# ON THE DIOPHANTINE EQUATION 

$$
x_{1} x_{2} \cdots x_{n}=h(n)\left(x_{1}+x_{2}+\cdots+x_{n}\right)
$$

Jozsef Bukor, Péter Filakovszky, and János T. Tóth*


#### Abstract

We are concerned with the equation of the title, where $n$ is a fixed positive integer, $h(n)$ is a given integer-valued arithmetic function and the unknowns take positive integral values $1 \leqslant x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{n}$. We estimate the number $m$ for which $x_{i}=1(i=1,2, \ldots, m)$ in every solution. Next we give an upper bound for the number of coordinates of a solution which can be greater than 1. Further we estimate the number of all solution of the equation, and the paper concludes with a list of open problems.


## Introduction

In the present paper we are concerned with the equation

$$
\begin{equation*}
x_{1} x_{2} \cdots x_{n}=h(n)\left(x_{1}+x_{2}+\cdots+x_{n}\right), \tag{1}
\end{equation*}
$$

where $n$ is a fixed positive integer, $h(n)$ is a given integer-valued arithmetic function and the unknowns $1 \leqslant x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{n}$ take positive integral values. Equation (1) was first considered by Schinzel [3] in the case $h(n)=1$. He observed that for every $n$ there exists a trivial solution ( $1, \ldots, 1,2, n$ ). There was studied a similar diophantine equation

$$
\begin{equation*}
\prod_{i=0}^{k} x_{i}-\sum_{i=0}^{k} x_{i}=n \tag{2}
\end{equation*}
$$

[^0]Schinzel conjectured (quoted in [1], p. 238) that there is a $k>1$ such that, for every sufficiently large $n$, (2) is solvable in integers $x_{i}>1$. From the Viola's results (see [4]) it follows that for any $k>1$, the asymptotic density of the natural numbers $n$ for which (2) is unsolvable is zero.
It is easy to check that for $h(n)=n$ the all solutions of (1) are in the case $n=2:(3,6),(4,4)$ and
in the case $n=3:(1,4,15),(1,5,9),(1,6,7),(2,2,12),(2,3,5),(3,3,3)$.
For $n \geqslant 4$ we have trivial solutions

$$
\begin{aligned}
\left(1, \ldots, 1, n+1,2 n^{2}-n\right), & \left(1, \ldots, 1, n+2, n^{2}\right), \\
(1, \ldots, 1,2, n, 2 n-1), & (1, \ldots, 1,3, n, n), \quad(1, \ldots, 1,2 n, 3 n-1) .
\end{aligned}
$$

First, we estimate the number $m$, for which $x_{i}=1(i=1,2, \ldots, m)$ in every solution of (1). Next we give an upper bound for the number of coordinates of a solution which can be greater than 1 . Further we estimate the number of solutions of (1) and the paper concludes with some open problems and with a table of the numbers of solutions of the equation (1) for several functions $h(n)$.

## 1. Estimates

Proposition 1. Let the $n$-tuple ( $x_{1}, x_{2}, \ldots, x_{n}$ ) be a solution of (1) and suppose $x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{n}$. If an integer $k,(1 \leqslant k<n)$, satisfies the inequality

$$
\begin{equation*}
2\left(2^{k}-(k+1) h(n)\right)>h(n)(n-k-1) \tag{3}
\end{equation*}
$$

then $x_{1}=x_{2}=\cdots=x_{n-k}=1$.
Proof. To the contrary, suppose that $x_{n} \geqslant x_{n-1} \geqslant \cdots \geqslant x_{n-m} \geqslant 2$, where $m \geqslant k$ and $x_{1}=x_{2}=\cdots=x_{n-m-1}=1$. Then we have

$$
2^{m} x_{n} \leqslant x_{1} \cdots x_{n}=h(n)\left(x_{1}+\cdots+x_{n}\right) \leqslant h(n)\left(n-(m+1)+(m+1) x_{n}\right)
$$

which implies

$$
\begin{equation*}
x_{n}\left(2^{m}-(m+1) h(n)\right) \leqslant h(n)(n-m-1) . \tag{4}
\end{equation*}
$$

From (3) it immediately follows that $2^{k}>h(n)$. Using this inequality it is easy to show by mathematical induction that for any $m \geqslant k$,

$$
2\left(2^{m}-(m+1) h(n)\right)>h(n)(n-m-1)
$$

which contradicts (4).

Note that the inequality (3) is valid for example for $k>\log _{2} 2 h(n) n$. The solution $x_{1}=\cdots=x_{n-k-1}=1, x_{n-k}=\cdots=x_{n}=2$, where $n=$ $2^{k+1}-(k+1)$, of the equation $x_{1} x_{2} \cdots x_{n}=x_{1}+x_{2}+\cdots+x_{n}$ (the case $h(n)=1$ ) shows that the inequality (3) is essentially the best possible.

Proposition 2. Let $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a solution of (1). Then either

$$
x_{n-1} \leqslant h(n) \quad \text { or } \quad x_{n} \leqslant h(n)(h(n)+n-1) .
$$

Proof. Assume that $x_{n-1}>h(n)$ and write (1) in the form

$$
\begin{equation*}
x_{n}=\frac{h(n)\left(x_{1}+x_{2}+\cdots+x_{n-1}\right)}{x_{1} x_{2} \cdots x_{n-1}-h(n)} . \tag{5}
\end{equation*}
$$

First we shall establish the inequality

$$
\begin{equation*}
x_{n} \leqslant \frac{h(n)\left(n-2+x_{n-1}\right)}{x_{n-1}-h(n)} . \tag{6}
\end{equation*}
$$

In view of (5) the inequality (6) is equivalent to (7) $\left(x_{1}+\cdots+x_{n-1}\right)\left(x_{n-1}-h(n)\right) \leqslant\left(n-2+x_{n-1}\right)\left(x_{1} x_{2} \cdots x_{n-1}-h(n)\right)$.

However, we have the obvious inequalities

$$
\begin{gather*}
x_{1}+\cdots+x_{n-1} \leqslant(n-2) x_{1} \cdots x_{n-2}+x_{1} \cdots x_{n-1}  \tag{8}\\
-h(n)\left(x_{1}+\cdots+x_{n-1}\right) \leqslant-h(n)\left(n-2+x_{n-1}\right)
\end{gather*}
$$

Putting (8) and (9) together we get (7), hence also (6). It is not hard to check that for any $x_{n-1}^{\prime}$ satisfying $x_{n-1}^{\prime}>h(n)$ we have

$$
\frac{h(n)\left(n-2+x_{n-1}\right)}{x_{n-1}-h(n)}<\frac{h(n)\left(n-2+x_{n-1}^{\prime}\right)}{x_{n-1}^{\prime}-h(n)} \quad \text { if and only if } \quad x_{n-1}^{\prime}<x_{n-1} .
$$

Hence when we replace in the upper bound (6) the number $x_{n-1}$ by the smallest admissible value $h(n)+1$ we still obtain an upper bound for $x_{n}$ which then reads $x_{n} \leqslant h(n)\left(n-2+x_{n-1}\right)=h(n)(h(n)+n-1)$.

Proposition 3. Let $\left(x_{1}, \ldots, x_{n}\right)$ be a solution of (1). Then for any positive integer $k$ either

$$
x_{n-k} \leqslant \sqrt[t]{k \cdot h(n)} \text { or } \quad x_{n-k}^{k+1}-(k+1) h(n) x_{n-k} \leqslant h(n) \cdot n .
$$

Proof. Assume that $x_{n-k}^{k}>k \cdot h(n)$ and write (1) in the form

$$
\begin{equation*}
x_{n-k}=\frac{h(n) \cdot\left(x_{1}+\cdots+x_{n-k-1}+x_{n-k+1}+\cdots+x_{n}\right)}{x_{1} \cdots x_{n-k-1} x_{n-k+1} \cdots x_{n}-h(n)} . \tag{10}
\end{equation*}
$$

We have the obvious inequalities
$x_{1}+\cdots+x_{n-k-1}+x_{n-k+1}+\cdots+x_{n}$

$$
\begin{equation*}
\leqslant(n-k-1) x_{1} \cdots x_{n-k-1}+x_{1} \cdots x_{n-k-1}\left(x_{n-k+1}+\cdots+x_{n}\right) \tag{11}
\end{equation*}
$$

(12) $x_{1}+\cdots+x_{n-k-1}+x_{n-k+1}+\cdots+x_{n} \geqslant n-k-1+x_{n-k+1}+\cdots+x_{n}$.

Multiplying (11) by $x_{n-k+1} \cdots x_{n}$ and (12) by $-h(n)$ and adding the two inequalities we get

$$
\begin{gathered}
\quad\left(x_{n-k+1} \cdots x_{n}-h(n)\right)\left(x_{1}+\cdots+x_{n-k-1}+x_{n-k+1}+\cdots+x_{n}\right) \\
\leqslant\left(x_{1} \cdots x_{n-k-1} x_{n-k+1} \cdots x_{n}-h(n)\right)\left(n-k-1+x_{n-k+1} \cdots+x_{n}\right) .
\end{gathered}
$$

In view of (10) this inequality is equivalent to

$$
\left(x_{n-k+1} \cdots x_{n}-h(n)\right) x_{n-k} \leqslant h(n)\left(n-k-1+x_{n-k+1}+\cdots+x_{n}\right)
$$

which implies

$$
x_{n-k}^{k} x_{n}-h(n) x_{n-k} \leqslant h(n)\left(n+k x_{n}\right) .
$$

Taking into account that $x_{n-k}^{k}>k h(n)$ we can write $x_{n-k}$ instead of $x_{n}$ in the previous inequality and get

$$
x_{n-k}^{k+1}-(k+1) h(n) x_{n-k} \leqslant h(n) \cdot n .
$$

## 2. Main theorem

In the proof of the main theorem we shall use the following auxiliary result. Let $V(n)=v\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right)$ denote the number of factorizations of $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}, n=t_{1} t_{2} \cdots t_{l}$, where $l \geqslant 1$ and $2 \leqslant t_{1} \leqslant t_{2} \leqslant \cdots \leqslant t_{l}$.

Lemma. $V(n) \leqslant n$.
Proof. We claim $v\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \leqslant 2^{\alpha_{1} 3^{\alpha_{2}} \cdots(k+1)^{\alpha_{k}} \text {, which implies }}$ that $V(n) \leqslant n$. We prove this by mathematical induction on ( $\alpha_{1}+\alpha_{2}+\cdots+$ $\alpha_{k}$ ).

For simplicity, let $A:=2^{\alpha_{1}} 3^{\alpha_{2}} \cdots(k+1)^{\alpha_{k}}$. Clearly, if $p$ is a prime, then $V(p)=v(1)=1 \leqslant 2^{1}$. In arbitrary factorization of $n=p_{1}^{\alpha_{1}} \cdots p_{k}^{\alpha_{k}}$ there is a factor divisible by $p_{k}$. For this reason

$$
V(n) \leqslant \sum_{\substack{d\left|n \\ p_{r}\right| d}} V\left(\frac{n}{d}\right) .
$$

Hence

$$
v\left(\alpha_{1}, \ldots, \alpha_{k}\right) \leqslant \sum v\left(\beta_{1}, \ldots, \beta_{k}\right)
$$

where the sum runs over all $\beta_{1}, \beta_{2}, \ldots, \beta_{k}$ satisfying

$$
\beta_{1} \leqslant \alpha_{1}, \ldots, \beta_{k-1} \leqslant \alpha_{k-1}, \beta_{k} \leqslant \alpha_{k}-1
$$

Hence with $0 \leqslant i_{1} \leqslant \alpha_{1}, 0 \leqslant i_{2} \leqslant \alpha_{2}, \cdots, 0 \leqslant i_{k-1} \leqslant \alpha_{k-1}, 0 \leqslant i_{k} \leqslant$ $\alpha_{k}-1$, we have

$$
\begin{aligned}
& v\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}\right) \leqslant \sum v\left(i_{1}, i_{2}, \ldots, i_{k}\right) \\
& \left.\leqslant A \cdot\left[\prod_{j=2}^{k}\left(1+j^{-1}+j^{-2}+\cdots\right)\right] \cdot[k+1)^{-1}+(k+1)^{-2}+\cdots\right] \\
& \leqslant A \cdot\left[\prod_{j=2}^{k} \frac{j}{j-1}\right] \cdot \frac{1}{k+1} \cdot \frac{k+1}{k} \leqslant A,
\end{aligned}
$$

where in the second line we have used the induction hypothesis.
Remark. Professor A. Schinzel has informed us that this lemma is not, in fact, new. The same statement was proved by Mattics and Dodd (see [2]) in a slightly different way.

Theorem. For $f(n)$, the number of solution of the equation (1), we have

$$
\begin{equation*}
f(n) \leqslant \frac{1}{2} h(n) n(h(n) n+1) . \tag{13}
\end{equation*}
$$

Proof. Observe that from (1) it follows $x_{1} x_{2} \cdots x_{n} \leqslant h(n) n x_{n}$, that is, $x_{1} x_{2} \cdots x_{n-1} \leqslant h(n) n$. Hence, using the Lemma, we get

$$
f(n) \leqslant \sum_{i=1}^{h(n) n} V(i) \leqslant \sum_{i=1}^{h(n) n} i=\frac{1}{2} h(n) n(h(n) n+1)
$$

Remark. Professor A. Schinzel observed that the estimate (13) can be improved for large values of $n$ by using the results in the papers: Oppenheim, J. London Math. Soc. 2 (1927), p. 130, Szekeres and Turan, Acta Litt. Scient. Szeged 6 (1933), pp. 143-154.

## 3. Open problems and numerical data

We propose several open problems related to the equation (1). Most of them are due to Professor P. Erdős.

Denote by $f(n)$ the number of solution of

$$
x_{1} x_{2} \cdots x_{n}=n\left(x_{1}+x_{2}+\cdots+x_{n}\right), \quad x_{1} \leqslant x_{2} \leqslant \cdots \leqslant x_{n} .
$$

1. Prove that $f(n) \rightarrow+\infty$ as $n \rightarrow+\infty$.
2. A number $n$ is called a champion if $f(n)>f(m)$ for every $m<n$, it is called anti-champion if for every $m>n \quad f(m)>f(n)$. It is true that the anti-champions are always primes? Can we characterize the champions?
3. Is it true that the density of the integers $n$ for which $f(n+1)>f(n)$ is $\frac{1}{2}$ ?
4. Are there infinitely many solutions of $f(n)=f(m), n \neq m$ ?
5. Is it true that the density of the integers $f(n)$ is 0 ? In other words, is the density of the integers $t$ for which there is an $n$ with $f(n)=t$ equal to 0 ?

In the following table the number of solutions of (1) is given by computer program for $n \leqslant 40$ and several functions $h(n)$.

| Number of solution of $x_{1} \cdots x_{n}=h(n)\left(x_{1}+\cdots+x_{n}\right)$ |  |  |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $n$ | $h(n)=1$ | $h(n)=2$ | $h(n)=3$ | $h(n)=n$ | $h(n)=2 n$ | $h(n)=n^{2}$ |
| 2 | 1 | 2 | 2 | 2 | 3 | 3 |
| 3 | 1 | 3 | 6 | 6 | 8 | 13 |
| 4 | 1 | 5 | 4 | 8 | 15 | 30 |
| 5 | 3 | 3 | 6 | 8 | 15 | 39 |
| 6 | 1 | 5 | 5 | 17 | 30 | 96 |
| 7 | 2 | 4 | 8 | 14 | 16 | 43 |
| 8 | 2 | 5 | 6 | 19 | 42 | 142 |
| 9 | 2 | 5 | 8 | 27 | 36 | 126 |
| 10 | 2 | 6 | 6 | 25 | 44 | 169 |
| 11 | 3 | 5 | 10 | 15 | 27 | 66 |


| 12 | 2 | 8 | 6 | 33 | 73 | 424 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 13 | 4 | 4 | 9 | 16 | 24 | 92 |
| 14 | 2 | 5 | 6 | 30 | 63 | 233 |
| 15 | 2 | 6 | 10 | 43 | 58 | 355 |
| 16 | 2 | 8 | 6 | 45 | 77 | 430 |
| 17 | 4 | 4 | 11 | 18 | 31 | 93 |
| 18 | 2 | 10 | 6 | 55 | 119 | 644 |
| 19 | 4 | 4 | 12 | 24 | 30 | 90 |
| 20 | 2 | 8 | 6 | 43 | 109 | 798 |
| 21 | 4 | 7 | 10 | 55 | 68 |  |
| 22 | 2 | 7 | 7 | 43 | 62 |  |
| 23 | 4 | 4 | 14 | 22 | 40 |  |
| 24 | 1 | 10 | 9 | 92 | 166 |  |
| 25 | 5 | 8 | 9 | 43 | 64 |  |
| 26 | 4 | 7 | 7 | 35 | 83 |  |
| 27 | 3 | 7 | 14 | 68 | 104 |  |
| 28 | 3 | 9 | 8 | 69 | 140 |  |
| 29 | 5 | 4 | 12 | 25 | 43 |  |
| 30 | 2 | 11 | 6 | 107 | 174 |  |
| 31 | 4 | 6 | 14 | 34 | 36 |  |
| 32 | 3 | 10 | 8 | 80 | 173 |  |
| 33 | 5 | 6 | 9 | 56 | 96 |  |
| 34 | 2 | 7 | 9 | 48 | 90 |  |
| 35 | 3 | 6 | 15 | 61 | 124 |  |
| 36 | 2 | 13 | 8 | 130 | 252 |  |
| 37 | 6 | 6 | 12 | 32 | 30 |  |
| 38 | 3 | 6 | 11 | 45 | 101 |  |
| 39 | 3 | 10 | 16 | 65 | 109 |  |
| 40 | 4 | 12 | 6 | 119 | 220 |  |
|  |  |  |  |  |  |  |

## References

[1] P. Erdős, Some unsolved problems, Publ. Math. Inst. Hung. Acad. Sci., 6 (1961), 221-254.
[2] L. E. Mattics and F. W. Dodd, A bound for the number of multiplicative partitions, Amer. Math. Monthly, 93 (1986), 125-126.
[3] A. Schinzel, Ungelöste Probleme, Elem. Math., 11 (1956), 134-135.
[4] C. Viola, On the diophantine equations $\prod_{0}^{k} x_{i}-\sum_{0}^{k} x_{i}=n$ and $\sum_{0}^{k} \frac{1}{x_{i}}=\frac{a}{n}$, Acta Arithmetica, XXII (1973), 339-352.
Bukor, TóthDepartment of Mathematics
Faculty of Natural Sciences
Constantine the Phllosopher University
Tr. A. Hlinku 1
94974 Nitra
Slovakia
Filakovszky
S̃oltésovej 21
94059 Nové Zámky
Slovakia
e-mail:jbukor@ukf.skjtoth@fpv.ukf.sk


[^0]:    Received on June 18, 1998.
    1991 Mathematics Subject Classification. 11D72.

    * This research was partially supported by the Slovak Academy of Sciences Grant 5123.

