# ON CARLITZ THEOREM FOR BERNOULLI POLYNOMIALS 

Krystyna M. Bartz

Abstract. The well-known Carlitz theorem for the Bernoulli numbers $B_{n}$ (see [3]) is extended to the case of values of the Bernoulli polynomials $B_{n}(y)$ at rational points $\frac{a}{b}$, where $(b, n!)=1$.

In the present note we will prove the following generalization of the Carlitz theorem (see Lemma 3 below) to the values of Bernoulli polynomials $B_{n}(y)$ at rational points.

Theorem. Let $m>1, a$ and $b$ be positive integers, $(b,(2 m)!)=1$ and $(a, b)=1$. If $p$ is any prime number such that $(p-1) p^{h}$ divides $2 m$, then the numerator of $B_{2 m}\left(\frac{a}{b}\right)+\frac{1}{p}-1$ is divisible by $p^{h}$. That is,

$$
p B_{2 m}\left(\frac{a}{b}\right) \equiv p-1 \quad\left(\bmod p^{h+1}\right)
$$

Remark. Putting here $a=0, b=1$, we get the Carlitz theorem, since $B_{n}(0)=B_{n}$.

In the proof we will use the following easily proved property of the sums

$$
S_{k}(n)=1^{k}+2^{k}+\cdots+(n-1)^{k} .
$$

Received on June 18, 1998.
1991 Mathematics Subject Classification. 11B68.
Key words and phrases: Bernoulli polynomials.
Supported by the State Committee for Scientific Research (KBN) of Poland under Grant 2 P03A 02809.

Lemma 1. Let $m$ be a positive integer and let $n=\prod_{\substack{p \text { prime } \\ p>m+1}} p$. Then $n$ divides $S_{m}(n)$.

Proof. We first remark that

$$
(k+1)^{m+1}-k^{m+1}=1+\binom{m+1}{1} k+\cdots+\binom{m+1}{m} k^{m}
$$

and putting $k=0,1, \ldots, n-1$ and adding we get

$$
n^{m+1}=m+\binom{m+1}{1} S_{1}(n)+\cdots+\binom{m+1}{m} S_{m}(n)
$$

Now, by the induction on $m$, first for $m=1: 2 S_{1}(n)=n^{2}-n$ and since $(2, n)=1$ we have $n \mid S_{1}(n)$.

Assume the lemma is true for $m=1,2, \ldots, k-1$ and if we let $m=k$ and $n=\prod_{p \text { prime }} p$ (of course this $n$ is also good for $m=1,2, \ldots, k-1$ ) we get $p$ prime
$p>k+1$
$n\left|S_{1}(n), \ldots, n\right| S_{k-1}(n)$ and

$$
(k+1) S_{k}(n)=n^{k+1}-n-\binom{k+1}{1} S_{1}(n)-\cdots-\binom{k+1}{k-1} S_{k-1}(n)
$$

Since $(k+1, n)=1$, we conclude that $n \mid S_{k}(n)$ and the proof is complete.
The next lemma is a suitable version of the von Staudt-Clausen theorem for Bernoulli polynomials at rational points (compare [1] and [2]).

Lemma 2. Let $a, b$ and $n$ be positive integers and let $(b, n!)=1$ and $(a, b)=1$. Then $b^{n}\left(B_{n}\left(\left(\frac{a}{b}\right)-B_{n}\right)\right.$ is an integer divisible by $n$.

Proof. As is well known, the Bernoulli polynomials $B_{n}(y)$ may be defined by

$$
\sum_{m=0}^{\infty} \frac{B_{m}(y) x^{m}}{m!}=\frac{x e^{y x}}{e^{x}-1}
$$

and Bernoulli numbers similarly (for $y=0$ )

$$
\sum_{m=0}^{\infty} \frac{B_{m} x^{m}}{m!}=\frac{x}{e^{x}-1}
$$

Then we have

$$
\begin{equation*}
\sum_{m=1}^{\infty} \frac{\left(B_{m}(y)-B_{m}\right) x^{m}}{m!}=\frac{x\left(e^{y x}-1\right)}{e^{x}-1} \tag{*}
\end{equation*}
$$

Putting $y=a$, we get in the simplest case in which $b=1$,

$$
\begin{aligned}
& \sum_{n=1}^{\infty} \frac{B_{n}(a)-B_{n}}{n!} x^{n}=x\left(1+e^{x}+\cdots+e^{(a-1) x)}\right. \\
& =x\left(1+\sum_{n=0}^{\infty} \frac{x^{n}}{n!}+\sum_{n=0}^{\infty} \frac{(2 x)^{n}}{n!}+\cdots+\sum_{n=0}^{\infty} \frac{(a-1)^{n} x^{n}}{n!}\right)
\end{aligned}
$$

and we see that

$$
\frac{B_{n}(a)-B_{n}}{n}=1+2^{n-1}+\cdots+(a-1)^{n-1} \text { is an integer. }
$$

Let us consider next the case $b=\prod_{\substack{p \text { prime } \\ p>n}} p$ and $a=1$, putting $y=\frac{1}{b}$ in (*).
Then we get

$$
\sum_{n=1}^{\infty} \frac{\left(B_{n}\left(\frac{1}{b}\right)-B_{n}\right) x^{n}}{n!}=\frac{x}{1+e^{\frac{1}{4} x}+\cdots+e^{\frac{\square-1}{1} x}}
$$

and further putting $S_{m}(b)=1^{m}+\cdots+(b-1)^{m}$ we have

$$
\begin{aligned}
& \left(\frac{B_{1}\left(\frac{1}{b}\right)-B_{1}}{1!}+\frac{B_{2}\left(\frac{1}{b}\right)-B_{2}}{2!} x+\cdots+\frac{B_{n}\left(\frac{1}{b}\right)-B_{n}}{n!} x^{n-1}+\cdots\right) \\
& \left(b+\frac{S_{1}(b)}{b \cdot 1!} x+\frac{S_{2}(b)}{b^{2} 2!} x^{2}+\cdots\right)=1 .
\end{aligned}
$$

Now, comparing the coefficients of like powers of $x$ and doing induction on $n$, we get $b\left(B_{1}\left(\frac{1}{b}\right)-B_{1}\right)=1$ and next for $n>1$

$$
\begin{aligned}
& \frac{\left(B_{n}\left(\frac{1}{b}\right)-B_{n}\right) b}{n!}+\frac{\left(B_{n-1}\left(\frac{1}{b}\right)-B_{n-1}\right)}{(n-1)!} \frac{S_{1}(b)}{b \cdot 1!}+\frac{\left(B_{n-2}\left(\frac{1}{b}\right)-B_{n-2}\right)}{(n-2)!} \frac{S_{2}(b)}{b^{2} 2!} \\
& +\cdots+\frac{B_{2}\left(\frac{1}{b}\right)-B_{2}}{2!} \frac{S_{n-2}(b)}{b^{n-2}(n-2)!}+\frac{B_{1}\left(\frac{1}{b}\right)-B_{1}}{1!} \frac{S_{n-1}(b)}{b^{n-1}(n-1)!}=0
\end{aligned}
$$

and multiplying by $b^{n-1}(n-1)$ !, we obtain that

$$
\frac{B_{n}\left(\frac{1}{b}\right)-B_{n}}{n} b^{n}=-\sum_{k=1}^{n-1} \frac{\left(B_{k}\left(\frac{1}{b}\right)-B_{k}\right) b^{k} S_{n-k}(b)}{b \cdot k}\binom{n-1}{n-k}
$$

is an integer, since by Lemma 1: $b \mid S_{n-k}(b)$ and by induction hypothesis for $k<n$ we have that $k \left\lvert\,\left(B_{k}\left(\frac{1}{b}\right)-B_{k}\right) b^{k}\right.$. So, the result holds for $a=1$. Now,
by the addition formula, doing induction on $a$ with $b$ fixed we get for some integers $k$ and $l$

$$
\begin{aligned}
& b^{n} B_{n}\left(\frac{a+1}{b}\right)=\sum_{m=0}^{n}\binom{n}{m} B_{m}\left(\frac{a}{b}\right) b^{m}=1+\sum_{m=1}^{n}\binom{n}{m}\left(m k+b^{m} B_{m}\right) \\
& =1+k n \sum_{m=0}^{n-1}\binom{n-1}{m}+\sum_{m=1}^{n}\binom{n}{m} b^{m} B_{m}=2^{n-1} n k+\sum_{m=0}^{n}\binom{n}{m} b^{m} B_{m} \\
& =2^{n-1} k n+b^{n} B_{n}\left(\frac{1}{b}\right)=l n+b^{n} B_{n} .
\end{aligned}
$$

This completes the proof.
The next lemma is the well-known Carlitz theorem for Bernoulli numbers.
Lemma 3. (Carlitz theorem, see [3]) Let $m>1$ be any positive integer. If $p$ is any prime number and if $(p-1) p^{h}$ divides $2 m$, then $p^{h}$ divides the numerator of $B_{2 m}+\frac{1}{p}-1$. That is,

$$
p B_{2 m} \equiv p-1 \quad\left(\bmod p^{h+1}\right)
$$

We conclude with a proof of our theorem that depends only on Lemmas 2 and 3.

Proof. By Lemma 2 we have

$$
b^{2 m}\left(B_{2 m}\left(\frac{a}{b}\right) \frac{1}{p}-1\right)=b^{2 m}\left(B_{2 m}+\frac{1}{p}-1\right)+2 m k
$$

where $k$ is an integer. Now, by Carlitz theorem (Lemma 3), if ( $p-1$ ) $p^{h} \mid 2 m$, then $p^{h}$ divides the numerator of $B_{2 m}+\frac{1}{p}-1$ and since $p^{h} \mid 2 m$, we get that $p^{h}$ divides the numerator of $b^{2 m}\left(B_{2 m}\left(\frac{a}{b}\right)+\frac{1}{p}-1\right)$, and since $(p, b)=1$, we obtain the assertion of our theorem.

## References

[1] G. Almkvist, A. Meurman, Values of Bernoulli polynomials and Hurwitz's zeta function at rational points, C. R. Math. Rep. Acad. Canada, XIII. 3 (1991), 104-108.
[2] K. Bartz, J. Rutkowski, On the von Staudt-Clausen theorem, C. R. Math. Rep. Acad. Canada, XV. 1 (1993), 46-48.
[3] L. Carlitz, Some congruences for the Bernoulli numbers, Amer. J. Math., 75 (1953), 163-172.

Faculty of Mathematics and Computer Science
Adam Mickiewicz University
Matejki 48/49
60-769 Poznań
Poland
e-mail:
kbartz@math.amu.edu.pl

