Annales Mathematicae Silesianae 12 (1998), 123-130

Prace Naukowe Uniwersytetu Slaskiego nr 1751, Katowice

ON THE DIOPHANTINE EQUATION
T183 - Tn = h(n)(z1 + T2 + -+ Tn)

Jozser BUKOR, PETER FILAKOVSZKY, AND JANoOs T. TOTH*

Abstract. We are concerned with the equation of the title, where n is a fixed
positive integer, h(n) is a given integer-valued arithmetic function and the
unknowns take positive integral values 1 1 € 2 £ - £ Zn. We estimate
the number m for which z; = 1 (i = 1,2,... ,m) in every solution. Next
we give an upper bound for the number of coordinates of a solution which
can be greater than 1. Further we estimate the number of all solution of the
equation, and the paper concludes with a list of open problems.

Introduction
In the present paper we are concerned with the equation
(1) 2123+ = h(n)(z1 + 22+ -+ 2,),

where n is a fixed positive integer, h(n) is a given integer-valued arithmetic
function and the unknowns 1 € z; < 3 £ --- £ z, take positive integral
values. Equation (1) was first considered by Schinzel [3] in the case h(n) = 1.
He observed that for every n there exists a trivial solution (1,...,1,2,n).
There was studied a similar diophantine equation

k k
(2) . Hm;—z:v;:n.
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Schinzel conjectured (quoted in [1], p. 238) that there is a k£ > 1 such that,
for every sufficiently large n, (2) is solvable in integers z; > 1. From the
Viola's results (see [4]) it follows that for any k¥ > 1, the asymptotic density
of the natural numbers n for which (2) is unsolvable is zero.

It is easy to check that for h(n) = n the all solutions of (1) are

in the case n =2 : (3,6), (4,4) and

in the case n = 3 : (1,4,15), (1,5,9), (1,6,7), (2,2,12), (2,3,5), (3,3,3).

For n > 4 we have trivial solutions

(1,....,L,n+1,20 —n), (1,...,4,n+2,n%), (1,...,1,2n—1,3n),

(1,...,14,2,n,2n-1), (1,...,1,3,m,n), (1,...,1,2n,3n—2).

First, we estimate the number m, for which z; =1 (: = 1,2,...,m) in every
solution of (1). Next we give an upper bound for the number of coordinates
of a solution which can be greater than 1. Further we estimate the number of
solutions of (1) and the paper concludes with some open problems and with

a table of the numbers of solutions of the equation (1) for several functions
h(n).

1. Estimates

PROPOSITION 1. Let the n-tuple (xy,%2,...,2,) be a solution of (1)
and suppose 1 £ T3 £ -+ £ Tp. If an integer k, (1 < k < n), satisfies
the inequality
(3) 2(2* = (k+ 1)h(n)) > h(n)(n - k- 1),

thenzi =29 =--+=2Zp_x =1.

Proor. To the contrary, suppose that z, 2> z,—1 2 -+ 2 Zp_m 2 2,
where m > kand 2y =23 =---= Zp_;m_1 = 1. Then we have

2"z, 21 Zn=h(n)(z1 4 -+ 20) < h(n)(n— (M + 1)+ (m+1)z,)
which implies
(4) 20 (2™ = (m + 1)h(n)) < h(n)(n —m - 1).

From (3) it immediately follows that 2* > h(n). Using this inequality it is
easy to show by mathematical induction that for any m > k,

2(2™ — (m + 1)h(n)) > h(n)(n — m — 1),

which contradicts (4). O
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Note that the inequality (3) is valid for example for k > log, 2h(n)n.
The solution z; = +++ = Tp_g—1 = 1, Tnk = *++ = T, = 2, Where n =
2k+1 _ (k + 1), of the equation 125 % = 21 + 22 + -+ @n (the case
h(n) = 1) shows that the inequality (3) is essentially the best possible.

PROPOSITION 2. Let (z1,%3,...,%,) be a solution of (1). Then either

Tn-1 < h(n) or z, < h(n)(h(n)+n-1).

PRrROOF. Assume that z,,_; > h(n) and write (1) in the form

h(n)(wl +234 -+ Tn-1)
(5) In = TyTg - Tpoy — h(n)

First we shall establish the inequality

h(n)(n — 2+ Tn-1)
(6) AN ey o B

In view of (5) the inequality (6) is equivalent to
(7) 1+ +Tno1)(@n-1 — h()) < (0 — 2+ Tn_1)(Z122 - - - Tn1 — h(n)).
However, we have the obvious inequalities

(8) i+ +Tp1 K (P —2)T1- Tp2 + 21 Tnoy,

(9) —h(n)(1 + -+ zn-1) < —h(n)(n — 2+ Tn_1).

Putting (8) and (9) together we get (7), hence also (6). It is not hard to

check that for any z! _, satisfying z/,_; > h(n) we have

A(m)(n =2+ 2nt) _ h(m)(n = 2+ 250)
Tn-1 — h(n) z!_, — h(n)

if and only if ],y < Zn-1.

Hence when we replace in the upper bound (6) the number z,_; by the
smallest admissible value h(n) + 1 we still obtain an upper bound for z,
which then reads z,, < k(n)(n — 2+ zo_1) = h(n)(h(n) +n—1). O

PROPOSITION 3. Let (z1,...,%,) be a solution of (1). Then for any
positive integer k either

Tn-k S VE- h(n) or zftl — (k+ 1)h(n)zn_x < B(n) - n.
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PROOF. Assume that z¥_, > k- h(n) and write (1) in the form

h(n) (214 4+ Tn_k1 +Tp_gp1+ -+ Ty)
Tl Tpek-1Tn—kt1 " " En — h(n) '

( 1 0) Tp_k =
We have the obvious inequalities

i1+ + k-1 +Tpkt1++ T
(11)

S(n—k-1)z1 - 2pp1+21 - Tpk1(Tnekyr + -+ 2n)

(12) #3144 Tn g1+ Tappr1+F T 2 n—k—14Tp_gp1 4+ Ty.

Multiplying (11) by 2,—k41 -2, and (12) by —h(n) and adding the two
inequalities we get

(zn-—-k+1 Ty — h(n))(xl +F a1 T T+ o+ xn)

S(T1  Tuk-1Tn—kt1- Tn —h(R)) (R =k~ 1+ Zn_gy1 -+ 2n).

In view of (10) this inequality is equivalent to

(Tn—k4r@n —B(n))en_k S h(n)(n — k= 1+ Tn_k41+ -+ n)
which implies
ok n — h(R)Tn_r < h(n)(n + kz,).
Taking into account that z¥_, > kh(n) we can write z,,_ instead of z,, in

the previous inequality and get

" — (k+1)h(n)zak < h(n)-n. O

2. Main theorem

In the proof of the main theorem we shall use the following auxiliary
result. Let V(n) = v(ay, a3, ..., ax) denote the number of factorizations of
n=p.--pgt, n==tity---t;, wherel > land 2t <2 < -- <t

LEMMA. V(n) < n

Proor. We claim v(ay,ay,...,0) € 2%:3% .- (k + 1), which implies
that V(n) < n. We prove this by mathematical induction on (o + a2 +-- -+
ak). .
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For simplicity, let A := 2%:3%...(k + 1)*. Clearly, if p is a prime, then
V(p) = v(1) = 1 < 2. In arbitrary factorization of n = pyt .- -ppt thereis a
factor divisible by px. For this reason "

n
V(n) <D V(5)-

dn

Pk|d
Hence

’U(Ofl, .. -)ak) < Zv(ﬁlv .o 'nak)a
where the sum runs over all 81, 8a, ..., Bi satisfying
Bi <oy Br-1 € 0k-1,Pk < o — L.

Hence with 0 < 43 < a1, 0 < ég S 0, ~++, 0 < dp1 € @1, 0K 2%

ay — 1, we have

’U(Oll,ag, . ..,ozk) < Z’U(’i].,iz,. ..,ik)

[
<A H(1+j‘1+j'2+-~)} )T+ (R+1)7 4]

J
< A- . .
<4 jl;Izj—l k+1 k& < 4

k']1k+1

where in the second line we have used the induction hypothesis. [

REMARK. Professor A. Schinzel has informed us that this lemma is not,
in fact, new. The same statement was proved by Mattics and Dodd (see [2])
in a slightly different way.

THEOREM. For f(n), the number of solution of the equation (1), we
have

(13) f(n) < %h(n)n(h(n)n +1).

PROOF. Observe that from (1) it follows z,x2 - -z, < h(n)nz,, that is,
123+ Zn—1 < h(n)n. Hence, using the Lemma, we get

h(n)n h(n)n

fm < Y VE < Y i= shmn(hmn+1). O
o =1 i=1
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REMARK. Professor A. Schinzel observed that the estimate (13) can be

improved for large values of n by using the results in the papers: Oppenheim,

~ J. London Math. Soc. 2 (1927), p. 130, Szekeres and Turan, Acta Litt. Scient.
Szeged 6 (1933), pp. 143-154.

3. Open problems and numerical data

We propose several open problems related to the equation (1). Most of
them are due to Professor P. Erdés.

Denote by f(n) the number of solution of
1%z T = (21 + 22 + -+ 20),

1. Prove that f(n) » +oo as n — +oo.

2. A number 7 is called a champion if f(n) > f(m) for every m < n, it
is called anti-champion if for every m > n  f(m) > f(n). It is true that the
anti-champions are always primes? Can we characterize the champions?

?. Is it true that the density of the integers n for which f(n + 1) > f(n)
is 57

4. Are there infinitely many solutions of f(n) = f(m), n # m?

5. Is it true that the density of the integers f(n) is 07 In other words, is

the density of the integers ¢ for which there is an n with f(n) =t equal to
07

In the following table the number of solutions of (1) is given by computer
program for n < 40 and several functions h(n).

| Number of solution of 1 *+ Ty = h(n)(z1 +--4 zn) I

n |h(n) =1 |h(n) =2 |h(n) =3 [h(n) =n [h(n) = 2n|h(n) = n?
2 1 2 2 2 3 3
3 1 3 6 6 8 13
4 1 5 4 8 15 30
5 3 3 6 8 15 39
6 1 5 5 17 30 96
7 2 4 8 14 16 43
8 2 5 6 19 42 142
9 2 5 8 27 36 126
10 2 6 6 25 44 169
11 3 5 10 15 27 66
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12 2 8 6 33 73 424
13 4 4 16 24 92
14 2 5 6 30 63 233
15 2 6 10 43 58 355
16 2 8 6 45 77 430
17 4 4 11 18 31 93
18 2 10 6 55 119 644
19 4 4 12 24 30 90
20 2 8 6 43 109 798
21 4 7 10 55 68
22 2 7 7 43 62
23 4 4 14 22 40
24 1 10 9 92 166
25 5 8 9 43 64
26 4 7 7 35 83
27 3 7 14 68 104
28 3 9 8 69 140
29 5 4 12 25 43
30 2 11 6 107 174
31 4 6 14 34 36
32 3 10 8 80 173
33 5 6 9 56 96
34 2 7 9 48 90
35 3 6 15 61 124
36 2 13 8 130 252
37 6 6 12 32 30
38 3 6 11 45 101
39 3 10 16 65 109
40 4 12 6 119 220
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