Prace Naukowe Uniwersytetu Śląskiego nr 1751, Katowice

ON PYTHAGOREAN TRIANGLES

ANDRZEJ SCHINZEL

In memory of Ivan Korec

The following theorem answers a question asked by I. Korec at the Second Czech & Polish Conference on Number Theory.

THEOREM. If $m \in \mathbb{N}$, ord₂ m is even, $x_0, y_0, z_0 \in \mathbb{Z}$ and

(1)
$$x_0^2 + y_0^2 \equiv z_0^2 (\text{mod } m),$$

then there exist $x, y, z \in \mathbb{Z}$ such that

$$x^2 + y^2 = z^2$$
, $x^2 \equiv x_0^2$, $y^2 \equiv y_0^2$, $z^2 \equiv z_0^2 \pmod{m}$.

PROOF. Assume first that

$$(2) (x_0, y_0, z_0, m) = 1$$

and let

(3)
$$m=2^{\alpha}\prod_{i=1}^{k}p_{i}^{\alpha_{i}},$$

where $\alpha \geqslant 0$, $\alpha \equiv 0 \pmod{2}$, p_i are distinct odd primes and $\alpha_i > 0$ $(1 \leqslant i \leqslant k)$.

Received on August 7, 1998.

¹⁹⁹¹ Mathematics Subject Classification. 11D09.

Key words and phrases: Pythagorean triangles.

For each $i\leqslant k$ there exists $arepsilon_i\in\{1,-1\}$ such that

$$(4) z_0 - \varepsilon_i y_0 \not\equiv 0 \pmod{p_i}.$$

Otherwise we should have

$$z_0 \equiv y_0 \equiv 0 \pmod{p_i}$$
,

hence, by (1) and (3) $x_0 \equiv 0 \pmod{p_i}$, $(x_0, y_0, z_0, m) \neq 1$, contrary to (2). By the Chinese remainder theorem there exists $y_1 \in \mathbb{Z}$ such that

$$y_1 \equiv \varepsilon_i y_0 \pmod{p_i^{\alpha_i}} \quad (1 \leqslant i \leqslant k)$$

$$(6) y_1 \equiv y_0 \pmod{2^{\alpha}}$$

and we have

$$(7) y_1^2 \equiv y_0^2 \pmod{m}.$$

Consider first the case $\alpha = 0$. Then by (4) and (5)

$$(z_0-y_1,m)=1$$

and there exists $l \in \mathbb{Z}$ such that

$$(8) 2l(z_0-y_1) \equiv 1 \pmod{m}.$$

We put

$$x = 2lx_0(z_0 - y_1), \ y = l(x_0^2 - (z_0 - y_1)^2), \ z = l(x_0^2 + (z_0 - y_1)^2).$$

We have $x^2 + y^2 = z^2$. On the other hand, by (7), (8) and (1)

$$x \equiv x_0 \pmod{m},$$

 $y \equiv l(z_0^2 - y_1^2 - (z_0 - y_1)^2) \equiv 2ly_1(z_0 - y_1) \equiv y_1 \pmod{m},$
 $z \equiv l(z_0^2 - y_1^2 + (z_0 - y_1)^2) \equiv 2lz_0(z_0 - y_1) \equiv z_0 \pmod{m},$

hence

$$x^2 \equiv x_0^2, \ y^2 \equiv y_0^2, \ z^2 \equiv z_0^2 \pmod{m}.$$

Consider now the case $\alpha > 0$. If $z_0 \equiv x_0 \pmod{2}$ and $z_0 \equiv y_0 \pmod{2}$ we should have by (1) $(x_0, y_0, z_0, m) \neq 1$, contrary to (2).

Without loss of generality we may assume that $z_0 \not\equiv y_0 \pmod{2}$.

Then $x_0 \not\equiv 0 \pmod{2}$ and, by (6), $z_0 \not\equiv y_1 \pmod{2}$, by (4) and (5) $(z_0 - y_1, m) = 1$.

There exists $l \in \mathbb{Z}$ such that

$$l(z_0-y_1)\equiv 1(\operatorname{mod} m).$$

We put

$$x = lx_0(z_0 - y_1), \ y = l\frac{x_0^2 - (z_0 - y_1)^2}{2}, \ z = l\frac{x_0^2 + (z_0 - y_1)^2}{2}.$$

We have $x^2 + y^2 = z^2$. On the other hand, by (7), (9) and (1)

$$x \equiv x_0 \pmod{m},$$

$$y \equiv l \frac{z_0^2 - y_1^2 - (z_0 - y_1)^2}{2} \equiv l y_1 (z_0 - y_1) \equiv y_1 \pmod{\frac{m}{2}},$$

$$z \equiv l \frac{z_0^2 - y_1^2 + (z_0 - y_1)^2}{2} \equiv l z_0 (z_0 - y_1) \equiv z_0 \pmod{\frac{m}{2}}$$

hence

$$x^2 \equiv x_0^2, \ y^2 \equiv y_0^2, \ z^2 \equiv z_0^2 \pmod{m},$$

because $m/2 \equiv 0 \mod 2$.

Assume now, that $(x_0, y_0, z_0, m) = d > 1$. Then

$$\left(\frac{x_0}{d}\right)^2 + \left(\frac{y_0}{d}\right)^2 \equiv \left(\frac{z_0}{d}\right)^2 \bmod \frac{m}{(m,d^2)} \quad \text{and} \quad \left(\frac{x_0}{d},\frac{y_0}{d},\frac{z_0}{d},\frac{m}{(m,d^2)}\right) = 1.$$

Moreover ord₂ $m/(m,d^2) \equiv 0 \mod 2$. Hence, by the already proved case of the theorem there exist integers x_1,y_1,z_1 such that $x_1^2+y_1^2=z_1^2$ and $x_1^2\equiv \left(\frac{x_0}{d}\right)^2$, $y_1^2\equiv \left(\frac{y_0}{d}\right)^2$, $z_1^2\equiv \left(\frac{z_0}{d}\right)^2 \pmod{\frac{m}{(m,d^2)}}$. It suffices to take

$$x=dx_1, y=dy_1, z=dz_1.$$

As observed already by Korec the condition ord₂ m even cannot be omitted from the theorem. Indeed, the numbers $m=2^{2\alpha+1}$, $x_0=y_0=2^{\alpha}$, $z_0=0$ satisfy (1), but the conditions $x^2\equiv x_0^2$, $y^2\equiv y_0^2$, $z^2\equiv z_0^2 \pmod{m}$ imply $x^2+y^2\not\equiv z^2 \pmod{2m}$.

INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK

ŚNIADECKICH 8

00-950 Warszawa

POLAND

e-mail:

schinzel@plearn.edu.pl