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To the memory of Professor Győrgy Targonski 

A b s t r a c t . Relations between the following properties of triangular maps F : I' —>• 
I2 are studied in this paper: (PI) the period of any cycle is a power of two; (P2) every 
cycle is simple; (P3) the topological entropy of F restricted to the set of periodic 
points is 0; (P4) the topological entropy of F is 0; (P5) every u/-limit set contains 
a unique minimal set; (P6) F has no homoclinic trajectory; (P7) every w-limit set 
either is a cycle or contains no cycle; (P8) no infinite w-limit set contains a cycle. 
It is known that for continuous maps of the interval these properties are mutually 
equivalent. In the case of triangular maps of the square we prove that the properties 
(Pi) , (P2) and (P3) are mutually equivalent, and that (P7) is equivalent to (P8). 
Moreover, we show which of the remaining implications are true and which not. The 
problem is completely solved, with the following exceptions: we conjecture that (P7) 

(P6) but we do not provide the argument; validity of (P7) => (PI) remains open. 
Our paper gives a partial solution of the problem stated in 1989 by A . N. Sharkovsky. 

1. Definitions and preliminary results 

As is well-known, there is a long list of properties characterizing con
tinuous maps of the interval, with zero topological entropy. In 1989 A. N. 
Sharkovsky [13] asked the question which of these properties are equivalent 
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in the case of triangular maps of the square. The problem is still open, regar
dless there are few partial results showing that some of these properties are 
not equivalent. In this paper we give a summarization of these results, and 
add new ones. We begin with a survey of known results and related notions. 

In the sequel, I = [0,1] is the unit compact interval, I2 the unit square, 
and X a compact metric space with a metric p. Let C (X, X) be the set of 
continuous mappings of X into itself, and N the set of positive integers. Let 
fn{x) denote the n-th iteration of <p at x, for every n £ N and x £ X. Let 
P r : I2 I be the projection onto z-axis, i.e., P r (x, y) = x. 

DEFINITION 1.1. Let <p e C(X,X), and let xn = <pn{x0), for » E N . 
The sequence {xn}^L0 is the trajectory of x$. If there is k > 1 such that 
Xfc = x0 and xn ^ x0 for every n £ {1,..., k — 1}, then the set a = {xn}^ll

0 

is a cycle of <p, and k is the period of a. The set of accumulation points of 
the trajectory { a ; n } ™ 0 is the u-limit set of the point x0, and it is denoted 
by w ^ ( i 0 ) . Denote by Per (9) the union of the periodic orbits of 9 , and by 
u(<p) the union of the w-limit sets of ip. A subset M of X is a minimal set if 
M = UJV(Z), for any z £ M. 

DEFINITION 1.2. Let / : / — > / be a continuous function, and gx : 
{x} x I —¥ I, for x £ I, a system of mappings depending continuously on 
x. A continuous mapping F : I2 —• I2 such that F (x,y) = (f (x), gx (y)), is 
a triangular map, f is the base of F, and the set Ix := {x} x I is the layer 
over x. 

Throughout the paper, F : I2 —> I2 denotes a triangular map, and 
its base. 

DEFINITION 1.3. Let Y (X, X) be a space of continuous mappings 
X —> X. We say that Y (X, X) has the Sharkovsky ordering property if 
any if € Y(X, X) possessing a cycle of period m has a cycle of period n, for 
every n -< m in the following ordering: 

1^2-(4^8-< <7-2 f c ^5-2 f c ^3-2 f c ^---^7-2^5-2-( 

3-2-< <7^5^3. 

Since the set of triangular maps has the Sharkovsky ordering property 
[12], the following classification applies also to triangular maps. 

DEFINITION 1.4. Let <p e Y (X, X). Then 
(i) ip is of type less than 2 0 0 if there is k < 0 0 such that <p has cycles of 

periods 1,2,4,..., 2h only; 
(ii) (f is of type 2°° if tp has a cycle of period 2" for any n, and no other 

cycle; 
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(iii) <p is of type greater than 2°° if <p has a cycle of period ^ 2k, 
fc = 0 , l , 2 1 . . . 

DEFINITION 1.5. (cf. [5], [7]). Let <p G C(X,X). Then E c X is an 
(n,e)-separated set if, for every two different points zi,z2 from E, there is 
a j', 0 < j < n, with p(<pj(zi), <p^{z2)) > e > 0. If M is a compact sub
set of X denote by sn(e, M, <p) the maximum possible number of points in 
(n, e)-separated subsets of M. Put s(e, M, <p) — lim sup ^log sn (e, M , (p). 
The topological entropy of the map p with respect to the compact subset 
M and the topological entropy of the map <p are defined by hp (<p, M) = 
lim e_».o s(s, M, <p) and hp(>p) = hp(tp,X), respectively. If no confusion can 
arise we write h instead of hp. 

PROPOSITION 1.6. Let ip e C(X,X). 
(i) If A C B are invariant sets then h((p, A) < h(ip, B). 
(ii) [1] If A C X is an invariant, not necessarily compact set then 

h(<pn \A) — n • h((p\A), for every n > 1. 
(iii) [10], [6] Let <p = F and X = I2. If h(f) = 0, then h{F |Per (F)) < 

S U P rePer ( / jM^K* )• 
(iv) [10], [5] Let(p=F and X = I2. Then h{f) + s u p x € l h ( F \ I x ) > 

h{F) > max {h(f),supxeIh(F\Ix)}. 

DEFINITION 1.7. Let <p G C(X, X) and x € X be a fixed point of (p. A 
sequence {xn}^^ of distinct points in X such that <p (z„+i) = a;n, for every 
n 6 N, ip (xi) = a;, and lim n_>oo â n = a;, is a homoclinic trajectory related to 
the point x. 

A sequence {yn}^Li of distinct points in X such that tp (yn+\) = Vn, 
for every n € N, <p(t/i) = y ,̂ for some k > 1 (i.e., {yi,.. ,,yk} is a cycle 
of period k), and lim „_>.oo y/cn+t = y; for i = 1 ,2 , . . . , k, is a homoclinic 
trajectory related to the cycle {yi,..., y^J. 

DEFINITION 1.8. Let tp e C(I, I), bet a = {xu x2,..., x2<>} C / , where 
n £ N, be a cycle of <p with period 2 N such that x\ < x2 < ... < X2». Then 
a is a simple cycle of <p, if either n = 0 (i.e., x is a fixed point), or n > 0 
and the sets {a;!, a;2) • • • , * 2 » - 1 } i {x2n~1+ii..., *2"} a r e invariant sets with 
respect to (p2, and each of them is a simple cycle of <p2. 

A cycle a of a triangular map F with period 2k, k G N, is a simple cycle 
of F if P r (a) is a simple cycle of the base / with period 2" = m, for some n < 
k, and for every z G aMxt where x G P r (a), {Fim {z);i= 1 ,2 , . . . , 2k~n} C 
/j; is a simple cycle of Fm \IX : Ix —> lx. 

Recall that the notion of a simple cycle, for one-dimensional mappings, 
was introduced in [4]. 
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T H E O R E M 1.9 (cf. [10]). For <p e C(X,X), letA(<p,X) denote either of 
the sets Per (ip), u>{ip). Then Pr (A(F, I2)) = A (/, /). 

For <p G C(X, X), where X — I, or X = I2, and <p is a triangular map, 
consider the following properties: 

(PI) period of any cycle is a power of two; 
(P2) every cycle is simple; 
(P3)fc(v>|Per (V)) = 0; 
(P4)fr(v>) = 0; 
(P5) every u;-limit set contains a unique minimal set; 
(P6) ip has no homoclinic trajectory; 
(P7) every cj-limit set either is a cycle or contains no cycle; 
(P8) no infinite w-limit set contains a cycle. 

T H E O R E M 1.10. For<p G C(I,I) the properties (P1)-(P8) are mutually 
equivalent. 

R E M A R K 1.11. Theorem 1.10 summarizes results proved by several au
thors. The list of properties equivalent to (Pl)-(P8),in the case of one-dimen
sional maps, is more extensive. It contains more than 20 properties. For 
details see [9], [13] and [15]. 

The main aim of this paper is to classify the triangular maps of I2 with 
respect to the properties (P1)-(P&). The following theorem shows that they 
are not equivalent. 

T H E O R E M 1.12 (cf. [10]). There is a continuous triangular map F of 
type 2°° with positive topological entropy. The base f is of type 2°°, and it 
has a unique infinite u-limit set JC which is minimal. For every x G K, y G / 
and neN, Fn(x,y) = (fn{x),fl»(y)), where gn

x{y) = 2-i^g(y), g is the 
tent map g(y) = 1 — \2y — 1|, and i (n , a;) are non-negative integers such that 
limsup „ ^ o o i(n, x) = oo . It follows that lim inf „ ^ . o o <7u(u) = 0, whenever 
u G /C and v G / . Consequently, M = K, X {0} is the unique minimal set 
contained in U>F{U, V). 

Note that the original Kolyada's construction [10] gives a map F which 
is not differentiate at infinitely many points. In [3] there is constructed a 
Cfc-differentiable map with the similar properties, for any k G N. In [11] 
there is constucted a C°°-map with the similar properties. 

T H E O R E M 1.13 (cf. [8]). There is a triangular map F with the follo
wing properties: F has zero topological entropy, and possesses a recurrent 
point which is not uniformly recurrent. The map f is of type 2°° and has a 
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unique infinite u-limit set JC which is minimal. Finally, u)p(x, 0) = K- X {0}, 
U>F{X, 1) = /C X {1}, and U>F(X, |) D K, X {0,1}, for any x € tC. 

L E M M A 1.14. Let a C I2 be a cycle of F and Pr(a) = { a i , . . . , a „ } . 
Assume that F \Iai U . . . U Ia„ has an u-limit set containing more than one 
minimal set. Then the same is true for F. 

P R O O F . Denote G = F\Iai U . . . U /„„ . Let z0 = (a,-, j/o) be a point such 
that U>G(ZO) contains more than one minimal set, for some i 6 {1,...,TJ} 
and yo G / . Let zi,z2 € U>G{ZO) be points such that UG(Z\) and U>G{Z2) 

are disjoint subsets of UJG(ZO)- Then up(zi) U OJF{Z2) C WF(ZO) and the 
sets U>F{Z\), U>F(Z2) are disjoint. Since each of them contains a minimal set, 
wj?(2o) contains two minimal sets. • 

2. Main results 

In this section we are concerned with relations between the statements 
(Pl)-(P8) in the case of triangular maps. Theorem 2.1 gives the complete 
Ust of implications between properties (P1)-(P6). Theorem 2.2 contains im
plications between (P7)-(P8) and relations between them and the first six 
ones; however, there are still open problems. Proofs of these two theorems 
are given in Sections 3 and 4, respectively. 

T H E O R E M 2.1. For any triangular map F, the properties (PI), (P2) and 
(P3) are mutually equivalent, and each implies but is not implied by (P6). 
The properties (P4) and (P5) are mutually independent, and each implies 
but is not implied by (PI). 

The statement can be displayed by the following diagram: 

4 $ 5 

if if 
1<=> 2<=> 3 

6 

T H E O R E M 2.2. For any triangular map F, the properties (P7) and (P8) 
are equivalent. They are independent o/(P4), weaker than (P5), and are not 
implied by (PI) either (P6). 

The theorem is illustrated by the following diagram (the implications 
given by Theorem 2.1 are not displayed): 
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5 

ii 
1 =£> 7<=> 8 J = 4 

i 
6 

P R O B L E M 2.3. Theorems 2.1 and 2.2 give complete classification, with 
the following exceptions: We cannot decide if the implication (P7) (Pi) 
is true, and we conjecture that (P7) => (P6) is true but we do not provide 
a proof. 

3. Proof of Theorem 2.1 

L E M M A 3.1. (1 o- 2) The period of any cycle of F is a power of 2 if 
and only if every cycle is simple. 

P R O O F . Assume that there is a cycle a of F with period k = 2s, s € N, 
which is not simple (if k is not a power of 2 the assertion is trivial). Then 
f3 = Pr (a) has period m = 2", for some n. If /3 is not a simple cycle of / 
then, according to Theorem 1.10, / has a cycle x of period p which is not 
a power of 2. Consider a mapping Fp \IU : Iu —> Iu, u € x> ^ n a s a fixed 
point z. Then z is a periodic point of F with period p which is not a power 
of 2. If /3 is a simple cycle of / then according to Definition 1.8 there is a 
point z G a f l / , , x e such that {Fim {z);i= 1,2,. ..,2s-"} C Ix is not a 
simple cycle of a one-dimensional mapping Fm \IX : Ix —> Ix. Theorem 1.10 
implies that Fm \IX has a periodic orbit of period p / 2 " , for any n. Thus, 
F has a cycle of period mp which is not a power of 2. 

The converse implication is obvious by Definition 1.8. • 

L E M M A 3.2. (1 3) The period of any cycle of F is a power of 2 if 
and only if h (F |Per (F)) = 0. 

P R O O F . Let the period of any cycle of F be a power of 2. In view of The
orem 1.9, the same is true for / . By Theorem 1.10, h (/) = 0, and by Proposi
tion 1.6 (iii), h(F |Per (F)) < s u p x e P e r ( / ) h (F \IX). Let x be aperiodic point 
of / with period q. Denote G := Fq \ IX : Ix -> Ix. In view of the fact that G 
is a one-dimensional map and F is of type at most 2°°, from Theorem 1.10 
and Proposition 1.6 (ii) it follows that 0 = h(G) — h(Fq \IX) — q-h(F\Ix). 
Since x is an arbitrary periodic point, sup^pg,.^ h (F\IX) = 0, and hence, 
h (F |Per (F)) = 0. 
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Now assume that there is a cycle a of F with period k ^ 2n, n — 
0,1, 2,... If the period of Pr (a) is not a power of 2, then Theorem 1.10 
and [10] imply that h(F |Per (F)) > h (/ |Per (/)) > 0. If, on the other 
hand, the period of Pr (a) is 2m, m G N, let G = F2™ \IX, x G Pr (a). 
This one-dimensional mapping has a cycle with period k/2m, which is not a 
power of 2. By Theorem 1.10, h(G |Per (G)) > 0. Thus, by Proposition 1.6 
(ii)>(F|Per(F)) > 0. • 

L E M M A 3.3. (5 =>• 1) If every ui-limit set contains a unique minimal set 
then the period of every cycle is a power of 2. 

P R O O F . Assume that a is a cycle of F of period k ^ 2n, n = 0,1,2, — 
Let P = Pr (cv). If the period of /3 is not a power of 2 then, according to 
Theorem 1.10, there is a point xo G / such that uij (XQ) has two different 
minimal sets. Thus, there are xi, x2 6 u / (xo) such that w/ (xi) and u/ (x2) 
are disjoint subsets of w/ (xo). Clearly, Pr (uip (ZQ)) =CJJ (XQ), for any ZQ G 
IXg. Take arbitrary z\ G IXl C\u>p (ZQ) and z-i G IX2 Dup (zo). Then up {z\), 
up (22) are disjoint subsets of up (ZQ). To finish the argument note that each 
compact invariant set contains a minimal set. 

If, on the other hand, the period of (1 is 2m, for some m G N, fix an x G /3 
and for every y G / put G (y) — F2™ (x,y). Then G is a one-dimensional 
mapping I I, and any y G / such that (x, y) G a is its periodic point of 
period k/2m, which is not a power of 2. According to Theorem 1.10 there 
is a point ye € I such that u>a (yo) contains more than one minimal set. By 
Lemma 1.14, there is an a>-limit set of F containing more than one minimal 
set. • 

L E M M A 3.4. (1 6) / / the period of every cycle of F is a power of 2 
then F has no homoclinic trajectory. 

P R O O F . Let F have a homoclinic trajectory a. Without loss of generality 
we may assume that a is a homoclinic trajectory related to a fixed point, 
since otherwise it suffices to replace F by Fk where k is the period of the 
cycle related to a. Then Pr (a) is either a homoclinic trajectory or a fixed 
point. If Pr (a) is a homoclinic trajectory then, by Theorem 1.10, / has a 
cycle with a period that is not a power of 2 and thus, the same is true for 
F. If Pr (a) is a fixed point x, then a C IX and F \IX is a one-dimensional 
mapping that has a homoclinic trajectory. It follows that F\IX has a cycle 
whose period is not a power of 2, and the same is true for F. • 

L E M M A 3.5. (6 7^ 1) There is a triangular map F with no homoclinic 
trajectory such that f has positive topological entropy. 
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P R O O F . Let F(x,y) — (/ (x), | y + T(X)), where / is the tent map, 
and r(x) G [0, ~], for any x. Let {a;}^ be the sequence of all periodic 
orbits of / , let ax = {0}. Put M x = {0,1}, r^O) = 0 and n(l) = \. Then, 
for any r such that r \ Mi — T\ , F has no homoclinic trajectory related to 
the fixed point z = (0,0) of F (which is the only periodic point of F with 
Pr (z) = Indeed, let {zn}™=i be such a trajectory. Then z\ = (l,j/i) 
and hence, F{z\) = (0, \y\ + ^ z, for any choice of J/J. Since z has no 
inproper preimage in I0, Fn{z\) ^ z, for any n. 

Now assume by induction that there is a finite set Mk C / disjoint from 
cvfc+i, and a mapping rk : Mk -» [0, \\ such that, for any r with r | M f e = r f c, 
F has no homoclinic trajectory related to a periodic orbit, whose projection 
is et;, i — l,...,k. Let p be the period of ak+\ and {ai,...,ap} the set 
of aperiodic preimages of the points in a k + i . Fix sufficiently large integer 
m > 0 depending only on A; (below we specify how large). Let x € /~m(a;). 
Then 

(1) /*(*M(/*)) = Q ) , B . 

Put i V f c + 1 = U ^ V and M f c + 1 = M f c U Nk+1. Let r £ + 1 be the 
Unear extension of rk onto Mk+i. Define rk+x : Mk+i —>• [0, ]̂ such that 

(2) K + 1 - r f c + 1 ||< j ^ , 

and rfc+i(a;) = Tjf.+1(a;) whenever a; ^ {ai,...,ap}. For each i, 1 < i < p, 
f(cii) — qi G ajt+i. Let denote the point in / such that (c,, s,) is a periodic 
point of F provided that r\Mk+\ = Tk+1. Because of (1) we can choose 
Tk+ii^i) € [0, |] preserving condition (2) such that, for any x G f~m{c-i), 
Si g" Y(x,jn) + r/ c + 1(a,), where Y(x,m) is the y-projection of ^Fm(Ix), 
whenever m is sufficiently large, e.g., whenever (f)™ < . To finish the 
argument, let r be a continuous map such that r \Mk = rk, for any L Since 
M = UfcLi -̂ fc i s a dense subset of / , by the above construction (cf. also 
(2)) such a T exists and is uniquely determined. 

Now if F would have a homoclinic trajectory {zn}^_} related to a cycle 
of F in ak x / , then there is a minimal m such that zm+\ G Mk x / is 
eventually periodic, which is by our construction impossible. • 

L E M M A 3 .6. (5 4) There is a triangular map F with positive topo
logical entropy such that every u-limit set of F contains a unique minimal 
set. 

P R O O F . Consider the mapping F from Theorem 1.12, and let W be an 
infinite w-limit set of F. If Pr (W) is infinite then Pr (W) = A.', since AJ is the 
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unique infinite w-limit set of / . By Theorem 1.12, W contains M , and hence, 
M is the unique minimal set contained in W. If Pr (W) = cv is a cycle of 
period p, then F : \Jxea Ix ~> U x e « ^ is (conjugate to) a one-dimensional 
map of type at most 2°° and W is its u-limit set. By Theorem 1.10, W 
contains unique minimal set. • 

L E M M A 3.7. (4 ^ 5) There is a triangular map F with zero topological 
entropy and with an u-limit set containing two minimal sets. 

P R O O F . Consider the mapping F from Theorem 1.13. If x £ JC, 
z = (x, i), then up (z) D /C x {0,1}. Thus, w F (z) contains two minimal 
sets. • 

P R O O F OF T H E O R E M 2.1. (PI) (P2) & (P3) follows by Lemmas 3.1 
and 3.2. Proposition 1.6 (i) and Theorem 1.12 imply (P4) => (P3) and (Pi) 
j$ (P4). By Lemma 3.3, (P5) (PI), by Lemma 3.7 and the fact that (P4) 
=>• (P3 PI), we have (PI) j> (P5). By Lemmas 3.6 and 3.7, (P4) and (P5) 
are mutually independent. Lemmas 3.4 and 3.5 imply that (PI) =>• (P6) and 
(P6) (PI). 

4. Proof of Theorem 2.2 

L E M M A 4.1. (7 4=> 8) Every u-limit set of a triangular map F either is a 
cycle or contains no cycle if and only if no infinite u-limit set of F contains 
a cycle. 

P R O O F . It follows by the well-known fact that any finite a>-limit set is 
a cycle [2]. • 

L E M M A 4.2. (5 8) If every u>-limit set of F contains a unique minimal 
set then no infinite u-limit set of F contains a cycle. 

P R O O F . Assume that there is an infinite w-limit set uF (z0), z0 £ I2, 
containing a cycle a. By Theorem 1.9, Pr {up (zo)) — uj (x), for some x £ I. 
Assume first that uj (x) is an infinite set containing a cycle Pr (cv). Then, by 
Theorem 1.10, there is a point VQ £ I such that uj {VQ) contains two distinct 
minimal (and hence, disjoint) sets uj (v\),uj fa). According to Theorem 1.9 
there are points yo,yi,y2 € / such that Pr (up fa, yi)) = uj(vi), for i = 
0,1,2, up fa,yi)nuF fa,y2) - 0 anda>F (ui,yi)Ua;F fa,yi) C uF (v0,y0). 

Now let u j (x) be a finite set, i.e., a cycle Pr(cv) = {aj,.. .,aA,} with 
period k. Since Ffupfa)) = upfa), there is a sequence {un}^=_00 such 
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that { u n } ^ . ^ C uF(z0) \ a, {un}™=l C w F ( z 0 ) , and F(un) = u n + 1 . Let 
VF{UQ) denote the set of accumulation points of the sequence { w „ } ^ _ _ 0 O . 

Then ujp(u0), vp(u0) are nonempty compact invariant subsets of uiF(z0). 
If a <jt UF(UQ) or a (£ vp(uo) then U F ( Z O ) contains two disjoint compact 
invariant subsets of F, and hence, two minimal sets. If a C u)p(u0) and 
a 7^ U>F(UO) then G = F | / a i ' U . . . U /O A. is (conjugate to) a one-dimensional 
mapping possessing an infinite cu-limit set with a cycle and, by Theorem 1.10, 
two minimal sets. If Wf(t i 0 ) — a = vp(ua) then according to [15, pg. 19], G 
has a homoclinic trajectory and, by Theorem 1.10 and Lemma 1.14, F has 
an w-limit set containing two minimal sets. It remains to consider the case 
VF{UQ) Da — UF(UQ) ^ VF(UO)- If VF{UO) is finite then it contains two cycles 
and hence two minimal sets. Let VF{UQ) be infinite. If there is z' e VF(UC>) 

such that U>F(Z') ^ a then either U>F(Z') Da = 0 or a C LOF{Z'), hence either 
UF(ZQ) contains two minimal sets, or G has a homoclinic trajectory and F 
has an w-limit set containing two minimal sets. So, assume that U>F{Z) = a, 
for every z G VF(U0). Then for any z € VF(UQ) and any neighbourhood U of 
a, there is y 6 U and m £ N such that Fm (y) = z. This means that F has a 
homoclinic trajectory and, by Theorem 2.1, F has an w-limit set containing 
two minimal sets. • 

L E M M A 4 . 3 . (8 6̂- 5) There is a triangular map F which has an u>-limit 
set containing two minimal sets such that no infinite u-limit set of F contains 
a cycle. 

P R O O F . Consider the mapping F from Theorem 1.13. If W is an infinite 
w-limit set of F, then P r (W) = IC, which contains no cycle. On the other 
hand, OJF{X, |) , for x £ fC, contains two minimal sets. • 

L E M M A 4 .4 . (4 7^ 8) There is a triangular map F with zero topological 
entropy that has an infinite u-limit set containing a cycle. 

P R O O F . Define a triangular map F (x, y) = (/ (x), gx (y)) as follows. Let 
/ (x) = Ax, where A e (0,1) is a constant. For 6 € (0,1), let rs, T£ : I -» / 
be such that 

Ts (x) = (1 - S) x + 6, 

for x € [0, S], 
j ^ , for x€(6,l]. 

Clearly, T$ o rj is the identity on / . Now put g0 (y) = y, for n = 0,1,2, 

( ) = I Tl/(fc+2) (v) > F O R nk<n< \(nk + nk+l), 
9f{i) [y> ~ J T * / { k + 2 ) (y), for \{nk + nk+i) <n< n k + u 



The problem of classification of triangular maps with zero topological entropy 191 

for x G / " ( I ) ) , * = A / " + 1 ( l ) + (1 - A e (0,1), 

9x{y) = Aflf/.+i(i)(y) + (1 - A ) 5 T / » ( 1 ) ( y ) , 

where {n^}^ is a sequence of non-negative even numbers such that n 0 = 0 
/ \ (nk + i-nk)/2 

and lim k-^oo (1 - x+2) = °- S i n c e f a n d a r e monotonie, 
for every x £ I, then by Proposition 1.6 (iv), h(F) = 0. Take a point 
z = (1,0) G I2. Since / n (1) = A™, we have uF (z) = {0} x / . Since F («) = «, 
for every u = (0, y) € {0} x /, up (z) contains infinitely many cycles. • 

P R O O F OF T H E O R E M 2.2. (P7) & (P8) follows by Lemma 4.1. Lem
mas 4.2 and 4.3 imply (P5) (P8) and (P8) fi (P5). By Lemma 4.4, (P4) 
=> (P8). By Lemmas 3.6 and 4.2, (P7) ^ (P4). By the fact that (P4) =» (PI) 
and Lemma 4.4, (PI) fi (P7). By the fact that (P4) (P6) and Lemma 4.4, 
(P6) ^ (P7). • 
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