ON REGULAR MULTIVALUED COSINE FAMILIES

Andrzej Smajdor

To the memory of Professor György Targonski

Abstract

Let K be a convex cone in a real normed space X. A one-parameter family $\left\{F_{t}: t \geq 0\right\}$ of set-valued functions $F_{t}: K \rightarrow n(K)$, where $n(K):=$ $\{D: D \subset K, D \neq \emptyset\}$, is called cosine iff $F_{t+s}+F_{t-s}=2 F_{t} \circ F_{s}$, whenever $0 \leq s \leq t$ and F_{0} is the identity map. A cosine family $\left\{F_{t}: t \geq 0\right\}$ is regular iff $\lim _{t \rightarrow 0+} F_{t}(x)=\{x\}$ for every x.

The growth and the continuity of regular cosine families are investigated.

Let X, Y, Z be nonempty sets and let $n(Y)$ denote the set of all nonempty subsets of Y. We recall that the superposition $G \circ F$ of set-valued functions $F: X \rightarrow n(Y)$ and $G: Y \rightarrow n(Z)$ is defined by the formula

$$
(G \circ F)(x):=\bigcup\{G(y): y \in F(x)\} \quad \text { for } \quad x \in X
$$

A subset K of a real vector space X is called a cone if $t K \subset K$ for all $t \in(0,+\infty)$. A cone is said to be convex if it is a convex set.

A set-valued function $F: K \rightarrow n(Y)$, where K is a convex cone in X, is said to be superadditive iff $F(x)+F(y) \subset F(x+y)$ for $x, y \in K$.

Let K be a convex cone in X and let \mathbb{Q}_{+}denote the set of all positive rational numbers. A set-valued function $F: K \rightarrow n(Y)$ is said to be \mathbb{Q}_{+}-homogeneous if $F(\lambda x)=\lambda F(x)$ for $\lambda \in \mathbb{Q}_{+}, x \in K$.

Now, we assume that X and Y are arbitrary real normed spaces. A set-valued function $F: K \rightarrow n(Y)$ is called lower semicontinuous at $x_{0} \in$

Received: January 5, 1999.
AMS (1991) subject classification: Primary 39B52, 47D09, 26E25.
K iff for every open set V in Y such that $F\left(x_{0}\right) \cap V \neq \emptyset$ there exists a neighbourhood U of zero in X such that $F(x) \cap V \neq \emptyset$ for $x \in\left(x_{0}+U\right) \cap$ K. A set-valued function F is called lower semicontinuous iff it is lower semicontinuous at every point $x \in K$.

A set-valued function $F: K \rightarrow n(Y)$, is said to be bounded if for every bounded subset E of K the set $F(E)=\bigcup\{F(x): x \in E\}$ is bounded in Y.

The following characterization of boundedness of \mathbb{Q}_{+}-homogeneous set-valued functions is easy to check.

Lemma 1. Let X and Y be two real normed spaces and let K be a convex cone in $X . A \mathbb{Q}_{+}$-homogeneous set-valued function $F: K \rightarrow n(Y)$ is bounded if and only if there exists a positive constant M such that

$$
\begin{equation*}
\|F(x)\|:=\sup \{\|y\|: y \in F(x)\} \leq M\|x\| \quad \text { for } \quad x \in K \tag{1}
\end{equation*}
$$

Lemma 2. Let X and Y be two real normed spaces and let K be a convex cone in X. Suppose that $F: K \rightarrow n(Y)$ is a \mathbb{Q}_{+}-homogeneous set-valued function. Then equality

$$
\lim _{x \rightarrow 0, x \in K}\|F(x)\|=0
$$

holds if and only if there exists a positive constant M such that (1) holds.
The proof is similar as in the classical case (see [2] Theorem 2.4.1).
Under assumptions of Lemma 2 the functional

$$
\|F\|=\sup _{x \in K, x \neq 0} \frac{\|F(x)\|}{\|x\|}
$$

is finite for every \mathbb{Q}_{+}-homogeneous set-valued function $F: K \rightarrow n(Y)$ such that

$$
\lim _{x \rightarrow 0, x \in K}\|F(x)\|=0
$$

This functional will be called a norm.
Corollary 1. Let X and Y be two real normed spaces and let K be a convex cone in X. Suppose that $F: K \rightarrow n(K)$ and $G: K \rightarrow n(Y)$ are bounded \mathbb{Q}_{+}-homogeneous set-valued functions. Then $G \circ F$ is bounded, \mathbb{Q}_{+}-homogeneous and inequality

$$
\|G \circ F\| \leq\|G\|\|F\|
$$

holds.

The set of all nonempty bounded subsets of a normed space Y will be denote by $B(Y)$.

Lemma 3 (Theorem 3 in [7]). Let X and Y be two real normed spaces and let K be a convex cone in X. Suppose that $\left(F_{i}: i \in I\right)$ is a family of superadditive lower semicontinuous in K and \mathbb{Q}_{+}-homogeneous set-valued functions $F_{i}: K \rightarrow n(Y)$. If $F(x)=\bigcup_{i \in I} F_{i}(x)$ and the set $B=\{x \in K$: $F(x) \in B(Y)\}$ is of the second category in K, then F is bounded and $B=K$.

Lemma 3 and the same considerations as in the proof of Theorem 4 in [7] allow to derive the following lemma.

Lemma 4. Let X and Y be two real normed spaces and let K be a convex cone in X. Suppose that $\left(F_{i}: i \in I\right)$ is a family of superadditive lower semicontinuous in K and \mathbb{Q}_{+}-homogeneous set-valued functions F_{i} : $K \rightarrow n(Y)$. If K is of the second category in K and $\bigcup_{i \in I} F_{i}(x) \in B(Y)$ for $x \in K$, then there exists a constant $M \in(0,+\infty)$ such that

$$
\sup _{i \in I}\left\|F_{i}(x)\right\| \leq M\|x\| \text { for } x \in K
$$

REMARK 1. The assumption that the cone K is a set of the second category in K is essential and it can not be replaced by the completness of X.

In order to prove it we use an example from Chapter III, §3.7 of N. Bourbaki's book [1]. Let $X=\left\{x \in C(\mathbb{R}, \mathbb{R}): \lim _{t \rightarrow-\infty} x(t)=\lim _{t \rightarrow+\infty} x(t)=\right.$ $0\},\|x\|=\sup \{|x(t)|: t \in \mathbb{R}\}$ for $x \in X$ and let $K=\{x \in X: \operatorname{supp} x \in$ $c(\mathbb{R})\}$, where $c(\mathbb{R})$ is the set of all nonempty compact subsets of the set \mathbb{R} of all real numbers. We can check that in this case $(X,\| \|)$ is a Banach space, K is a convex cone and set-valued functions $F_{i}: K \rightarrow n(\mathbb{R}), i=1,2, \ldots$ defined by formulas

$$
F_{i}(x)=\{i x(i)\}
$$

are additive, continuous and are \mathbb{Q}_{+}-homogeneous in K. Moreover, sets

$$
\bigcup_{i \in \mathbb{N}} F_{i}(x)=\{i x(i): i \in \mathbb{N}\}
$$

are finite. So almost all assumptions of Lemma 4 hold except the "category" assumption. Let functions $x_{i}, i \in \mathbb{N}$ be defined as follows

$$
x_{i}(t)= \begin{cases}0, & \text { if }-\infty<t<i-\frac{1}{i} \\ i t+\left(1-i^{2}\right), & \text { if } i-\frac{1}{i} \leq t \leq i \\ -i t+\left(1+i^{2}\right), & \text { if } i<t \leq i+\frac{1}{i} \\ 0, & \text { if } i+\frac{1}{i}<t\end{cases}
$$

We see that every x_{i} belongs to $K, F_{i}\left(x_{i}\right)=\{i\}$ and $\left\|x_{i}\right\|=1$ for every $i \in \mathbb{N}$. Therefore the assertion of Lemma 4 does not hold.

Remark 2. A convex cone K in Lemma 4 is of the second category in K if one of the three following cases holds true:
a) X is a Banach space and $\operatorname{int} K \neq \emptyset$,
b) X is a Banach space and K is closed,
c) X is a normed space and $\operatorname{dim} K=\operatorname{dim}(K-K)<+\infty$.

Cases a) and b) are obvious. In case c), let $n=\operatorname{dim}(K-K)$. Then there exist a basis $\left\{c_{1}-d_{1}, \ldots, c_{n}-d_{n}\right\}$ of $\operatorname{lin} K=K-K$, such that the set $\left\{c_{1}, \ldots c_{n}, d_{1}, \ldots d_{n}\right\}$ is a subset of K. This subset is a spanning set of $K-K$, therefore it contains a basis $\left\{\epsilon_{1}, \ldots, e_{n}\right\} \subset K$ of $K-K$. The formula $\|x\|=\sum_{i=1}^{n}\left|\xi_{i}\right|$, for $x=\xi_{1} e_{1}+\ldots+\xi_{n} e_{n}$, defines a norm in $K-K$. It is easy to check that the ball $B\left(x_{0}, r_{0}\right)$ centered at $x_{0}=\frac{1}{n} e_{1}+\ldots+\frac{1}{n} e_{n}$ with the radius $r_{0}=\frac{1}{n}$ is a subset of K. So the interior of K is nonempty.

Let T and S be two metric spaces and let $c(S)$ denote the set of all compact elements of $n(S)$. The Hausdorff distance derived from the metric in S is a metric in $c(S)$. A set-valued function $F: T \rightarrow c(S)$ is said to be continuous iff it is continuous as a single-valued function from T into the metric space $c(S)$.

Let Y be a normed space. We denote by $c c(Y)$ the family of all convex members of $c(Y)$. Observe that each linear set-valued function with closed values has to have convex ones.

Lemma 5. Let X and Y be two real normed spaces and let d be the Hausdorff distance derived from the norm in Y. Suppose that K is a convex cone in X with nonempty interior. Then there exists a positive constant M_{0} such that for every linear continuous set-valued function $F: K \rightarrow c(Y)$ the inequality

$$
d(F(x), F(y)) \leq M_{0}\|F\|\|x-y\|
$$

holds.
Proof. Let " \sim " denote the Rådstrőm's equivalence relation between pairs of members of $c c(Y)$ defined by the formula

$$
(A, B) \sim(C, D) \Leftrightarrow A+D=B+C .
$$

For any pair $(A, B),[A, B]$ denotes its equivalence class. All equivalence classes form a real linear space \mathcal{Z} with addition defined by the rule

$$
[A, B]+[C, D]=[A+C, B+D],
$$

and scalar multiplication

$$
\lambda[A, B]=[\lambda A, \lambda B]
$$

for $\lambda \geq 0$ and

$$
\lambda[A, B]=[-\lambda B,-\lambda A]
$$

for $\lambda<0$.
The functional

$$
\|[A, B]\|:=d(A, B),
$$

is a norm in \mathcal{Z} (see [5]).
Now, let $F: K \rightarrow c(Y)$ be a linear continuous set-valued function. Then the function $f: K \rightarrow \mathcal{Z}$ given by

$$
f(x)=[F(x),\{0\}],
$$

is linear. Moreover, let $x_{0} \in K$ and $\left(x_{n}\right)$ be a sequence of elements of K such that $x_{0}=\lim _{n \rightarrow \infty} x_{n}$. Then $F\left(x_{0}\right)=\lim _{n \rightarrow \infty} F\left(x_{n}\right)$ and

$$
\lim _{n \rightarrow \infty}\left\|f\left(x_{n}\right)-f\left(x_{0}\right)\right\|=\lim _{n \rightarrow \infty} d\left(F\left(x_{n}\right), F\left(x_{0}\right)\right)=0
$$

so f is continuous. The function f can be extended to a linear function $\hat{f}: X \rightarrow \mathcal{Z}$. This function is also continuous. Therefore

$$
\lim _{x \rightarrow 0, x \in K} f(x)=\lim _{x \rightarrow 0} \hat{f}(x)=\hat{f}(0)=0
$$

and

$$
\lim _{x \rightarrow 0, x \in K} d(F(x),\{0\})=\lim _{x \rightarrow 0, x \in K}\|[F(x),\{0\}]\|=\lim _{x \rightarrow 0}\|f(x)\|=0 .
$$

By Lemmas 1 and 2, F and f are bounded. Fix a $z \in \operatorname{int} K$. There exists an $\epsilon>0$ such that $\frac{1}{\epsilon} z+S \subset K$, where S is the closed unit ball in X. If $v \in S$ and $u=\frac{1}{\epsilon} z+v$, then $u \in K$ and $\|u\| \leq\left\|\frac{1}{\epsilon} z\right\|+1$, therefore

$$
\begin{aligned}
\|\hat{f}(v)\| & =\left\|\hat{f}(u)-\hat{f}\left(\frac{1}{\epsilon} z\right)\right\| \leq\|f(u)\|+\left\|f\left(\frac{1}{\epsilon} z\right)\right\| \\
& \leq\|f\|\left(\|u\|+\left\|\frac{1}{\epsilon} z\right\|\right) \leq\|f\|\left(1+2\left\|\frac{1}{\epsilon} z\right\|\right) .
\end{aligned}
$$

Take $x, y \in K, x \neq y$. Since $\frac{x-y}{\|x-y\|} \in S$, we have

$$
\|f(x)-f(y)\|=\|x-y\|\| \| \hat{f}\left(\frac{x-y}{\|x-y\|}\right)\|\leq\| f\left\|M_{0}\right\| x-y \|
$$

where $M_{0}:=1+2\left\|\frac{1}{\epsilon} z\right\|$. This implies that

$$
d(F(x), F(y))=\|[F(x), F(y)]\|=\|f(x)-f(y)\| \leq M_{0}\|F\|\|x-y\| .
$$

This is a stronger version of Lemma 16 in [3](see also Lemma 7 in [4]). The application of the Rådstrőm's equivalence relation allows to omit the assumption that X is a separable Banach space. This is an idea of dr Joanna Szczawińska.

Lemma 6 (Lemma 1.9 in [6]). Let X be a metric space with a metric ρ and let F be a set-valued function from X into X. If for a positive number M the inequality

$$
d(F(x), F(y)) \leq M \rho(x, y)
$$

holds for every $x, y \in X$, then

$$
d(F(A), F(B)) \leq M d(A, B)
$$

for every nonempty subsets A, B of X, where d is the Hausdorff distance derived from the metric ρ.

Let $(K,+)$ be a semigroup. A one-parameter family $\left\{F_{t}: t \geq 0\right\}$ of set-valued functions $F_{t}: K \rightarrow n(K)$ is said to be a cosine family iff

$$
F_{0}=I,
$$

where I denotes the identity map and

$$
\begin{equation*}
F_{t+s}+F_{t-s}=2 F_{t} \circ F_{s} \tag{2}
\end{equation*}
$$

whenever $0 \leq s \leq t$.

Examples:

1. $K=(-\infty,+\infty), F_{t}(x)=x[\cos t, \cosh t]$.
2. $K=(-\infty,+\infty), F_{t}(x)=x[\cos t, 1]$.
3. $K=[0,+\infty), F_{t}(x)=x[1, \cosh t]$.

Let X be a real normed linear space. A cosine family $\left\{F_{t}: t \geq 0\right\}$ is regular iff

$$
\lim _{t \rightarrow 0+} d\left(F_{t}(x),\{x\}\right)=0
$$

where d is the Hausdorff distance derived from the norm in X.
Theorem 1. Let X be a real normed space, and let K be a convex cone in X of the second category in K. If $\left\{F_{t}: t \geq 0\right\}$ is a regular cosine family of continuous superadditive \mathbb{Q}_{+}-homogeneous set-valued functions $F_{t}: K \rightarrow$ $c(K)$, then there exist two constants $M \geq 0$ and $\omega \geq 0$ such that

$$
\left\|F_{t}\right\| \leq M e^{\omega t} \quad \text { for } \quad t \geq 0
$$

Proof. The proof will be divided into three steps.
1° There exists an $\eta, 0<\eta \leq 1$ such that the function $t \mapsto\left\|F_{t}\right\|$ is bounded for $0 \leq t \leq \eta$.

Suppose that it is false. Then there is a sequence $\left(t_{n}\right)$ satisfying conditions: $t_{n}>0, \lim _{n \rightarrow \infty} t_{n}=0$ and $\left\|F_{t_{n}}\right\| \geq n$ for $n=1,2, \ldots$. From Lemma 4 it follows that for some $x \in K$ the sequence $\left(\left\|F_{t_{n}}(x)\right\|\right)$ is unbounded contrary to the regularity of the family $\left\{F_{t}: t \geq 0\right\}$. Thus there exist an η, $0<\eta \leq 1$ and $L>0$ such that

$$
\left\|F_{t}\right\| \leq L \quad \text { for } \quad t \in[0, \eta]
$$

Since $\left\|F_{0}\right\|=\|I\|=1$ we have $L \geq 1$.
2° Let $m \geq 1$ be an arbitrary constant. If $s \geq 0$ and $\left\|F_{s}\right\| \leq m$, then for every $n=1,2, \ldots$ we have $\left\|F_{n s}\right\| \leq(3 m)^{n}$.

The proof is by induction on n. The case $n=1$ is trivial. If $n=2$ we obtain

$$
\left\|F_{2 s}\right\| \leq\left\|F_{s-s}\right\|+2\left\|F_{s}\right\|^{2} \leq 2 m^{2}+1 \leq(3 m)^{2}
$$

Now, we suppose that $n \geq 3$ and

$$
\left\|F_{k s}\right\| \leq(3 m)^{k} \text { for } 1 \leq k \leq n
$$

By (2) we have

$$
\begin{aligned}
\left\|F_{(n+1) s}(x)\right\| & =d\left(F_{(n+1) s}(x)+F_{(n-1) s}(x), F_{(n-1) s}(x)\right) \\
& \left.=d\left(2 F_{n s} \circ F_{s}(x), F_{(n-1) s}(x)\right)\right) \\
& \leq\left(2\left\|F_{n s}\right\|\left\|F_{s}\right\|+\left\|F_{(n-1) s}\right\|\right)\|x\|
\end{aligned}
$$

for every $x \in K$. Consequently,

$$
\begin{aligned}
\|\left(F_{(n+1) s} \|\right. & =\sup _{x \neq 0, x \in K} \frac{\|\left(F_{(n+1) s}(x) \|\right.}{\|x\|} \leq 2\left\|F_{n s}\right\|\left\|F_{s}\right\|+\left\|F_{(n-1) s}\right\| \\
& \leq 2 m(3 m)^{n}+(3 m)^{n-1} \leq(3 m)^{n+1} \leq(3 m)^{n+1}
\end{aligned}
$$

Hence the desired inequality is proved for $n=1,2, \ldots$.
3° For each $t>0$ there exists one and only one positive integer n such that $(n-1) \eta \leq t \leq n \eta$. Now if we take $s=t / n$ and use 2°, we obtain

$$
\left\|F_{t}\right\|=\left\|F_{n s}\right\| \leq(3 L)^{n}=(3 L)^{t / \eta}(3 L)^{n-t / \eta} \leq 3 L(3 L)^{t / \eta}
$$

Let us define $M:=3 L$ and $\omega=(1 / \eta) \ln (3 L)$. Then we see that the assertion of the theorem holds.

A cosine family $\left\{F_{t}: t \geq 0\right\}$ is continuous iff the function $t \mapsto F_{t}(x)$ is continuous for every $x \in K$.

Theorem 2. Let X be a real Banach space and let K be a convex cone in X such that $\operatorname{int} K \neq \emptyset$. If $\left\{F_{t}: t \geq 0\right\}$ is a regular cosine family of continuous additive set-valued functions $F_{t}: K \rightarrow c c(K)$, then it is continuous.

Proof. The proof will be divided into eight steps.
1° We assume that there exist $x_{0} \in K$ and $t_{0} \in[0,+\infty)$ such that the function $t \mapsto F_{t}\left(x_{0}\right)$ is discontinuous at the point t_{0}. Since the considered cosine family is regular, t_{0} is positive.
2° Let us define

$$
L_{n}:=\sup \left\{d\left(F_{t}\left(x_{0}\right), F_{s}\left(x_{0}\right)\right):\left|t-t_{0}\right| \leq \frac{t_{0}}{8 n},\left|s-t_{0}\right| \leq \frac{t_{0}}{8 n}, t \geq 0, s \geq 0\right\}
$$

for every positive integer n.
3° There exists $L>0$ such that $L_{n} \geq L$ for every n.
Obviously (L_{n}) is a non-negative and non-increasing sequence. Hence there exists a

$$
\bar{L}=\lim _{n \rightarrow \infty} L_{n} \in \mathbb{R}
$$

We see that $L_{n} \geq \bar{L}$ for any n. Suppose that $\bar{L}=0$. For every $\epsilon>0$ there exists a positive integer n such that

$$
d\left(F_{t}\left(x_{0}\right), F_{s}\left(x_{0}\right)\right)<\epsilon,
$$

whenever $\left|t-t_{0}\right| \leq \frac{t_{0}}{8 n},\left|s-t_{0}\right| \leq \frac{t_{0}}{8 n}, t>0$ and $s>0$. This implies that the function $t \mapsto \bar{F}_{t}\left(x_{0}\right)$ is continuous at t_{0} contrary to our assumption 1°. Therefore $\bar{L}>0$ and we take $L=\bar{L}$.
4° For every positive integer n there exist two positive numbers s and t such that $\left|s-t_{0}\right|<\frac{t_{0}}{8 n},\left|t-t_{0}\right|<\frac{t_{0}}{8 n}$ and $d\left(F_{t}\left(x_{0}\right), F_{s}\left(x_{0}\right)\right) \geq L_{n}-\frac{1}{n}>0$. Hence $t \neq s$. Therefore there exist two sequences $\left(t_{n}\right)$ and $\left(s_{n}\right)$ such that $s_{n}>t_{n}>0,\left|t_{n}-t_{0}\right| \leq \frac{t_{0}}{8 n},\left|s_{n}-t_{0}\right| \leq \frac{t_{0}}{8 n}$ and $d\left(F_{t_{n}}\left(x_{0}\right), F_{s_{n}}\left(x_{0}\right)\right) \geq L_{n}-\frac{1}{n}$ for every n.
$5^{\circ} 2 t_{n}-s_{n} \in(0,+\infty)$ for every n.
It suffices to show that $t_{n}>s_{n}-t_{n}$ By 4^{0} clearly

$$
s_{n}-t_{n}=\left(s_{n}-t_{0}\right)+\left(t_{0}-t_{n}\right) \leq \frac{t_{0}}{4 n}
$$

and

$$
t_{n}=t_{0}-\left(t_{0}-t_{n}\right) \geq \frac{8 n-1}{8 n} t_{0}>\frac{t_{0}}{4 n} .
$$

6°

$$
d\left(F_{s_{4 n}}\left(x_{0}\right), F_{2 t_{4 n}-s_{4 n}}\left(x_{0}\right)\right) \leq L_{n}
$$

for every $n=1,2, \ldots$.
From 4^{0} we have $\left|s_{4 n}-t_{0}\right| \leq \frac{t_{0}}{32 n} \leq \frac{t_{0}}{8 n}$ and $\left|\left(2 t_{4 n}-s_{4 n}\right)-t_{0}\right|=$ $\left|2\left(t_{4 n}-t_{0}\right)+\left(t_{0}-s_{4 n}\right)\right| \leq 2\left|t_{4 n}-t_{0}\right|+\left|t_{0}-s_{4 n}\right| \leq \frac{3 t_{0}}{32 n} \leq \frac{t_{0}}{8 n}$. By 2° we have the inequality.
$7^{\circ} \lim _{n \rightarrow \infty} L_{n}=0$
We have

$$
\begin{aligned}
& 2 d\left(F_{t+s}\left(x_{0}\right), F_{t}\left(x_{0}\right)\right) \\
& \quad=d\left(2 F_{t+s}\left(x_{0}\right)+2 F_{t-s}\left(x_{0}\right), 2 F_{t}\left(x_{0}\right)+2 F_{t-s}\left(x_{0}\right)\right) \\
& \quad \leq d\left(2 F_{t} \circ F_{s}\left(x_{0}\right)+F_{t+s}\left(x_{0}\right)+F_{t-s}\left(x_{0}\right), 2 F_{t}\left(x_{0}\right)+2 F_{t-s}\left(x_{0}\right)\right) \\
& \quad \leq 2 d\left(F_{t} \circ F_{s}\left(x_{0}\right), F_{t}\left(x_{0}\right)\right)+d\left(F_{t+s}\left(x_{0}\right), F_{t-s}\left(x_{0}\right)\right)
\end{aligned}
$$

whence
(3) $2 d\left(F_{t+s}\left(x_{0}\right), F_{t}\left(x_{0}\right)\right) \leq 2 d\left(F_{t} \circ F_{s}\left(x_{0}\right), F_{t}\left(x_{0}\right)\right)+d\left(F_{t+s}\left(x_{0}\right), F_{t-s}\left(x_{0}\right)\right)$

According to Lemmas 5 and 6 the inequality

$$
d\left(F_{t}\left[F_{s}\left(x_{0}\right)\right], F_{t}\left(x_{0}\right)\right) \leq M_{0}\left\|F_{t}\right\| d\left(F_{s}\left(x_{0}\right),\left\{x_{0}\right\}\right)
$$

holds for nonnegative t and s. Now we take $t=t_{4 n}, s=s_{4 n}-t_{4 n}$ in (3). Then we obtain

$$
\left.\left.\begin{array}{rl}
2 d & \left(F_{s_{4 n}}\left(x_{0}\right), F_{t_{4 n}}\left(x_{0}\right)\right) \\
\quad & =2 d\left(F_{t_{4 n}}+\left(s_{4 n}-t_{4 n}\right)\right.
\end{array}\right)\left(x_{0}\right), F_{t_{4 n}},\left(x_{0}\right)\right) .
$$

Using 4° and 6° we have

$$
2\left(L_{4 n}-\frac{1}{4 n}\right) \leq 2 M_{0}\left\|F_{t_{4 n}}\right\| d\left(F_{s_{4 n}-t_{4 n}}\left(x_{0}\right),\left\{x_{0}\right\}\right)+L_{n}
$$

Now, Theorem 1 implies that

$$
2 L_{4 n}-L_{n} \leq 2 M_{0} M e^{\omega t_{4 n}} d\left(F_{s_{4 n}-t_{4 n}}\left(x_{0}\right),\left\{x_{0}\right\}\right)+\frac{1}{2 n}
$$

for some $M \geq 0$ and $\omega \geq 0$ and for every n and we obtain the desired result.
Since 7° contradicts 3° we have proved our theorem.

Remark 3. In the proof of Theorems 1 and 2 we have essentialy used ideas of M. Sova [8] for cosine operator functions.

References

[1] N. Bourbaki, Éléments de Mathématique, Livre V, Espaces Vectoriels Topologiques, Paris 1953-1955.
[2] E. Hille, R. S. Phillips, Functional Analysis and Semigroups, Providence, Rhode Island 1957.
[3] J. Olko, Rodziny wielowartościowych funkcji liniowych, doctoral dissertation.
[4] J. Olko, Semigroups of set-valued functions, Publ. Math. 51 (1997), 81-96.
[5] H. Rädström, An embedding theorem for space of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
[6] A. Smajdor, Iteration of multivalued functions, Prace Naukowe Uniwersytetu Sląskiego w Katowicach nr 759, Uniwersytet Sląski, Katowice 1985.
[7] W. Smajdor, Superadditive set-valued functions an Banach-Steinhaus theorem, Radovi Mat. 3 (1987), 203-214.
[8] M. Sova, Cosine operator functions, Rozprawy Mat. 49 (1966), 1-47.

Pedagogical University
Podchoráżych 2
PL-30-084 Kraków
Poland

