], there exists lim <p(t)/t. Moreover, 
t—too 

lim ip(t)/t = inf {<p{t)/t: t > 0} < <p(l) < 1. 

• 

L E M M A 4. Let a function ip be superadditive. Then <p satisfies condition 
(b) of Lemma 2. 

P R O O F . Observe that <p is non-decreasing. By [5] there exist both limits 
lim (pit) It and lim <p{i)/t. Moreover, 

<p'(0) = lim (p{t)/t = mf{<p(t)/t :t>0}< ip(l) < 1 
t-+o+ 

and thus (b) is satifled. • 
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As an immediate consequence of Theorem 2 and Lemmas 2-4, we obtain 
the following 

C O R O L L A R Y 1. Assume that a function if is non-decreasing, right con
tinuous and if satisfies either condition (a), or condition (b) of Lemma 2. 
The following statements are equivalent: 

(i) classes B a and C v are iteratively equivalent; 
(ii) there exist a, f3 £ (0,1) such that 

a t < <p(t) </3t for all t £ R + . 

In particular, conditions (i) and (ii) are equivalent if either if is non-de
creasing and subadditive, or if is superadditive and right continuous. 

(Incidentally, it can be proved that in the last statement of Corollary 1 it 
suffices to assume that <p is superadditive (not necessarily right continuous).) 

Also with a help of Lemma 2 we can easily deduce that classes B r 
and B a are not iteratively equivalent. Moreover, we give below a complete 
characterization of these subadditive or superadditive functions if, for which 
there exists a ^-contractive map with the property that none of its iterates 
is a Banach contraction. 

C O R O L L A R Y 2. Let a function if be non-decreasing and subadditive. The 
following statements are equivalent: 

(i) v'(0) = 1; 
(ii) there exists a map f £ Cv such that for all k £ N fk $ Ba . 
Hence classes B a and B r are not iteratively equivalent. 
P R O O F , (i) => (ii). (i) implies that sup{<f(t)/t : t > 0} = 1. By Lem

mas 2 and 3, we conclude that for all k £ N, sup {ifk(t)/t : t > 0} = 1. 
Consider the ultrametric space (X, d) with X :— R+ and the map / as in 
Lemma 1. Then / £ Cv. Suppose that fk £ B a for some k £ N. Then 

ifk(x) = d{fkx, fk0) < a d{x, 0) = ax 

for some a £ (0,1), which implies that sup {fk(t)/t : t > 0} < 1, a contra
diction. Therefore (ii) holds. 

(ii) =*> (i). By [5, Theorem 7.11.1] ^'(0) exists and 

(1) <f'(0) = sup {<f{t)/t:t> 0}. 

Hence <f'(0) = 1; for otherwise, each map / £ Cv would be an a-contraction 
with a := <f'(0) because of the inequality <p(t) < a t for all t £ R + , and this 
violates (ii). 
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Finally, observe that C v C Br , since by Lemma 3 ip is continuous. 
Hence and by (i) =>• (ii) we may deduce the last statement of Corollary 2 . 

• 

C O R O L L A R Y 3 . Let a function <p be superadditive and right continuous. 
The following statements are equivalent: 

(i) lim <p{t)/t = 1; 
t-¥00 

(ii) there exists a map f G Cv such that for all k G N fk Ba . 

P R O O F , (i) (ii). (i) implies that sup {<p(t)/t : t > 0 } = 1. Then 
Lemmas 2 and 4 give that for all k G N sup {<pk(t)/t : t > 0 } = 1. To show 
that (ii) holds it suffices to consider the same function / defined as in the 
proof of Corollary 2 ((i) =$> (ii)). 

That (ii) implies (i) follows from [10, Theorem 4.7] (it suffices to assume 
that / is not a Banach contraction). • 

The following example shows that we cannot drop the assumption 
"lim tn+i/tn — 1" in Lemma 2 . Moreover, also we cannot omit the assump
tions on a behaviour of <p(t)/t as t tends to the infinity, in conditions (a) 
and (b) of the same lemma. The function (p defined below is even a home-
omorphism from R + onto R + , differentiable at 0 with <p'{0) < 1, and <p has 
the property that sup {<p(t)/t : t > 0 } = 1, but sup {<p2(t)/t : t > 0 } < 1. 
Moreover, inf {<p(t)/t : t > 0 } > 0 so by Theorem 2 , classes Cv and B a are 
iteratively equivalent. Thus, in general, condition (ii) of Corollary 1 is not 
necessary for the iterative equivalence of classes Cv and Ba . 

E X A M P L E 2 . Let ip be the polygonal line with nodes ( 0 , 0 ) , ( 2 N + 1 - 1, 
2 N ) , ( 2 N + 1 , 2 N + 1 - 1 ) for n G N. Since these nodes lie in the convex set 
{ ( 0 , 0 ) } U {(z, y) : 0 < y < x}, we may infer that (p(t) < t for all t > 0 . Since 
for all Ti G N, 

0 < 2 " + 1 - 1 < 2 N + 1 < 2 N + 2 - 1 

and 

<p{0) < <f(2n+1 - 1 ) < <p(2n+1) < <p(2n+2 - 1 ) , 

we see that <p is strictly increasing. Obviously, <p is continuous. Since 
lim <p(t) = oo, we conclude that cp is a homeomorphism from R + onto R + . 

Clearly, sup {<p(t)/t : t > 0 } < 1. Simultaneously, lim <p{2n+1)/2N+1 = 1, 
which implies that sup {<p(t)/t : t > 0 } = 1 and limsup <p(t)/t = 1. 
Further, <p is differentiable at 0 and <£>'(0) = 2 / 3 . 
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We will estimate sup{ip2(t)/t : t > 0}. For t G [0,3], <p2{t)/t = 4/9. 
Assume that t G [2 n + 1 - 1,2 n + 1 ] . By monotonicity of <p2, 

<p2(t) <p2(2n+1) _ 2 n 2 
t ~ 2 n+! - 1 _ 2"+! - 1 ~ 3 

since the sequence (2 n /(2 n + 1 — l))£Li is decreasing. Hence we get that 

ngiV 
sup J : i 6 [J [2 n + 1 - 1,2 n + 1] 1 < 2/3. 

(In fact, elementary computations show that this supremum equals 1/2.) 
Assume that t G [ 2 n + 1 , 2 n + 2 - 1]. Then <p(t) G [ 2 n + 1 - l , 2 N + 1 ] . This 

time <p2(2n+2 - l ) / 2 n + 1 - » 1 and we cannot use a similar argument as in 
the preceding case. Elementary computations show that 

^ 2 2 n + 2 — 3 . 2 n + 1 + 1 

( 2 ) ^ = 2"+i - 1 + 2 " + 1 - 1 ' 

whereas for t G [ 2 n + 1 - 1 , 2 N + 1 ] , 

(3) <̂ (i) = ( 2 n - l ) i + 2 n + 2 - 2 2 n + 1 - l . 

By (2) and (3) one can obtain that for t G [ 2 n + 1 , 2 n + 2 - 1], 

o , v 2 n - 1 2 " 
2"+l - 1 2»+ 1 - l ' 

Hence, ma,x{<p2(t)/t : t G [ 2 N + 1 , 2 B + 2 - 1]} = y? 2 (2 n + 1 ) /2 n + 1 = 1/2. 
Combining all the above cases we get that sup {ip2 (t) jt : t > 0} < 1 

(in fact, this supremum equals 1/2). 
Finally, we compute M{<p(t)/t : t > 0}. For t G [0,3], (p(t)/t = 2/3. 

By (3), 

min = . 6 P - - 1 , 2 - ] } = 2 ^ f i - 1 ) 2" 1 
2 „ + 1 _ Ł M 2 

By (2), 

min j ^ - : t G [ 2 N + 1 , 2 N + 2 - 1] j 
^(2"+ 2 - 1) _ 2 n + 1 1 

2"+2 - 1 = 2 n + 2 - 1 ̂  2' 

Therefore we get that inf {<p(t)/t: t > 0} = 1/2. 
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3 . Iterative equivalence of classes B r and M 

Throughout this section we assume that a function (p is non-decreasing. 
J . Matkowski and J . Miś [14] gave an example of a function <p for which 

there exists a fixed-point free ^-contractive map. Clearly, for such a function 
<p there is a to > 0 such that 

With a help of Lemma 1 we can improve this result by showing that for 
e v e r y function <p satisfying (4) there exists a (^-contractive map, which 
has no fixed points. 

P R O P O S I T I O N 3. Given a function ip, the following statements are equi
valent: 

(ii) given a complete metric space (X, d) and a ^-contractive selfmap f 
of X, f has a fixed point. 

P R O O F . The implication (i) =>• (ii) follows from Matkowski's theorem 
(cf. [13, Theorem 1.2] or [3, Theorem 3.2, p. 12]). To prove (ii) => (i) suppose, 
on the contrary, that for some to > 0 (4) holds (this limit exists because of 
the assumption "(p(t) < t for t > 0 and <p(0) = 0"). Denote this limit by r. 
Set tn := <pn(t0) for n € N . Then the sequence (tn) is strictly decreasing and 
tn > r. Define X := {tn : n 6 N } and consider the ultrametric space (X, d) 
as in Lemma 1. Clearly, <p(X) C X. Thus Lemma 1 implies that (X, d) is 
complete since 0 ̂  X, and / := <p\x is a (^-contractive map. Obviously, / is 
fixed-point free, which violates (ii). • 

Given a function <p, define the set M+ (<p) by 

L E M M A 5. Assume that lim <pn(t) = 0 for all t e K + . Then the set 

M+(<p2) is empty. 

P R O O F . Suppose, on the contrary, that to G M+(<p2). Since <p2(s) < 
<p(s) < s for all s > 0, we may conclude that lim <p(s) = to, that is, 

t0 E M+(<p). By [8, Theorem 7] there is S > 0 such that for s € (t0, t0 + 8) 

(4) lim <pn(to) > 0. 

(i) lim <pn (t) = 0 for all t e R+; 
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= ^o- Hence 
t0 = l im cp2(s) = tp(t0) < t0, 

which yields a contradiction. • 

T H E O R E M 3. Assume that f is a Matkowski contraction on a metric 
space (X, d). Then f2 is a Browder contraction. Hence, classes B r and M 
are iteratively equivalent. 

P R O O F . By hypothesis, there is a function <p such that lim <pn(t) — 0 

for all t £ R + and / is ^-contractive. Clearly, f2 is tp2-contractive because 
of monotonicity of <p. By Lemma 5 , M+(ip2) = 0 and [8, Theorem 5] implies 
that f2 is Browder's contraction. On the other hand, B r c M so we may 
conclude that these classes are iteratively equivalent. • 

R E M A R K 1. In view of Proposition 2 and Theorem 3 , the fixed po
int theorem of Matkowski [13] can be derived from Browder's theorem [2] , 
though the class B r is a proper subclass of M . 

4. Lack of iterative equivalence of classes M and B W 

Given a function ip, define the set M _ (ip) by 

M-(<p) : = < t > 0 : l imsup ip(s) 

The following result extends Theorem 3 in [8]. 

T H E O R E M 4. Let a function <p be right upper semicontinuous. The fol
lowing statements are equivalent: 

(i) M _ ( < ^ 0 ; 
(ii) there exist a complete metric space (X, d) and a ip-contractive self-

map of X such that for all k £ N fk is not a Matkowski contraction; 
(iii) there exist a metric space (X, d) and a (p-contractive selfmap f of 

X such that f is not a Browder contraction. 
Hence, classes M and B W are not iteratively equivalent. 

P R O O F . The implication (ii) (iii) is obvious since B r C M . (iii) (i) 
follows from [8, Theorem 3 ] . We prove that (i) implies (ii). We will use the 
same argument as in the proof of Theorem 3 in [8]. By (i), there is a strictly 
increasing sequence (i n)^_ 1 and to > 0 such that tn /* to and ip(tn) /* to. 
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Without loss of generality we may assume, by passing to a subsequence if 
necessary, that ip(tn+i) > tn for n € N. Set X := {tn : n 6 N} and consider 
the ultrametric space (X, d) as in Lemma 1. Since tn > t\ > 0, 0 ^ X so 
Lemma 1 implies that (X, d) is complete. Further, define a map / by 

ft\ := t\ and /£„+i :— tn for n € N. 

Obviously, / is a selfmap of X. If m, n G N and m > n, then 

d(ftn, ftm) < ftm - tm-i < <p(tm) = (p(d{tn, tm)) 

so / is ^-contractive. Suppose, on the contrary, that for some k € N fk 6 M . 
Then there is a non-decreasing function ip : K+ »-> R + such that lim i>n(t) = 

n—¥oo 

0 for all t € R + and d(fkx,fhy) < ip(d(x,y)). Hence and by monotonicity 
of V>, we get in particular, that 

0 < t2 = d(fkntkn+2,fknh) < ipn{d{tkn+2,h)) < ^n(t0), 

which yields a contradiction. Thus none of iterates of / is Matkowski's con
traction so (ii) holds. 

Obviously, there exist a right continuous function <p satisfying (i) so 
by (i) (ii) we may conclude that classes M and B W are not iteratively 
equivalent. • 

It turns out that there exists a Boyd-Wong contraction / with a stronger 
property than that given in condition (ii) of Theorem 4: not only (fk, d) £ M 
for all k £ N, but also (fh, p) £ M for all k e N and any metric p equivalent 
to d. The following theorem gives a complete characterization of functions <p, 
for which such a (^-contractive map exists. Clearly, such a function <p must 
satisfy condition (i) of Theorem 4. 

T H E O R E M 5. Let a function (p be right upper semicontinuous and 
M-((p) ^ 0. The following statements are equivalent: 

(i) inf M _ (<p) = 0; 
(ii) there exist a complete metric space (X, d) and a ^-contractive self-

map f of X such that for all k £ N and any metric p, which induces a weaker 
topology on X than d does, fk is not a Matkowski contraction on (X,p); 

(iii) there exist a complete metric space (X, d) and a (p-contractive self-
map f of X such that for any metric p equivalent to d f is not a Browder 
contraction. 

P R O O F . The implication (ii) (iii) is obvious, (iii) (i) follows from 
[8, Theorem 4]. We show that (i) implies (ii). Again, we will use the same 
construction as in [8]. By (i) we may conclude that there exist a strictly 

11 - Annales.. 
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decreasing sequence (£fc)£Li and strictly increasing sequences (4 fc))£Li (k G 
N) such that 

tk e M _ (</>), 4fc) > *fc+i, h \ 0, /• tk as n ̂  oo [k e N ) , 

V? (4fc)) > ^ > (k, n G N) , v3 (4fc)) *fc as r w oo. 
Set X := : A;,ne N} U {0}. Consider the ultrametric space (X, d) as in 
Lemma 1. Since 0 G X, Lemma 1 implies that (X, d) is complete. Further, 
define a map / on X by 

/0:=0, and ft[k) := t[k+1) for k, n G N . 

We show that / is ^-contractive. Let x,y £ X. We may assume, without loss 
of generality, that x < y. Then d(a:, y) — y. The following cases are possible. 

1. x = iL^ , y = tm) and m> n. Then 

d(/x )/y) = £L1 <¥>(#>) = v(d(*,y)). 

2. a; = i„ p ' , y = tm\ p > k and m > 2. Then of(/x, /y) can be estimated 
as in case 1. 

3. x = 4̂ , y = 4fc) and p > k + 1. Then 

d(/x, fy) = t[h+1) < tk+1 < (f (4fc)) = <p(d(x, y)). 

4. x' = , y = 4fc) • If n > 2, then 

d(fx, fy) = < tk+l < cp (t[k)) = <p(d{x, y)). 

If n = 1, then d(fx, fy) can be estimated as in case 3. 
5. x — 0, y — tm\ If m > 2 (resp., m = 1), then d(fx,fy) can be 

estimated as in case 1 (resp., case 3). 
Now suppose, on the contrary, that there exist k G N, a metric p, which 

induces a weaker topology on X than d does, and a non-decreasing func
tion tp : R J . t-> R + with lim ^ n(t) = 0 for all t G R + , such that fk is 
•^-contractive on (X, p). Then there is r > 0 such that for x G X, d(z, 0) < r 
implies p(a;,0) < 1. Since tk —>• 0, there exists j G N such that < r. 
Then t\?] < r for all n G N, which implies that />(4j),0) < 1. Since fk is 
V'-contractive, we may conclude that, in particular, 

o < p (4j),o) = p (fknt^+1jkno) < r (P (tS5+i,o)) < v n ( i ) , 

which yields a contradiction, since ^"(1) - * 0. • 
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5. Remarks on the Meir -Keeler type contractions 

Meir and Keeler [16] introduced the following class M K of maps, which 
also has the C F P P . 

A selfmap / of a metric space (X, d) is a Meir-Keeler contraction ((/, d) £ 
M K ) if given e > 0 there is 8 > 0 such that for all x, y £ X, 

(5) s<d(x,y)<e + S implies that d(fx,fy)<s. 

R E M A R K 2. It can be easily verified that each Meir-Keeler contraction 
satisfies the inequality d(fx, fy) < d(x, y) for all x, y £ X with x ^ y. Hence 
(5) implies that d(fx, fy) < e for all x, y £ X with d(x, y) < e + 8. 

It is easy to show that B W C M K . Moreover, Meir and Keeler gave an 
example of a map / £ M K such that / ^ B W . However, it can be easily 
verified that the map / from this example has the property that f2 £ B W 
(in fact, f2 is a Banach contraction). Thus the following problem is opened. 

Q U E S T I O N 1. Are classes M K and B W iteratively equivalent? 

Subsequently, the result of Meir and Keeler was extended by Matkowski, 
who defined the following class M t (cf. [11, Theorem 1.5.1]). 

(/, d) £ M t if d(fx, fy) < d(x, y) for all x, y £ X with x ^ y, and given 
e > 0 there is 8 > 0 such that for all x, y £ X, 

(6) e < d(x, y) < e + S implies that d(fx, fy) < e. 

It can be easily verified that M K C M t . Moreover, this inclusion is 
proper (cf. [7], in which also other Meir-Keeler type theorems are compared). 
However, it turns out that classes M K and M t are iteratively equivalent 
according to the following 

P R O P O S I T I O N 4. If{f,d) £ M t , then (f2,d) £ M K . 

P R O O F . Let e > 0. Then there is 8 > 0 such that (6) holds. Let s < 
d(x,y) <e + 8.lf d(x,y) = e then, by hypothesis, d(f2x,f2y) < d(fx,fy) < 
d(x, y) and hence d(f2x, f2y) < e. So let e < d(x, y) < e + 8. If f2x = f2y, 
then we are done. If f2x ^ f2y, then fx / fy and by (6) we get that 
d(f2x, f2y) < d(fx, fy) < e. Thus we may infer that f2 £ M K . • 

A remarkable generalization of the Meir-Keeler theorem was given by 
Leader [12], who considered the following class Le. 

u * 
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(/, d) € Le if / is continuous and given e > 0 there exist 5 > 0 and 
k 6 N such that for all x, y € X 

(7) d(a;, y) < e + S implies that d(fkx, fky) < e. 

Then Le has the CFPP. The essential novelty of this definition is that 
integer k may vary with e. If a map / is a Meir-Keeler contraction then by 
Remark 2 / satisfies (7) with k = 1. On the other hand, the very special case 
of (7) with k = 2 covers the class M t . We close the paper with the following 

Q U E S T I O N 2. Are classes Le and M t iteratively equivalent? 

Since classes M t and M K are iteratively equivalent and the relation of 
iterative equivalence is transitive, we may consider, in lieu of Question 2, 
the following equivalent 

Q U E S T I O N 2'. Are classes Le and M K iteratively equivalent? 

We suspect the answer is negative. 
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