ON REGULAR MULTIVALUED COSINE FAMILIES

ANDRZEJ SMAJDOR

To the memory of Professor Győrgy Targonski

Abstract. Let K be a convex cone in a real normed space X. A one-parameter family $\{F_t : t \ge 0\}$ of set-valued functions $F_t : K \to n(K)$, where $n(K) := \{D : D \subset K, D \neq \emptyset\}$, is called *cosine* iff $F_{t+s} + F_{t-s} = 2F_t \circ F_s$, whenever $0 \le s \le t$ and F_0 is the identity map. A cosine family $\{F_t : t \ge 0\}$ is regular iff $\lim_{t\to 0+} F_t(x) = \{x\}$ for every x.

The growth and the continuity of regular cosine families are investigated.

Let X, Y, Z be nonempty sets and let n(Y) denote the set of all nonempty subsets of Y. We recall that the superposition $G \circ F$ of set-valued functions $F: X \to n(Y)$ and $G: Y \to n(Z)$ is defined by the formula

$$(G \circ F)(x) := \bigcup \{ G(y) : y \in F(x) \} \quad \text{for} \quad x \in X.$$

A subset K of a real vector space X is called a *cone* if $tK \subset K$ for all $t \in (0, +\infty)$. A cone is said to be *convex* if it is a convex set.

A set-valued function $F: K \to n(Y)$, where K is a convex cone in X, is said to be *superadditive* iff $F(x) + F(y) \subset F(x+y)$ for $x, y \in K$.

Let K be a convex cone in X and let \mathbb{Q}_+ denote the set of all positive rational numbers. A set-valued function $F: K \to n(Y)$ is said to be \mathbb{Q}_+ -homogeneous if $F(\lambda x) = \lambda F(x)$ for $\lambda \in \mathbb{Q}_+, x \in K$.

Now, we assume that X and Y are arbitrary real normed spaces. A set-valued function $F: K \to n(Y)$ is called *lower semicontinuous* at $x_0 \in$

Received: January 5, 1999.

AMS (1991) subject classification: Primary 39B52, 47D09, 26E25.

K iff for every open set V in Y such that $F(x_0) \cap V \neq \emptyset$ there exists a neighbourhood U of zero in X such that $F(x) \cap V \neq \emptyset$ for $x \in (x_0 + U) \cap K$. A set-valued function F is called lower semicontinuous iff it is lower semicontinuous at every point $x \in K$.

A set-valued function $F: K \to n(Y)$, is said to be *bounded* if for every bounded subset E of K the set $F(E) = \bigcup \{F(x) : x \in E\}$ is bounded in Y.

The following characterization of boundedness of Q_+ -homogeneous set-valued functions is easy to check.

LEMMA 1. Let X and Y be two real normed spaces and let K be a convex cone in X. A \mathbb{Q}_+ -homogeneous set-valued function $F: K \to n(Y)$ is bounded if and only if there exists a positive constant M such that

(1)
$$||F(x)|| := \sup \{ ||y|| : y \in F(x) \} \le M ||x||$$
 for $x \in K$.

LEMMA 2. Let X and Y be two real normed spaces and let K be a convex cone in X. Suppose that $F : K \to n(Y)$ is a \mathbb{Q}_+ -homogeneous set-valued function. Then equality

$$\lim_{x\to 0,x\in K} \|F(x)\| = 0.$$

holds if and only if there exists a positive constant M such that (1) holds.

The proof is similar as in the classical case (see [2] Theorem 2.4.1). Under assumptions of Lemma 2 the functional

$$||F|| = \sup_{x \in K, x \neq 0} \frac{||F(x)||}{||x||}$$

is finite for every \mathbb{Q}_+ -homogeneous set-valued function $F: K \to n(Y)$ such that

$$\lim_{x \to 0, x \in K} \|F(x)\| = 0.$$

This functional will be called a norm.

COROLLARY 1. Let X and Y be two real normed spaces and let K be a convex cone in X. Suppose that $F : K \to n(K)$ and $G : K \to n(Y)$ are bounded \mathbb{Q}_+ -homogeneous set-valued functions. Then $G \circ F$ is bounded, \mathbb{Q}_+ -homogeneous and inequality

$$||G \circ F|| \le ||G||||F||$$

holds.

The set of all nonempty bounded subsets of a normed space Y will be denote by B(Y).

LEMMA 3 (Theorem 3 in [7]). Let X and Y be two real normed spaces and let K be a convex cone in X. Suppose that $(F_i : i \in I)$ is a family of superadditive lower semicontinuous in K and \mathbb{Q}_+ -homogeneous set-valued functions $F_i : K \to n(Y)$. If $F(x) = \bigcup_{i \in I} F_i(x)$ and the set $B = \{x \in K :$ $F(x) \in B(Y)\}$ is of the second category in K, then F is bounded and B = K.

Lemma 3 and the same considerations as in the proof of Theorem 4 in [7] allow to derive the following lemma.

LEMMA 4. Let X and Y be two real normed spaces and let K be a convex cone in X. Suppose that $(F_i : i \in I)$ is a family of superadditive lower semicontinuous in K and \mathbb{Q}_+ -homogeneous set-valued functions $F_i : K \to n(Y)$. If K is of the second category in K and $\bigcup_{i \in I} F_i(x) \in B(Y)$ for $x \in K$, then there exists a constant $M \in (0, +\infty)$ such that

$$\sup_{i \in I} ||F_i(x)|| \le M ||x|| \text{ for } x \in K.$$

REMARK 1. The assumption that the cone K is a set of the second category in K is essential and it can not be replaced by the completness of X.

In order to prove it we use an example from Chapter III, §3.7 of N. Bourbaki's book [1]. Let $X = \{x \in C(\mathbb{R}, \mathbb{R}) : \lim_{t \to -\infty} x(t) = \lim_{t \to +\infty} x(t) = 0\}$, $||x|| = \sup\{|x(t)| : t \in \mathbb{R}\}$ for $x \in X$ and let $K = \{x \in X : \text{supp } x \in c(\mathbb{R})\}$, where $c(\mathbb{R})$ is the set of all nonempty compact subsets of the set \mathbb{R} of all real numbers. We can check that in this case (X, || ||) is a Banach space, K is a convex cone and set-valued functions $F_i : K \to n(\mathbb{R})$, i = 1, 2, ... defined by formulas

$$F_i(x) = \{ix(i)\}$$

are additive, continuous and are \mathbb{Q}_+ -homogeneous in K. Moreover, sets

$$\bigcup_{i\in\mathbb{N}}F_i(x)=\{ix(i):i\in\mathbb{N}\}$$

are finite. So almost all assumptions of Lemma 4 hold except the "category" assumption. Let functions x_i , $i \in \mathbb{N}$ be defined as follows

$$x_i(t) = \begin{cases} 0, & \text{if } -\infty < t < i - \frac{1}{i}, \\ it + (1 - i^2), & \text{if } i - \frac{1}{i} \le t \le i, \\ -it + (1 + i^2), & \text{if } i < t \le i + \frac{1}{i}, \\ 0, & \text{if } i + \frac{1}{i} < t. \end{cases}$$

18 - Annales...

We see that every x_i belongs to K, $F_i(x_i) = \{i\}$ and $||x_i|| = 1$ for every $i \in \mathbb{N}$. Therefore the assertion of Lemma 4 does not hold.

REMARK 2. A convex cone K in Lemma 4 is of the second category in K if one of the three following cases holds true:

- a) X is a Banach space and $int K \neq \emptyset$,
- b) X is a Banach space and K is closed,
- c) X is a normed space and dim $K = \dim (K K) < +\infty$.

Cases a) and b) are obvious. In case c), let $n = \dim (K - K)$. Then there exist a basis $\{c_1 - d_1, ..., c_n - d_n\}$ of $\lim K = K - K$, such that the set $\{c_1, ..., c_n, d_1, ..., d_n\}$ is a subset of K. This subset is a spanning set of K - K, therefore it contains a basis $\{e_1, ..., e_n\} \subset K$ of K - K. The formula $||x|| = \sum_{i=1}^{n} |\xi_i|$, for $x = \xi_1 e_1 + ... + \xi_n e_n$, defines a norm in K - K. It is easy to check that the ball $B(x_0, r_0)$ centered at $x_0 = \frac{1}{n}e_1 + ... + \frac{1}{n}e_n$ with the radius $r_0 = \frac{1}{n}$ is a subset of K. So the interior of K is nonempty.

Let T and \tilde{S} be two metric spaces and let c(S) denote the set of all compact elements of n(S). The Hausdorff distance derived from the metric in S is a metric in c(S). A set-valued function $F: T \to c(S)$ is said to be continuous iff it is continuous as a single-valued function from T into the metric space c(S).

Let Y be a normed space. We denote by cc(Y) the family of all convex members of c(Y). Observe that each linear set-valued function with closed values has to have convex ones.

LEMMA 5. Let X and Y be two real normed spaces and let d be the Hausdorff distance derived from the norm in Y. Suppose that K is a convex cone in X with nonempty interior. Then there exists a positive constant M_0 such that for every linear continuous set-valued function $F: K \to c(Y)$ the inequality

$$d(F(x), F(y)) \le M_0 ||F|| ||x - y||$$

holds.

PROOF. Let "~" denote the Rådström's equivalence relation between pairs of members of cc(Y) defined by the formula

$$(A, B) \sim (C, D) \Leftrightarrow A + D = B + C.$$

For any pair (A, B), [A, B] denotes its equivalence class. All equivalence classes form a real linear space \mathcal{Z} with addition defined by the rule

$$[A, B] + [C, D] = [A + C, B + D],$$

and scalar multiplication

$$\lambda[A, B] = [\lambda A, \lambda B]$$

for $\lambda \geq 0$ and

$$\lambda[A, B] = [-\lambda B, -\lambda A]$$

for $\lambda < 0$.

The functional

||[A,B]|| := d(A,B),

is a norm in \mathcal{Z} (see [5]).

Now, let $F: K \to c(Y)$ be a linear continuous set-valued function. Then the function $f: K \to Z$ given by

$$f(x) = [F(x), \{0\}],$$

is linear. Moreover, let $x_0 \in K$ and (x_n) be a sequence of elements of K such that $x_0 = \lim_{n \to \infty} x_n$. Then $F(x_0) = \lim_{n \to \infty} F(x_n)$ and

$$\lim_{n \to \infty} \|f(x_n) - f(x_0)\| = \lim_{n \to \infty} d(F(x_n), F(x_0)) = 0,$$

so f is continuous. The function f can be extended to a linear function $\hat{f}: X \to \mathcal{Z}$. This function is also continuous. Therefore

$$\lim_{x \to 0, x \in K} f(x) = \lim_{x \to 0} \hat{f}(x) = \hat{f}(0) = 0$$

and

$$\lim_{x \to 0, x \in K} d(F(x), \{0\}) = \lim_{x \to 0, x \in K} \|[F(x), \{0\}]\| = \lim_{x \to 0} \|f(x)\| = 0.$$

By Lemmas 1 and 2, F and f are bounded. Fix a $z \in \text{int} K$. There exists an $\epsilon > 0$ such that $\frac{1}{\epsilon}z + S \subset K$, where S is the closed unit ball in X. If $v \in S$ and $u = \frac{1}{\epsilon}z + v$, then $u \in K$ and $||u|| \leq ||\frac{1}{\epsilon}z|| + 1$, therefore

$$\begin{aligned} \|\hat{f}(v)\| &= \|\hat{f}(u) - \hat{f}(\frac{1}{\epsilon}z)\| \le \|f(u)\| + \|f(\frac{1}{\epsilon}z)\| \\ &\le \|f\|(\|u\| + \|\frac{1}{\epsilon}z\|) \le \|f\|(1+2\|\frac{1}{\epsilon}z\|). \end{aligned}$$

Take $x, y \in K, x \neq y$. Since $\frac{x-y}{||x-y||} \in S$, we have

$$||f(x) - f(y)|| = ||x - y|| ||\hat{f}(\frac{x - y}{||x - y||})|| \le ||f||M_0||x - y||,$$

where $M_0 := 1 + 2 \|\frac{1}{\epsilon} z\|$. This implies that

$$d(F(x), F(y)) = \|[F(x), F(y)]\| = \|f(x) - f(y)\| \le M_0 \|F\| \|x - y\|.$$

This is a stronger version of Lemma 16 in [3](see also Lemma 7 in [4]). The application of the Rådström's equivalence relation allows to omit the assumption that X is a separable Banach space. This is an idea of dr Joanna Szczawińska.

LEMMA 6 (Lemma 1.9 in [6]). Let X be a metric space with a metric ρ and let F be a set-valued function from X into X. If for a positive number M the inequality

$$d(F(x), F(y)) \le M\rho(x, y)$$

holds for every $x, y \in X$, then

$$d(F(A), F(B)) \le Md(A, B)$$

for every nonempty subsets A, B of X, where d is the Hausdorff distance derived from the metric ρ .

Let (K, +) be a semigroup. A one-parameter family $\{F_t : t \ge 0\}$ of set-valued functions $F_t : K \to n(K)$ is said to be a *cosine* family iff

 $F_0 = I$,

where I denotes the identity map and

whenever $0 \leq s \leq t$.

EXAMPLES:

1. $K = (-\infty, +\infty), F_t(x) = x[\cos t, \cosh t].$ 2. $K = (-\infty, +\infty), F_t(x) = x[\cos t, 1].$ 3. $K = [0, +\infty), F_t(x) = x[1, \cosh t].$

Let X be a real normed linear space. A cosine family $\{F_t:t\geq 0\}$ is regular iff

$$\lim_{t \to 0+} d(F_t(x), \{x\}) = 0,$$

where d is the Hausdorff distance derived from the norm in X.

THEOREM 1. Let X be a real normed space, and let K be a convex cone in X of the second category in K. If $\{F_t : t \ge 0\}$ is a regular cosine family of continuous superadditive \mathbb{Q}_+ -homogeneous set-valued functions $F_t : K \rightarrow c(K)$, then there exist two constants $M \ge 0$ and $\omega \ge 0$ such that

$$||F_t|| \le M e^{\omega t} \qquad for \quad t \ge 0.$$

PROOF. The proof will be divided into three steps.

1° There exists an η , $0 < \eta \leq 1$ such that the function $t \mapsto ||F_t||$ is bounded for $0 \leq t \leq \eta$.

Suppose that it is false. Then there is a sequence (t_n) satisfying conditions: $t_n > 0$, $\lim_{n \to \infty} t_n = 0$ and $||F_{t_n}|| \ge n$ for n = 1, 2, From Lemma 4 it follows that for some $x \in K$ the sequence $(||F_{t_n}(x)||)$ is unbounded contrary to the regularity of the family $\{F_t : t \ge 0\}$. Thus there exist an η , $0 < \eta < 1$ and L > 0 such that

$$||F_t|| \le L \quad \text{for} \quad t \in [0, \eta].$$

Since $||F_0|| = ||I|| = 1$ we have $L \ge 1$.

2° Let $m \ge 1$ be an arbitrary constant. If $s \ge 0$ and $||F_s|| \le m$, then for every n = 1, 2, ... we have $||F_{ns}|| \le (3m)^n$.

The proof is by induction on n. The case n = 1 is trivial. If n = 2 we obtain

$$||F_{2s}|| \le ||F_{s-s}|| + 2||F_s||^2 \le 2m^2 + 1 \le (3m)^2.$$

Now, we suppose that $n \geq 3$ and

$$||F_{ks}|| \le (3m)^k \text{ for } 1 \le k \le n.$$

By (2) we have

$$\begin{aligned} \|F_{(n+1)s}(x)\| &= d(F_{(n+1)s}(x) + F_{(n-1)s}(x), F_{(n-1)s}(x)) \\ &= d(2F_{ns} \circ F_s(x), F_{(n-1)s}(x))) \\ &\leq (2\|F_{ns}\| \|F_s\| + \|F_{(n-1)s}\|)\|x\| \end{aligned}$$

for every $x \in K$. Consequently,

$$\begin{aligned} \|(F_{(n+1)s}\| &= \sup_{x \neq 0, x \in K} \frac{\|(F_{(n+1)s}(x)\|}{\|x\|} \le 2\|F_{ns}\| \|F_s\| + \|F_{(n-1)s}\| \\ &\le 2m(3m)^n + (3m)^{n-1} \le (3m)^{n+1} \le (3m)^{n+1}. \end{aligned}$$

Hence the desired inequality is proved for n = 1, 2, ...

 3^{o} For each t > 0 there exists one and only one positive integer n such that $(n-1)\eta \leq t \leq n\eta$. Now if we take s = t/n and use 2^{o} , we obtain

$$||F_t|| = ||F_{ns}|| \le (3L)^n = (3L)^{t/\eta} (3L)^{n-t/\eta} \le 3L(3L)^{t/\eta}$$

Let us define M := 3L and $\omega = (1/\eta) \ln(3L)$. Then we see that the assertion of the theorem holds.

A cosine family $\{F_t : t \ge 0\}$ is *continuous* iff the function $t \mapsto F_t(x)$ is continuous for every $x \in K$.

THEOREM 2. Let X be a real Banach space and let K be a convex cone in X such that $int K \neq \emptyset$. If $\{F_t : t \ge 0\}$ is a regular cosine family of continuous additive set-valued functions $F_t : K \rightarrow cc(K)$, then it is continuous.

PROOF. The proof will be divided into eight steps.

 1° We assume that there exist $x_0 \in K$ and $t_0 \in [0, +\infty)$ such that the function $t \mapsto F_t(x_0)$ is discontinuous at the point t_0 . Since the considered cosine family is regular, t_0 is positive.

 2^o Let us define

$$L_n := \sup \left\{ d(F_t(x_0), F_s(x_0)) : |t - t_0| \le \frac{t_0}{8n}, |s - t_0| \le \frac{t_0}{8n}, t \ge 0, s \ge 0 \right\}.$$

for every positive integer n.

3° There exists L > 0 such that $L_n \ge L$ for every n.

Obviously (L_n) is a non-negative and non-increasing sequence. Hence there exists a

$$\bar{L} = \lim_{n \to \infty} L_n \in \mathbb{R}.$$

We see that $L_n \geq \overline{L}$ for any *n*. Suppose that $\overline{L} = 0$. For every $\epsilon > 0$ there exists a positive integer *n* such that

$$d(F_t(x_0), F_s(x_0)) < \epsilon,$$

whenever $|t - t_0| \leq \frac{t_0}{8n}$, $|s - t_0| \leq \frac{t_0}{8n}$, t > 0 and s > 0. This implies that the function $t \mapsto F_t(x_0)$ is continuous at t_0 contrary to our assumption 1° . Therefore $\overline{L} > 0$ and we take $L = \overline{L}$.

 4^{o} For every positive integer n there exist two positive numbers s and t such that $|s - t_0| < \frac{t_0}{8n}$, $|t - t_0| < \frac{t_0}{8n}$ and $d(F_t(x_0), F_s(x_0)) \ge L_n - \frac{1}{n} > 0$. Hence $t \ne s$. Therefore there exist two sequences (t_n) and (s_n) such that $s_n > t_n > 0$, $|t_n - t_0| \le \frac{t_0}{8n}$, $|s_n - t_0| \le \frac{t_0}{8n}$ and $d(F_{t_n}(x_0), F_{s_n}(x_0)) \ge L_n - \frac{1}{n}$ for every n.

 $5^{\circ} 2t_n - s_n \in (0, +\infty)$ for every n.

It suffices to show that $t_n > s_n - t_n$ By 4^o clearly

$$s_n - t_n = (s_n - t_0) + (t_0 - t_n) \le \frac{t_0}{4n}$$

and

$$t_n = t_0 - (t_0 - t_n) \ge \frac{8n - 1}{8n} t_0 > \frac{t_0}{4n}$$

 6^{o}

$$d(F_{s_{4n}}(x_0), F_{2t_{4n}-s_{4n}}(x_0)) \le L_n$$

for every n = 1, 2, ...

From 4° we have $|s_{4n} - t_0| \leq \frac{t_0}{32n} \leq \frac{t_0}{8n}$ and $|(2t_{4n} - s_{4n}) - t_0| = |2(t_{4n} - t_0) + (t_0 - s_{4n})| \leq 2|t_{4n} - t_0| + |t_0 - s_{4n}| \leq \frac{3t_0}{32n} \leq \frac{t_0}{8n}$. By 2° we have the inequality. 7° $\lim_{n \to \infty} L_n = 0$ We have $2d(F_{t+s}(x_0), F_t(x_0))$

$$= d(2F_{t+s}(x_0) + 2F_{t-s}(x_0), 2F_t(x_0) + 2F_{t-s}(x_0))$$

$$\leq d(2F_t \circ F_s(x_0) + F_{t+s}(x_0) + F_{t-s}(x_0), 2F_t(x_0) + 2F_{t-s}(x_0))$$

$$\leq 2d(F_t \circ F_s(x_0), F_t(x_0)) + d(F_{t+s}(x_0), F_{t-s}(x_0)),$$

whence

(3)
$$2d(F_{t+s}(x_0), F_t(x_0)) \le 2d(F_t \circ F_s(x_0), F_t(x_0)) + d(F_{t+s}(x_0), F_{t-s}(x_0))$$

According to Lemmas 5 and 6 the inequality

 $d(F_t[F_s(x_0)], F_t(x_0)) \le M_0 ||F_t|| d(F_s(x_0), \{x_0\})$

holds for nonnegative t and s. Now we take $t = t_{4n}$, $s = s_{4n} - t_{4n}$ in (3). Then we obtain

$$2d(F_{s_{4n}}(x_0), F_{t_{4n}}(x_0)) = 2d(F_{t_{4n}+(s_{4n}-t_{4n})}(x_0), F_{t_{4n}}, (x_0)) \\ \leq 2d(F_{t_{4n}} \circ F_{s_{4n}-t_{4n}}(x_0), F_{t_{4n}}(x_0)) + d(F_{s_{4n}}(x_0), F_{2t_{4n}-s_{4n}}(x_0)) \\ \leq 2M_0 ||F_{t_{4n}}|| d(F_{s_{4n}-t_{4n}}(x_0), \{x_0\}) + d(F_{s_{4n}}(x_0), F_{2t_{4n}-s_{4n}}(x_0)).$$

Using 4° and 6° we have

$$2(L_{4n} - \frac{1}{4n}) \le 2M_0 ||F_{t_{4n}}|| d(F_{s_{4n} - t_{4n}}(x_0), \{x_0\}) + L_n$$

Now, Theorem 1 implies that

$$2L_{4n} - L_n \le 2M_0 M e^{\omega t_{4n}} d(F_{s_{4n} - t_{4n}}(x_0), \{x_0\}) + \frac{1}{2n}$$

for some $M \ge 0$ and $\omega \ge 0$ and for every n and we obtain the desired result. Since 7° contradicts 3° we have proved our theorem. REMARK 3. In the proof of Theorems 1 and 2 we have essentialy used ideas of M. Sova [8] for cosine operator functions.

References

- N. Bourbaki, Éléments de Mathématique, Livre V, Espaces Vectoriels Topologiques, Paris 1953-1955.
- [2] E. Hille, R. S. Phillips, Functional Analysis and Semigroups, Providence, Rhode Island 1957.
- [3] J. Olko, Rodziny wielowartościowych funkcji liniowych, doctoral dissertation.
- [4] J. Olko, Semigroups of set-valued functions, Publ. Math. 51 (1997), 81-96.
- [5] H. Rådström, An embedding theorem for space of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
- [6] A. Smajdor, Iteration of multivalued functions, Prace Naukowe Uniwersytetu Śląskiego w Katowicach nr 759, Uniwersytet Śląski, Katowice 1985.
- [7] W. Smajdor, Superadditive set-valued functions an Banach-Steinhaus theorem, Radovi Mat. 3 (1987), 203-214.
- [8] M. Sova, Cosine operator functions, Rozprawy Mat. 49 (1966), 1-47.

Pedagogical University Podchorążych 2 PL-30-084 Kraków Poland