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R E M A R K S T O S H O R T R S A P U B L I C E X P O N E N T S 

O T O K A R G R O Š E K * , K A R O L N E M O G A * , AND LADISLAV S A T K O * 

Abstract. In this paper we discuss pertinent questions closely related to well 
known RSA cryptosystem [5]. From practical point of view it is reasonable to 
use as a public exponent an integer s = 2fc + 1, i.e., so called short exponent, 
with the lowest possible binary weight. The most common are for k = 1 and 
k = 2 4, the two Fermat primes. In this paper we prove two theorems which 
give a percentage of acceptable public exponents s = 2k + 1, 1 ̂  fc ̂  1023 
to two randomly selected primes of 512 bits each. In fact, our results are valid 
for arbitrary set of exponents s. We also present results of our experiments. 
In our simulation, for all such acceptable public exponents, the corresponding 
secret exponent t had a weight within the range of 451-567. Thus, although it 
is recommended in [8] not to use short public exponents, by our observation 
to use the attack based on continuos fractions is infeasible. 

1. Introduction 

There exists a paper [6] which deals with short keys for RSA algorithm, 
i.e. such primes p, q having only a limited ones in their binary expansion. 
Here we deal with a different problem. 

To reduce the exponentiation time, there is besides Quisquater and Co-
uvreur technique [4] another way, to use short public or secret exponents in 
RSA algorithm. An example of this is when RSA is used in communication 
between a smart card and a larger computer. In this case it is an advantage 
for the smart card to have a short public exponent in order to reduce the 
processing required in the smart card. However, one must be wary of short 
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exponent attacks on RSA [3]. We say that an exponent s is acceptable for a 
prime p if there exists an RSA modulus m — pqio which s can be an RSA 
public/secret exponent. The problem, we are dealing with, is as follows: 

Let p, q be two randomly selected primes of the magnitude 512 bits each. 
1. For a given public exponent s = 2fc + 1, 1 ^ /; ^ 1023 what is the 

probability that s will be coprime to ^(pq)1? 
2. What is the probability that all short exponents s, s = 2k + 1, 

1 ^ k ^ 1023 are acceptable for the randomly selected p, q? 
3. To all such acceptable public exponents what is the corresponding 

weight of the secret exponent t? 

As a numerical experiment we generated 100 pairs of 512 bits primes and 
verify which of short exponents s, s = 2fc + 1, l ^ f c ^ 1023 is coprime to 
the randomly selected p, q. 

2. Solution of problems 

Here we prove our main result which allows to calculate probability men­
tioned in the first two problems above. 

It is clear that the answer to the first problem strongly depends on the 
prime factorization of s. In fact, any RSA exponent must be coprime to 
<t>(Pl) — (p - !)(? _ !)• Under the supposition for choosing RSA modulus we 
may assume p— 1 and q— 1 to be stochasticaly independent and gcd(s, p— 1) = 
gcd(s, q — 1) = 1. Moreover gcd(s,p) > 1 leads to a possible factorization of 
the modulus m = pq. Further, any prime p is of the form p = sl+c, 1 ^ c < s 
providing 

(1) gcd(s, p) = gcd(s, si + c) = gcd(s, c) = 1 

(2) gcd(s, p - 1) = gcd(s, si + c - 1) = gcd(s, c - 1) = 1. 

Conversely for any c such that gcd(s, c) = 1 there exist primes of the form 
p = si + c, and they are (due to well known Dirichlet's theorem) equally 
distributed. Thus, there is a pertinent question to find cardinality of the set 

(3) Ns = {c\ 1 ^ c ^ s, gcd(c, s) = gcd(c - 1, s) = 1}. 

To simplify next proofs we start with an example. 

E X A M P L E 1. Let s = 52 * 7 = 175. We would like to know cardinality of 
the set iVs in this case. 

1 0 is the Euler 0-fnnction. 
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We solve this problem in two steps: Firstly, we find the answer for 
s' = 5 * 7 = 35, and then we prove that |JVS| = 5 * \NS,\. 

Let 

(4) 

= {c\ 1 < c < 35, c = 0 (mod 5)} 

A\ = {c\ 1 < c ̂  35, c = 1 (mod 5)} 

A? = {c| 1 ^ c ̂  35, c = 0 (mod 7)} 

A\ = {c| 1 ^ c ^ 35, c= 1 (mod 7)} 

B5 = A°5 

B7 = A° \JA\. 

Then the following relations are valid: 
1. A°s n A£ = A? n A\ = 0; 
2. |A°| = = s'/5 = 7, |A°| = |A*| = s'/I = 5; 

3. By Chinese remainder theorem 

|A° n A\\ = |A° n A°| = |AJ n A?| = |Aj n A 7 | = l ; 

4. c € iV 3 5 if and only if c £ £ 5 U J5 7; 

5. |iV35| = 35- \BS UBr\; 
6. |B6 UB7\ = \B5\ + \B7\-\Bsr\B7\ ; 
7. Using item 1 and 3 we have 

\B5nB7\ = \(A°5UAl)n(A7UA\)\ 
= \A°nA0

7\ + \A°snA1
7\ + \AlnA°7\ + \AlnA1

7\ = 4. 

Hence 
|iV35| = 35 - IĄ U Br\ = 35 - |SB| - |S7| + |5B n B7\ 

= 3 5 - 2 * 7 - 2 * 5 + 4 = 15. 
Now assume, that the same consideration can be done for integers 

36 ^ c ^ 70,..., 141 < c ^ 175 providing the same cardinalities of si­
milar sets N. Thus \Ni75\ = 5*\N3& \ = 75. Moreover, after some arithmetics 
|iV35| = 3 5 * ^ l * ^ = (^(5)-l)(^(7)-l). • 

Now we focus on the general case. 

T H E O R E M 1. Let s — p\P2---Pr be the product of different primes. 

Then cardinality of the set Ns, given by (3) is 

r 

(5) Î V.I=n ĉw) -1) . 
i=l 

5* 
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P R O O F . We prove the Theorem analogously like in the Example 1. Let for 
1 ^ i ^ r 

A°pt = {c| 1 < c < s, c = 0 (mod Pi)}, 

(6) Al = {c| 1 ̂  c < s, c = 1 (mod 

= U Ap i. 

Then the following relations are valid: 
1. A° n A P i = 0; 
2. |API| = |APJ = S/P«; 
3. c G Ns if and only if c £ (JLi •» 
4. |Jv.| = * - l U = i f i p . l ; 
5. 

(7) I U B«\ = E - E I** n B f t | + • • • + ( - i ) ^ B P i 

j=l t=l t^j t=l 

6. Let 2Tj, j = 1,. . . , I be 0 or 1. Then for i — 1,. . . , r, by Chinese 
reminder theorem, any of the sets 

3 = 1 

has cardinality 

and thus (assuming item 1) 

Hence 

(9) i U ^ i = E 2 ^ - E 2 2 ^ : + - + ( - i ) r + 1 2 r 
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Finally, considering s = P1P2 .. .pr we have 

d o ) r
 i = 1

 r
 i = 1 « ' 

=n(p.-2)=n(^,)-i)-
i-l i=l 

• 
T H E O R E M 2. Let s — p?'p£ J ---Pr' be the prime factorization of s. 

Then cardinality of the set Nai given by (3) is 

r 
S en) 1^1=—-—-no^)-1)-

P R O O F . TO prove this Theorem we only repeat the same considerations 
as in Example 1: 

For s' = pip2 .--Pr the set has the cardinality given by Theorem 1. 
Let K = — 1. For k = 0,.... K we define sets 

p\—pr ' ' 

Nk* = {c\ 1 + ks' ^ c ^ s' + ks', gcd(c, s') = gcd(c - 1, s') = 1}. 

Then 
K 

NS=\J Nk„ 
k=0 

which immediately yields that 

= —\N,\ = flWpt) - 1). 
P\---Pr Pl---PrfJ{ 

This concludes the proof. • 

3. Probability of short exponent primes 

Here we use our Theorem 2 and calculate probabilities mentioned in In­
troduction. We assume that choice of two randomly selected primes p, q is 
independent. 
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Let P(x) be the set of all first x primes. Then for a given RSA exponent 
s we can write p = si + c, 1 ^ c < s 

P(x) = U Hc, 

c: gcd(s,c)=l 

where Hc consists of all primes p € P{x), p = c (mod s). Due to Dirichlet's 
theorem for a large x all sets Hc consists (approximately) of the same number 
of primes, x/<f>(s). If such a prime p € Hc is acceptable for the given public 
exponent s then it necessarily must satisfy also condition (2). Number of 
such classes Hc which satisfy (2) is given by Theorem 2. Thus for a given 
RSA exponent s = p^pf' • •- p"' probability that a randomly selected prime 
p G P{x) can be a part of RSA modulus is 

Probi 
\Ns\*x/<f>(s) \NS 

x As)' 

and for randomly selected RSA modulus pq we have 

(12) P r ó b k i p, q e Hc, c € Ns} » ^ = f[(l - -^) 
2 

Clearly, the larger is x the better is approximation in (12). 
Now we answer the second problem. Here, contrary to the first problem a 

running argument is exponent s. Using Theorem 2 we can find probability 
that all short exponents s, s = 2* + 1, l$Cfc^ 1023 are acceptable for the 
randomly selected but fixed primes p, q. 

Let 

(13) D = {pi : pi I 2k + 1 for some k, 1 ^ k ^ 1023}, 

and random variable X counts number of acceptable exponents of the form 
2fc + 1 with 1 < k ^ 1023. Let 

d= Y [ P i 

be a Active RSA exponent. Then we are searching for probability that for a 
randomly selected prime p, p - 1 is coprime to all s = 2k + 1. But this is 
the same as gcd(d,p - 1) = 1. Moreover, as in (1) p = dl + c, gcd(d, c) = 1. 
Thus, for searched probability we have 

( 1 4 , P ^ ^ ^ J I f l - ^ ) ' . 
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Using well known tables [1] and [2] it is not difficult (but time consuming!) 
to calculate this probability. If we assume only all prime divisors ̂  101, then 

D* = {3,5,11,13,17,19,29,37,41,43,53,59,61,67,83,97,101}. 

Hence 

(15) Prob(X = 1023) ^ J | (l - T T ^ T ) 2 = 0.04875. 

If we assume that there are another 100 prime divisors, all fairly greater 
than 101, then 

Prob(X = 1023) > 0.04875 x 0.99100 « 0.0178. 

Thus for practical purposes we can conclude that Prob(X = 1023) is within 
the range [0.02,0.04]. 

An answer to the third problem is probably not trivial. As a result of our 
experiment we can only say that all secret exponents are within the range 
of 451 - 567 ones. The continued fraction algorithm [8] can be used to find 
RSA secret exponents with up to approximately one-quarter as many bits 
as the modulus, i.e. up to 256 bits in our case. Thus we may conclude that 
such an attack is infeasible. 

4. Experimental results 

Below we list the coincidence of probability (12) in our sample of 100 
pairs of primes for 1 ̂  A: < 10. 

jfc Experiment Prob 

1 0.25 0.2500 
2 0.49 0.5625 
3 0.25 0.2500 
4 0.90 0.8789 
5 0.19 0.2025 
6 0.45 0.4727 
7 0.25 0.2382 
8 0.98 0.9922 
9 0.23 0.2244 
10 0.49 0.5347 

Table 1. Coincidence of probability (12) 
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In our experiment we had 3 out of 100 pairs of 512 bits primes such that 
all short exponents s, s = 2* + 1, 1 ̂ .k ^ 1023 were acceptable for them2. 
This is a good fit with our estimation (15). We list them in hexadecimal 
form together with Means and Standard Errors of number of l's of t, st = 1 
(mod <j>{pq)). 

VAR45 
»>p: D1206253 2B464083 36A2F8E5 78CF8F31 

F79CA3F9 97B6DB7E 27AC67B3 BB0D798F 
12DF5C99 A8B4A4B0 1D85961A A62034CF 
B4DFA706 73E85FFE 549F2A10 522D170F 

>»q: D3A86351 9F49618A 48B7E9C6 7F5ADE40 
39C4E6CF 930EC0B7 5FC5E6B1 474AE836 
35B52F12 269E8828 9C6DB381 4C04D89B 
4A5B8DEE D17CE2C0 CDEF102C 64E84F2B 

Mean = 511.4 
Standard Error = 16.27 

VAR50 
»>p: D6CDDC8F 9AD53A59 58CE3D8E 2D9D1937 

73E9F0FC 6F0D80F2 36118D9F 179D9351 
606BD49F 71A3363E 8B322207 C68D4548 
93DA6B4A CEFED921 1F93CCB9 482F1FD3 

»>q: EA11250F 821ABCBE 2E2441E8 120D411B 
D12C2244 85EE3378 A5CC4107 B2E9A1BD 
FDFBEF79 895F46F3 CD6048C8 01AC41C8 
98762A83 15B65D10 7890C51F 4B5562EB 

Mean = 511.6 
Standard Error = 15.78 

2 It is clear that any pair out of 6 found primes can be an RSA modulus. 
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VAR74 
» > p : D89B3F4B A91F84D3 585D188B BEA062C2 

17950566 87E10F32 861DF519 890112F4 
A8A14169 229FCF1D 68AAE81D A79A3788 
F194D080 7E99A851 9D3AAAE1 5A76C80B 

»>q: F2035614 00E4EEC8 AF37D8F1 9CF63E84 
6CABEED3 A5E39DBD 46339D18 D3366262 
1B6BE0A6 A5AE83AB 5AD1E262 FA895B8F 
60AC46B8 AF8A744D E3C08318 DBDFF4DF 

Mean = 510.6 

Standard Error = 15.95 

To generate and test these 100 pairs of primes we used two computers with 
Intel Pentium Pro processors, 12 hours each. More details about computers 
are as follows: 

1. Genuine Intel; Type: Single; Family: 6; Model: 1; Stepping: 7; 180MHz 
Level 1 Cache 16 KB which includes Level 1 Data Cache 8 KB which 
includes Level 1 Instruction Cache 8 KB Level 2 Unified Cache 256 
KB. 

2. Genuine Intel; Type: Single; Family: 6; Model: 1; Stepping: 9; 200MHz 
Level 1 Cache 16 KB which includes Level 1 Data Cache 8 KB which 
includes Level 1 Instruction Cache 8 KB Level 2 Unified Cache 256 
KB. 
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