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O N T H E D I O P H A N T I N E E Q U A T I O N 

xix2 • • -xn = h{n){xx + z 2 + h xn) 

J O Z S E F B U K O R , P É T E R F I L A K O V S Z K Y , A N D J Á N O S T . T Ó T H * 

Abstract. We are concerned with the equation of the title, where n is a fixed 
positive integer, h(n) is a given integer-valued arithmetic function and the 
unknowns take positive integral values 1 ^ xi ^ x? ^ • • • ^ x„. We estimate 
the number TO for which X{ = 1 (i = 1, 2,... , m) in every solution. Next 
we give an upper bound for the number of coordinates of a solution which 
can be greater than 1. Further we estimate the number of all solution of the 
equation, and the paper concludes with a list of open problems. 

where n is a fixed positive integer, h{n) is a given integer-valued arithmetic 
function and the unknowns 1 ^ x i ^ x2 ^ • • • ^ xn take positive integral 
values. Equation (1) was first considered by Schinzel [3] in the case h(n) = 1. 
He observed that for every n there exists a trivial solution ( 1 , . . . , 1,2, n). 
There was studied a similar diophantine equation 

Introduction 

In the present paper we are concerned with the equation 

(1) = h(ń)(xi + x2 H \-xn), 

k k 

(2) 
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Schinzel conjectured (quoted in [1], p. 238) that there is a k > 1 such that, 
for every sufficiently large n, (2) is solvable in integers x,- > 1. Prom the 
Viola's results (see [4]) it follows that for any k > 1, the asymptotic density 
of the natural numbers n for which (2) is unsolvable is zero. 
It is easy to check that for h(n) = n the all solutions of (1) are 
in the case n — 2 : (3,6), (4,4) and 
in the case n = 3 : (1,4,15), (1,5,9), (1,6,7), (2,2,12), (2,3,5), (3,3,3). 
For n ^ 4 we have trivial solutions 

( l , . . . , l , n + l , 2 n 3 - n ) , ( 1 , . . . , 1, n+2, n2), ( 1 , . . . , 1,2n - 1,3n), 

( l , . . . , l , 2 , n , 2 n - l ) , ( 1 , . . . , 1,3, n, n), ( 1 , . . . , l , 2n ,3n - 2). 

First, we estimate the number m, for which x^ = 1 (i = 1,2,. . . , m) in every 
solution of (1). Next we give an upper bound for the number of coordinates 
of a solution which can be greater than 1. Further we estimate the number of 
solutions of (1) and the paper concludes with some open problems and with 
a table of the numbers of solutions of the equation (1) for several functions 
h{n). 

1. Est imates 

P R O P O S I T I O N 1. Let the n-tuple ( x i , x 2 , • . . , x n ) be a solution of (1) 
and suppose xi ^ x2 ^ ••• ^ i „ . If an integer k, (1 ^ k < n), satisfies 
the inequality 

(3) 2(2k - (k + l)h(n)) > h(n)(n - k - 1), 

then x i = X2 = • • • = x n - k = 1-

P R O O F . TO the contrary, suppose that xn ^ x n _ i ^ • • • ^ x n - m ^ 2, 
where m ^ k and xi = x2 = • • • = x n _ m _ ! = 1. Then we have 

2mxn ^xi---xn = h(n)(xi H h xn) ^ h(n)(n - (m + 1) + (m + l)xn) 

which implies 

(4) xn (2m - (m + l)h(n)) <C h(n)(n - m - l ) . 

From (3) it immediately follows that 2k > h(n). Using this inequality it is 
easy to show by mathematical induction that for any m ^ k, 

2 ( 2 m - (m + l)h(n)) > h(n)(n - m - 1), 

which contradicts (4). • 
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Note that the inequality (3) is valid for example for k > log 2 2h(n)n. 
The solution x\ = • • • = xn-k-\ = 1, xn-k = • • • = xn = 2, where n = 
2k+1 — (k + 1), of the equation xix2 • • -xn = x\ + x2 + V xn (the case 
A(ra) = 1) shows that the inequality (3) is essentially the best possible. 

P R O P O S I T I O N 2. Let (xi, x2,..., xn) be a solution o / ( l ) . Then either 

x n_i ^ h(n) or xn $C h(n) (h(n) + n — l ) . 

P R O O F . Assume that x n_i > h{n) and write (1) in the form 

_ fe(n)(xi +x2 H V xn-i) 
xix2 • -'Xn-i - h{n) 

First we shall establish the inequality 

r«\ , <r Kn)(n ~ 2 + xn-l) 
(6) xn ^ T-r-^r . 

In view of (5) the inequality (6) is equivalent to 

(7) ( x H h xn_i)(xn_i - h(n)) ^ (n - 2 + x n _ i ) ( x i x 2 • • • x n_i - fc(ra)). 

However, we have the obvious inequalities 

(8) xi H h x n_i ^ (n - 2) xi • • • xn_2 + a>i • • • x n_i, 

(9) -/i(n)(xi H + xn_i) ^ -h(n)(n - 2 + xn_i). 

Putting (8) and (9) together we get (7), hence also (6). It is not hard to 
check that for any x'n_x satisfying x'n - 1 > h{n) we have 

fe(n)(n-2 + xn_x) h{n){n-2 + x'n_1) 
Zn-i-Hn) < x U - M n ) rf^"^* * . - i < * - i -

Hence when we replace in the upper bound (6) the number x n_i by the 
smallest admissible value h(n) + 1 we still obtain an upper bound for xn 

which then reads xn ^ h(n)(n - 2 + x„_i) = h(n)(h(n) + n - l ) . • 

P R O P O S I T I O N 3. Let (xi,...,xn) be a solution of (1). Then for any 
positive integer k either 

xn-k ^ y/k • h(n) or x„t\ ~(k + l)h{n)xn-k < h(n) • n. 
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P R O O F . Assume that xk

l_k > k • h(n) and write (1 ) in the form 

/ l f l l „. _ Kn) • ( » 1 H V Sn-fc-1 + a^n-fe+i + h xn) 
xn-k — r r-T . 

Xl • • • ^ n - f e - l J n - H l •••Xn - h[n) 

We have the obvious inequalities 

X l Ą h xn_ f c_! + x n _* + 1 Ą (- xn 

(U) 
^ (n - k - l)xi • • -xn-k-i+xi • • • i n _ i . 1 ( i n _ ) i ; + 1 H h x n) 

(12) XiH h x n _ f c _ i +x n _ f e + i H \-xn ^ n - f c - l + Xn-fc+iH h x n . 

Multiplying (11 ) by x n _ f c + ł • • -xn and (12) by -h(n) and adding the two 
inequalities we get 

{Xn-k+l •••Xn - h(n))(xi H 1- Xn_jfe_i + X n _fc + i H h xn) 

^ (xi • • • x n _ f c _ ix n _ f c + i • • • xn - h(n))(n - k - 1 + x n_A; +i h x n). 

In view of (10) this inequality is equivalent to 

(x n _ f c + i - /i(rc))xn_fc ^ h(n)(n - k - 1 + x n _ f c + 1 H \-xn) 

which implies 
xn_kxn-h(n)xn-k^h(n)(n + kxn). 

Taking into account that xk

l_k > kh(n) we can write x„_fc instead of x„ in 
the previous inequality and get 

xn+-\ ~(k + l)h(n)xn-k < h(n) • n. • 

2 . Main theorem 

In the proof of the main theorem we shall use the following auxiliary 
result. Let V(n) = « (o i , a2,..., a/,) denote the number of factorizations of 
n = p"1 • • -pk

l, n = t\t<i • • -tt, where 1^1 and 2 ̂  t\ ^ t2 ^ • • • ̂  U. 

L E M M A . V{n) ^ n. 

P R O O F . We claim v(ai,a2, . . . , « * : ) ^ 2 A I 3 ° " • • • ( & + l ) a » , which implies 
that V(n) ̂  n. We prove this by mathematical induction on (ai +a2 -\ h 
Ofc)-
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For simplicity, let A := 2ai3a' • • • (k + 1)"*. Clearly, if p is a prime, then 
V(p) — v(l) = 1 ^ 2 1 . In arbitrary factorization of n = p°l • • there is a 
factor divisible by pk. For this reason 

d\n 

Hence 

«(<*!,...,a f c) ^ J^w(^i,...,/3fc), 

where the sum runs over all fa, /32, • • •, fik satisfying 

fix ^ a i , . . . , /J*_i ^ ak-i,Pk ^ a k - l . 

Hence with 0 ^ ix ̂  ati, 0 ^ i 2 ̂  02, • • • , 0 ^ ik-x ^ afc_i, 0 ^ ik ^ 
a* - 1, we have 

v(ai,<X2,.. -,ak) ^ y \ ( ń , ź 2 , • • • , » & ) 

£ A 

£ A 

II(1+rl+i"a + -) 
i=2 

TT — Jfc + 1 
ifc + 1 k 

[k + i)-1 + (k + i)-2 + ---\ 

< A , 

where in the second line we have used the induction hypothesis. • 

R E M A R K . Professor A . Schinzel has informed us that this lemma is not, 
in fact, new. The same statement was proved by Matties and Dodd (see [2]) 
in a slightly different way. 

T H E O R E M . For f(n), the number of solution of the equation (1), we 
have 

(13) f(n) ^ -h{n)n(h(n)n+l). 

P R O O F . Observe that from (1) it follows xxx2 • • -xn ^ h(n)nxn, that is, 
xxx2 • • -xn-i ^ h(n)n. Hence, using the Lemma, we get 

h(n)n h(n)n 

/(») < E V® < E i =
 Mn{h(n)n + 1). • 

»=1 t=l 
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R E M A R K . Professor A . Schinzel observed that the estimate (13) can be 
improved for large values of n by using the results in the papers: Oppenheim, 
J . London Math. Soc. 2 (1927) , p. 130 , Szekeres and Turan, Acta Li t t . Scient. 
Szeged 6 (1933) , pp. 1 4 3 - 1 5 4 . 

3 . Open problems and numerical data 

We propose several open problems related to the equation (1 ) . Most of 
them are due to Professor P. Brdos. 

Denote by f(n) the number of solution of 

xix2 •••xn = n{xi + x2Ą h xn), xi ^ x2 < • • • ^ xn. 

1. Prove that f(n) -> +oo as n -> +oo. 
2 . A number n is called a champion if f(n) > f(m) for every m < n, it 

is called anti-champion if for every m> n f(m) > f{n). It is true that the 
anti-champions are always primes? Can we characterize the champions? 

3 . Is it true that the density of the integers n for which f(n + 1 ) > /(n) 
is I? 

4. Are there infinitely many solutions of f(n) = f(m), n ^ ml 
5 . Is it true that the density of the integers /(n) is 0? In other words, is 

the density of the integers t for which there is an n with /(n) = t equal to 
0 ? 

In the following table the number of solutions of (1) is given by computer 
program for n ^ 40 and several functions h{n). 

Number of solution of Xi • • •xn = h{n] (xi-\ h Xn) 

n h(n) = 1 h{n) = 2 h(n) = 3 h(n) = n h(n) = 2n h(n) = n2 

2 1 2 2 2 3 3 
3 1 3 6 6 8 13 
4 1 5 4 8 15 30 
5 3 3 6 8 15 39 
6 1 5 5 17 30 96 
7 2 4 8 14 16 43 
8 2 5 6 19 42 142 
9 2 5 8 27 36 126 
10 2 6 6 25 44 169 
11 3 5 10 15 27 66 
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12 2 8 6 33 73 424 

13 4 4 9 16 24 92 

14 2 5 6 30 63 233 

15 2 6 10 43 58 355 

16 2 8 6 45 77 430 

17 4 4 11 18 31 93 

18 2 10 6 55 119 644 

19 4 4 12 24 30 90 

20 2 8 6 43 109 798 

21 4 7 10 55 68 

22 2 7 7 43 62 

23 4 4 14 22 40 

24 1 10 9 92 166 

25 5 8 9 43 64 

26 4 7 7 35 83 

27 3 7 14 68 104 

28 3 9 8 69 140 

29 5 4 12 25 43 

30 2 11 6 107 174 

31 4 6 14 34 36 

32 3 10 8 80 173 

33 5 6 9 56 96 

34 2 7 9 48 90 

35 3 6 15 61 124 

36 2 13 8 130 252 

37 6 6 12 32 30 

38 3 6 11 45 101 

39 3 10 16 65 109 

40 4 12 6 119 220 
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