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Abstract. This communication will discuss the dynamics of iterated cubic maps 
from the real line to itself, and will describe the renormalization of the parameter 
space for such maps using methods of symbolic dynamics. 

1. Introduction 

In the past two decades one-dimensional iterative maps have been sub­
ject of intense study. In spite of their structural simplicity, the dynamics of 
these simple nonlinear discrete dynamical systems are extremely rich and 
complex, providing thus a tool for the modeling and simulation of the dy­
namics of dissipative higher dimensional systems. We know now that many 
features observed in dissipative systems that typically occur in physics, che­
mistry and biology, can also be found in one-dimensional processes, the most 
well-known of which being, probably, the so called bifurcation route to chaos 
and its universal scaling laws, studied in detail in the literature, see [Mi 87]. 

Of particular relevance among one-dimensional iterative maps are the 
piecewise monotone maps of the interval, particularly those possessing a sin­
gle smooth extremum. However, with an already reasonable understanding 
of the dynamics of that family of maps, recent research has focused some 
attention on the analysis of maps with two extrema, sometimes by trying 
to generalize results valid for quadratic maps. Following previous work, see 
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[La-Se-SR 99], this is a report of recent advances on our attempt to get a 
generalization of the symbolic ^-product introduced by Derrida, Gervois and 
Pomeau, see [De-Ge-Po 78], for the family of quadratic maps of the interval. 

We begin, in Section 2, with a brief summary of the basic tools of 
Milnor-Thurston's kneading theory, adapted for bimodal maps, i.e., the no­
tions of address and itinerary of a point of the interval, kneading data of 
a bimodal map, even and odd bimodal sequences, lexicographical symbolic 
order, shift operator and admissible pair of sequences. It is assumed here 
that the reader is already familiar with these ideas (see [Mi-Th 88], [Co-Ec 
80], [Ri-Tr 95] or [Mi-Tr 98], for details). Then, in Section 3, we present 
some results concerning the subset TBLMA of all kneading data obtained 
from the product of BLMA with any other bimodal kneading data, namely, 
its admissibility and topological entropy. This case is important since we do 
not have to impose any condition, necessary, in the general situation, for the 
admissibility of the sequence resulting from the product, and thus we have 
that the subset TBLMA is self-similar with the all set of bimodal kneading 
data T K S . 

2. Bimodal maps and kneading theory 

Consider a continuous map / from the interval / = [co,c3] into itself 
such that there exist two points c\ and c2 in its interior such that / is incre­
asing in the subintervals [c0, c{) and (c2, c3] and decreasing in the subinterval 
(ci,c 2). This is called a {+,-,+} bimodal map, or a {+,-,+}-bimodal 
map. From [Sk et al 83], a suitable family of these maps is given by the 
two-parameter family of cubic maps 

fab(x) = ax3 + bx2 + (1 - a) x - b , a ^ O , 

where a and b are parameters such that, for the map fab to be a map of the 
interval / = [-1,1], (a, b) must he inside the region Q. C K 2 , whose boundary 
dfl is given by the following curves of the plane assuming that the critical 
points ci, c2 and /(ci), /(c2) belong to the interval [-1,1]: 

b = ±(2y/a- a), 1/4 < a < 4, 

4{a- 1/2)2 + 4/362 = 1. 

The critical points of fab can be easily computed, and we have that 

ci,2 = (-&T v^ 2 + 3a(a-l))/(3a). 

The parameter-plane curves that correspond to the existence of pairs of 
superstable orbits of the critical points ci and c2, i.e. fn{c\) = c\ and 
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/m(c 2) = c2, or the existence of doubly superstable , i.e., fn{c\) — c% and 
/m(c 2) = ci, have been termed, respectively, the bones and the ligaments of 
the region in CI where the orbits are stable. The analysis of such curves of the 
parameter region was done by [Ri-Sc 91] in order to study the bifurcation 
structure of a family of bimodal maps of the interval. 

Following [Mi-Th 88], one can code the dynamics of bimodal maps in 
the following way: consider the alphabet A = {L, A, M, B, R}; we say that 
the address A(x) of a point x of the interval / is 

• L if x £ [c0,ci) 
A if x = c\ 

A(x) = < M if x £ (cx,c2) . 
B if x — c2 

. R if x £ (c2, c3] 

Then, we associate to an orbit of a point x £ I the infinite symbolic sequence 

\(f,x) = A(x)A(f(x))A(f(x)) ...A(fn(x)) ... 

called the itinerary of x. When the map / is obvious from the context, we 
shall use the abbreviated notation \{x) for the itinerary of a point x £ I. 
The itineraries of the images of both critical points of the map play a special 
role within the kneading theory: 

DEFINITION 1. Let / denote a bimodal map of the interval, with critical 
points c\ and c2. We designate by kneading data of / the pair of symbolic 
sequences £ ( / ) = ( £ + ( / ) , £ " ( / ) ) = ( l(/(ci)),l(/(c2))), with £ + ( / ) and 
K, (/) often called the kneading sequences of / . 

The importance of the kneading data of a map /C(/) lies in the sharp 
restrictions it imposes on which itineraries can actually occur for that map 
/ , see [Mi-Tr 98]. But clearly, the key point of the kneading theory is the 
introduction of an order relation between symbolic sequences closely related 
with the order of the interval: take the following order on the alphabet A, 
naturally induced from the order of the interval: 

L<A-<M^B<R. 

The next step is to introduce a parity function p(S), for any finite sequence 
S, as +1 if 5 contains an even number of symbols M, and -1 otherwise, 
and let A denote the set of all sequences written with alphabet A. Then, we 
can define an ordering -< on A in the following manner: 

DEFINITION 2. Given two sequences P = P\P2... and Q = Q i Q 2 . . . 
from A, let n be the first integer such that Pn ^ Qn. Denote by S — 
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Si .. .Sn-i the common first subsequence of both P and Q. Then, we say 
that P <Q'ń Pn <Qn and p(S) = +1 or if Qn -< Pn and p(S) = -1. If no 
such n exists, we say that P = Q. 

One can easily see that this symbolic order relation is compatible with 
the order of the interval, in the sense that it satisfies x < y =$> \(x) -<\(y) 
and \(x) -<l (y) x < y, for any two points x,y of the interval. With 
this lexicographical symbolic order one can characterize the elements of A 
that are admissible as kneading sequences of a bimodal map. But first, 
consider the shift map a on the space of symbolic sequences, defined by 
a(SiS2Ss ...) = 5253..., and state that a sequence S € A is minimal if 
5 < an(S) and maximal if an(S) < 5, for all n > 0. Then, we will say that: 

PROPOSITION 1. A pair (P,Q) of sequences is admissible, or realizable, 
as kneading data of a bimodal map if and only if the following three conditions 
are satisfied: (i) the sequence P is maximal, (ii) the sequence Q is minimal 
and (iii) they are such that Q < an(P) and (Tn(Q) •< P, for all n > 0. 

Denote by TKS the set of all kneading data of bimodal maps and adopt 
the following convention: given a kneading sequence 5, truncate 5 after the 
first symbol A or B, if any. Thus, for example, the class of pairs of finite 
sequences of the form (Pi ... P„_i A, Qi ... Qm-i B) corresponds to the kne­
ading data of a map whose critical points belong to two different periodic 
orbits, whereas the class of pairs of the form (Pi . . .Pn-iB, Q\ .. .Qm-iA) 
corresponds to the kneading data of a map with both critical points belon­
ging to the same periodic orbit. It will be simpler to denote these kneading 
data as a unique sequence, i.e., as Pj . . . Pn-iBQi .. .Qm_iA, being inferred 
from the context that it is actually a pair of kneading invariants. 

To illustrate some of the concepts and results of bimodal kneading the­
ory, we find convenient to construct a two-entry table, in which the minimal 
sequences will be placed in decreasing order and the maximal sequences in 
increasing order, considering only those corresponding to periodic kneading 
sequences with period smaller than a given one. Next, we give a table for ma­
ximal and minimal periodic sequences with period not greater than 4. But 
first, in order to be able to present a simplified table, consider the following 
correspondence between numbers and extremal, i.e., maximal and minimal, 
sequences: 
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n 1 2 3 4 5 6 7 8 9 10 11 

row B RŁLA RLA RLMA RLB RA RMRA RMB RMMA RMMB RMA 

col A LRRB LRB LRMB LRA LB LMLB LMA LMMB LMMA LMB 

n 12 13 14 15 16 17 18 19 20 21 22 

row RMLB RMLA RB RRLA RRLB RRA RRMB RRMA RRB RRRA RRRB 

col LMRB LMRB LA LLRB U R A LLB LLMA LLMB LLA LLLB LLLA 

Then, we have 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 

1 0 . . . o 0 • • o • • o • o o 

2 0 

3 
4 • • 0 • o • 0 o • o • 

5 • . . . 0 • 0 • • 0 • • 0 • 0 o 
6 0 o 0 • 0 • • 0 • 0 0 • 

7 o 0 0 0 • • 0 0 o 
8 o o o o • o • o 0 0 0 

9 • O o o 0 o 0 • o o • 

10 o . . . 0 • 0 0 • 0 • 0 0 o 0 
11 • • • o o 0 o 0 • • • 0 0 • 0 
12 • 0 • 0 0 • 0 • 0 • o 0 • 0 
13 
14 o o o o • 0 • o 0 0 0 

15 0 o 0 

16 • o 0 o • 0 • 0 o o o 

17 • • O 0 0 0 o 0 • 0 o 0 • 0 
18 0 • o o • 0 • o • o 0 0 • 0 
19 • 0 0 o o o • 0 • 0 0 0 0 
20 o . . . 0 o • o • 0 • 0 o o 0 
21 o o o o o o o o o o 

22 o • • • o o o o • o • o 0 o o 

where a circle indicates a pair of sequences that it is kneading data of a 
bimodal map and a point means simply a pair of sequences that does not 
satisfy the third condition of Proposition 1 (remember that both sequences 
are, a priori, extremal). It is worth noting that, despite the finite character 
of such table, it does not mean that our results are only valid for such strong 
restriction on the set of bimodal kneading data. 

Although it was proven in [La-Se-SR 99] that the ^-product of two 
bimodal kneading data is always a bimodal kneading data, it is not yet clear 
if all reducible pairs of TKS are the ones coming from that definition of 
•-product. The main result of this report deals exactly with this problem, 
since we are going to study in detail the subset of kneading data TBLMA 
one obtains from the product of BLMA with any element of TKS- In fact, 
for this particular kneading data one finds that there is no need to consider 
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any restriction for the •-product to be admissible, therefore, the set TBLMA 
will be self-similar with the set of bimodal kneading sequences TKS

 J ) . 

3. Self-similarity of the set TBLMA 

It is known for some time that for each unimodal map with a periodic 
critical orbit of period k there exists a countably infinite number of uni­
modal maps with the same topological entropy and with a periodic critical 
orbit whose period is some multiple of k. However, for a bimodal family of 
maps /„;,, the subsets of the parameter space such that one of the critical 
points is periodic with a specified order type, are no longer points, as in 
the unimodal case, but smooth curves in the parameter plane. Moreover, in 
[Da-Ga-Mi-Tr 93] was conjectured that those subsets could not have any con­
nected component which was a simple closed curve. This would immediately 
imply the connectedness of the topological entropy level sets or isentropes in 
the parameter region Q and a certain monotonicity condition to the entropy 
of bimodal maps. But this is still an open question and therefore rises the 
interest to study bimodal maps with identical entropy. 

The topological entropy h which was defined in [Ad-Ko-Mc 65] is an in­
variant of topological conjugacy. For multimodal maps, piecewise monotone 
maps, we can use the Misiurewicz-Szlenk-Rothschild result 

& ( / ) . „,„ !2ŁS£) 
fc—>oo k 

where t(f k) is the lap number of jk. From [Mi-Th 88] we know already 
that, for the family of bimodal of maps, the topological entropy function 
(a, b) —>• h(fatb) is continuous, with values in interval [0,log3]. Now, for 
each fixed h 6 [0, log 3], define the /i-entrope as the set of parameter values 
(a, 6) 6 f2 for which the topological entropy /i(/a,b) is constant and equal to 
h. For example, it is easy to verify that the log3-entrope is a single point of 
Q , but one can expect countable many isentropes to be connected regions 
with nonempty interior and the rest just simple arcs. A nice monotonicity 
property would be to find a curve through each point of the parameter space 
Q such that the dynamical complexity of the corresponding bimodal maps 
would increase monotonically. We think that, as for the unimodal family of 
maps, the introduction of a bimodal ^-product between kneading data can 

l) As should be evident from the symmetry of the symbolic set Tj<s, there is another 
subset of kneading data with analogous properties as this one: it is the subset TARMB °f the 
kneading data obtained from the *-product of ARMB with any kneading data. All results 
valid for TBLMA c a n be easily given for TARMB-
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be a good contribution to understand how the topological entropy change 
within a family of bimodal maps. But let us now present our results. 

For simplicity, let us begin with the definition of Type 3 and Type 4 
bimodal symbolic *-product introduced in [La-Se-SR 99]. Denote by !F\ the 
following subset of kneading data: (5, T) £ Tx if and only if S < RM°° and 
LM°° < T. 

DEFINITION 3. Let PBQA be a kneading data, with P and Q both 
finite sequences of B and consider the following two possibilities: 

Type 3. V{XA,YB) £ Tx 

PBQA*(XA, YB) = (P^P(Xl)QVQ(X2)P.. .A,Qm{Yx)P^P{Y2)Q ...B), 

Type 4. V XBYA £ Tx 

PBQA * XBYA = P^p{Xl)Qr]Q{X2)P... BQ7 ? Q(y 1)FVp(y 2)Q • • -A , 

where X and Y are both finite sequences and \j)p, TJQ are functions 
defined, for every sequence S of B, by: 

Vs(L) = { 
L if p{S) = +1 

[M if p(S) =-I 

I'M i f = +1 

[L ifp(5) = - l 

MR) = { 
' R if p(S) = +1 

M ifp(5) = - l 
MM) = { C M if p(S) = +1 

[R ifp(5) = - l 

It should be noted that the restriction imposed to the neading data appearing 
as second factor implies that Xeven,Y0dd £ {L, M} and XQ 

ddYeven £ {R, M}. 
Thus, it is enough to define the functions I]Q and ipP for those symbols. From 
[La-Se-SR 99] it is known that both PBQA*(XA, YB) and PBQA-kXBYA 
are admissible kneading data. The important question now is that if we do 
PBQA = BLMA there is no need to impose any condition to the second 
factor for the product to be a kneading data, as we will show, but it is 
not possible to write this extended product as was done in Definition 3. 
Therefore, we are forced to introduce a different definition for both types 
BLMA • (XA,YB) and BLMA * XBYA, but we wiU show later that if 
{XA, YB) or XBYA belong to T\ we get the same sequences as before 
(thus, we can consider this new definition of ^-product as an extension of 
Definition 3). 
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PROPOSITION 2. Given the kneading data BLMA, consider the product: 
Type A . 

BLMA-k(XA,YB) = (XiX2...A,Y1Y2...B) for (XA,YB)eTKS] 

Type B. 

BLMA*XBYA = X1X2...BY1Y2...A for XBYA G TKS , 

with L = MM, A = MA, M = ML, B — BL and R = RL. Then, both 
BLMA*(XA,YB) and BLMA*XBYA are admissible kneading data. 

P R O O F . First, we will show that, if one restricts the second factor to 
T\, the result of this new product is equal to the one presented before. In 
fact, with P the empty sequence and Q = LM, for which p(P) = +1 and 
p(Q) — - 1 , accordingly, we have, from Definition 3, that, if (XA, YB) e T\, 
the first sequence of the pair BLMA-k (X A, YB) is given by 

4,(Xl)LMn(X2)^(X3)LMr1(Xi).. . ^ ( I 2 n _ , ) L M A . 

Now, if we look at this sequence as pairs of symbols we can see that there are 
only two kinds of pairs: il>(Xodd)L or Mn(Xeven). Then, one can easily verify 
the identities Xodd = ip(Xodd)L, for Xodd = M, R, and Xeven = Mn(Xeven), 
for Xeven = L, M. For the second sequence of BLMA * (XA, YB) the pro­
cedure is similar, but, for convenience, instead of the sequence given in De­
finition 3, it is easier to work with the shifted sequence 

M7 ?(y 1)^(y 2)LMr ?(y 3)^(y 4). ..LM^^BL , 

for which one can immediately find the same equalities Xodd — i>(Xodd)L, for 
Xodd = M, R, and Xeven = Mri(Xeven),iot Xeven = L, M. The admissibility 
of BLMA * (XA, YB), for (XA, YB) £ TKS follows easily once one verifies 
that the transformation S is compatible with the order relation, 

L = MM <A = MA<M = ML<B = BL<R = RL, 

and satisfies o(Ś) < R and L < a(S), with S any symbol from B. The same 
arguments lead us straightforward to the admissibility of BLMA-kXBYA. 

For the sake of simplicity, we use the same notation, TBLMA, for the 
subset of kneading data of the form BLMA * (P,Q), with (P,Q) e TKS-
In the following table we give some examples of the new products one can 
form: 
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Type A . 

BLMA * (RRA, LMB) = (RLRLMA, LMMMLB) 

BLMA * (RRLMA, LLLB) = (RLRLMMMLMA, LM MM MM MB) 

BLMA * [RMMMA, LMB) = (RLMLMLMLMA, LMMMLB) 

Type B. 

BLMA * RRBLMA = RLRLBLMMMLMA 

BLMA * RRLMBLLMA = RLRLMMMLBLMMMMMLMA 

BLMA * RMMBLMMA = RLMLMLBLMMMLMLMA 

We can now characterize the symbolic subset TBLMA'- it is the set of kne­
ading data (P, Q) satisfying the following inequalities: 

B<P< {RL)°°, 

L(M)°° <Q< LMA. 

In terms of the symbolic table suggested before, this subset is the rectangle 
with vertices BLMA, BL(M)°°, ((RL)°°, LMA) and ((RL)°°, L(M)°°). An 
easy consequence of the previous result is the following: 

COROLLARY 1. The set TBLMA is isomorphic to the set of all admissible 
kneading data TKS (a one-to-one and order preserving correspondence). 

Next, we characterize the topological entropy of any element of the 
subset TBLMA- denote by h(P,Q) the topological entropy of the bimodal 
map fab whose kneading data is /C(fab) = (P,Q). 

T H E O R E M 1. Given an arbitrary kneading data (P,Q) G TKS ^ have 

h{BLMA*(P,Q)) = l-h{P,Q). 

P R O O F . Prom Misiurewicz-Szlenk-Rothschild's theorem, it is known 
that we can deduce the topological entropy h(f) of a m-modal map / from its 
growth number s(f). Therefore, one can use the kneading matrix defined in 
[Mi-Th 88], since the smallest zero t of its determinant D(t), a formal power 
series with odd integer coefficients, equals the inverse of the growth number 
of the map, i.e., t = l/s(f). Moreover, when both kneading sequences P 
and Q are periodic, the sum of this formal power series is a rational function 
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and one can evaluate the growth number from an expression introduced in 
[La-SR 89]. Otherwise, we can approximate it by one. Thus, consider an 
arbitrary periodic kneading data 

(P,Q) = (P1...Pp.lX, Qi...Q9-!Y), 

with X, Y 6 {A, B}. Given a sequence 'S denote by the subsequence of 
S obtained from its truncation after the i-th symbol, that is, S ^ = Si . . . S',. 
For simplicity reasons, it is most suitable to work with the polynomial 
(i(PQ)(i), instead of the kneading determinant D(t), defined by 

d{P,Q)(t) = (l-t)(l-p(P)t')(l-p(Q)t<)D{t). 

Thus, from the definition of kneading determinant D(t) of a periodic kne­
ading data (P,Q), we have 

dv(t) = (i - j^HPMP^ń x (i - X>(Qi)/>(Q ( iV') 
!=1 t=l 

i=l t=l 

with 8(L) = -i/(L) = -1, 6(A) = 0, v(A) = 1, 8(M) = u{M) = 1, 8(B) = 
1, v(B) = 0 and S(R) = —v(R) — 1. Therefore, from the definition of the 
•-product of BLMA with another periodic kneading data (S,T), we have 
that 

d.BLAM*(S,T)(0 = (1 - *) d(S,T)(t2) • 

Thus, the smallest zero of the d,BLMA*(s,T){t) l s J u s t smallest zero of 
the polynomial d(s,T)(t2) (remember that all zeros of dfcs(t) are not greater 
than 1) and the growth number of the product BLMA * (5,T) comes as 
s(BLMA * (S, T)) = ,/s(S, T). 

4. Discussion 

Despite the particular character of the results presented, we think that 
they are really important for a future definition of a ^-product between 
bimodal kneading data. In fact, now we know that the formal straightforward 
generalization of the unimodal symbolic product, as the definition given 
in [La-Se-SR 99], is no longer appropriate for all situations and probably 
these results can give the new perspective necessary for the extension of the 
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former definition. Finally, we would like to stress once more the relevance of 
the identification of a second factor, as was obvious in Theorem 1. From our 
point of view it is not enough to present a family of kneading data associated 
with a given one, being much more interesting to write them as a product 
of two elements of TKS a nd characterize them in terms of both factors of 
that product. 
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