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W I T T RINGS O F INFINITE A L G E B R A I C 

E X T E N S I O N S O F G L O B A L FIELDS 

KRZYSZ T OF KOZIOŁ AND MIECZYSŁAW K U L A 

Abstract. In this paper we discuss the problem to carry over the well-known 
Minkowski-Hasse local-global principle to the context of an infinite algebraic 
extension of the rationals or the rational function fields Wq(x) over finite fields. 
Applying this result we give a new proof of the elementary type conjecture for 
Witt rings of infinite algebraic extensions of global fields. This generalizes a 
result of I. Efrat [Ef] who proved, using Galois cohomology methods, a similar 
fact for algebraic extensions of the rationals. 

1. Preliminaries 

Let K denote afield of characteristic different from 2. By an n-dimensional 
quadratic form over K we mean any polynomial / = a\x2 + 1- anx2

n 

with o i , . . . , an e K*. Such form is denoted by / = ( d , . . . , an). The set 
DKf = aiK*2 -| \-anK*2 f]K* is called the set of elements represented 
by the form f over K. The set DK(1, a) is known to be a subgroup of K* 
for every a € K*. If 0 G a\K*2 + h anK*2, then the form is said to be 
isotropic. We say that / is universal if DKJ = K*. The Kaplansky radical 
of K is defined by R(K) := C\aC.K. DK{1, a). One can show that c € R(K) 
if and only if the binary form (1, -c) is universal. 

The quotient group G(K) := K*/K*2 will be called a square class group. 
The Witt ring of K is the quotient ring W(K) := Z[G(K)]/J where J is the 
ideal in 1[G{K)] generated by [l]+[-l] and [l]+[a]-[l+a]-[a(l+o)]for all 
a e K* and a ^ -1 . (Here [a] denotes the image of the coset aK*2 £ G(K) 
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in Z[G(K)]). Every element of the Witt ring W(K) is represented by a 
non-isotropic quadratic form over K. 

Consider a pair (W, Gw) where W is a commutative ring with unity 
and Gw is a subgroup of the multiplicative group of units of W which has 
exponent 2 and contains -1. Let Iw denote the ideal of W generated by the 
set {a + b G W : a, b G Gw}- The pair is called an abstract Witt ring if 
the following axioms are satisfied: 

Wi . W is additively generated by Gw-
H>2 • Iw n Gw = 0 
>V3 . If a + b + c G Iw with a, b, c G Gw U {0}, then a + b + c = 0mW. 
>V4 . If ai + • • • + an = bi + - - - + bn and n ^ 3, then there exist 

a,b,c3,...,cn G Gw such that a2 + V an = a + c3 + h c„, 
&2 H \-bn = b + c3-\ h c n and ai + a = &i + 6. 

For any field K (char ^ 2), the pair (W(K),G{K)) is an abstract Witt 
ring determined by the field K. 

For an abstract Witt ring (W, Gw) the set 

R(W) := {a e Gw : / \ 1 - a + ceGw} 
ceG„ 

is referred to as the Kaplansky radical of the Witt ring. In the field case we 
have R{W{K)) = R{K)/K*2. TfR{W) = {1}, then the Witt ring is said to be 
non-degenerated. Otherwise W is said to be degenerated. If R(W) = Gw, 
then W is referred to as a totally degenerated Witt ring. A Witt ring is of 
local type if it is non-degenerated and \Iw/Iw\ = 2 (here, W is allowed to 
be infinitely generated). 

A homomorphism of abstract Witt rings (Wi,G\) and (W2, G2) is a ring 
homomorphisms <£ : Wi —> W2 such that #(Gi) C G2. Abstract Witt rings 
and homomorphisms form a category closed with respect to forming finite 
direct products and group rings. The elementary type conjecture states 
that every finitely generated Witt ring of a field can be constructed from 
the Witt rings of C, F3 and local fields by direct products and group ring 
formations. 

It is easy to check, that the set J := {(1, -a) : a G R{K)} is an ideal 
of the Witt ring W(K). We denote by Wad(K) the factor-ring W(K)/I. 
The pair (Wnd(K),G{K)/R(K)) is an abstract Witt ring. It is called the 
non-degenerated part of the Witt ring. According to [M, Chapter 5.5], 
every Witt ring is a product of its non-degenerated part and suitable totally 
degenerated Witt ring. Moreover, every totally degenerated Witt ring is a 
product of suitable numbers of copies of W(F 3) and W(WS). 

The rest of used notation is standard and can be found as well as the 
basic facts from the quadratic form theory in [L], [S] and [M]. 
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2. Localizations of infinite algebraic extensions of global fields 

Let K be an algebraic extension of a global field F and let a be a fixed 
valuation of K. The valuation induces (by the restriction) valuations on finite 
(degree) subextensions of K/F. The completions of these subextensions in 
a fixed completion of K form a direct system of valuated fields. The direct 
limit of this system will be denoted by Ka and called the localization of K 
with respect to a. 

L E M M A 1. If L is a localization of an algebraic extension of a global 
field, then [L* : DL(1, a)] ^ 2 for all a € L*. 

P R O O F . Let L be a localization of an algebraic extension of a global field 
F. If every binary form (l,o) over L is universal, then [L* : Dx,(l,a)] = 1. 
Now suppose that there is o £ I such that (l,a) is not universal. Take 
x,y £ L* \ DL(1, a). Then there exists a local field F C M C I such that 
a, x,y G M. Since DM(1,O) has index 2 in M * , we have xy € D^f(l,a) C 
DL(l,a). This shows that [L* : DL{l,a)] ^ 2 for all a e L*. 

COROLLARY 2. The Witt ring of a localization of an algebraic exten­
sion of a global field can be represented as a direct product of a Witt 
ring of local type and a totally degenerated Witt ring. 

P R O O F . Prom Lemma 1 it may be concluded that the non-degenerated 
part of W(L) is of local type. The corollary follows from the fact that every 
Witt ring is a product of its non-degenerated part and a totally degenerated 
Witt ring. 

We get immediately the following conclusion. 

COROLLARY 3. Every finitely generated Witt ring of a localization of 
an algebraic extension of a global field is of elementary type. 

3. Local-global theorem for infinite algebraic extensions 
of global fields. 

In this section we prove an analogue of the Minkowski-Hasse principle 
for infinite algebraic extensions of global fields. 

T H E O R E M 4. Let K be an algebraic extension of a global field F and 
let f be a quadratic form of dimension at least 3 over K. Then f is 
isotropic over K if and only if it is isotropic over every localization K„ 
of K. 
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P R O O F . If / is isotropic over K, then it is isotropic over Kc because Ka 

is an extension of K. 
Now we assume / = (a i , . . . , an) is anisotropic over K and we construct 

a valuation a such that / is anisotropic over K„. There is a tower of fields: 

F C F(o i , . . . , an) = Mx C M 2 C . . . C Ms C ... C K 

such that all Ms are finite extensions of F and K = UseN-^s-
Let s ^ 1 be a fixed integer. By the local-global principle of Minkowski-

Hasse (cf. [S, Chapter 6, Theorem 6.5]), the form / is anisotropic at least 
over one completion of Ms. On the other hand, the entries a\, ...an of / 
are units with respect to almost all valuations of Ms. Thus, according to 
[L, Chapter 6, Proposition 1.9] / remains anisotropic only over finite number 
of completions of Ms, whenever dim / ^ 3. 

We consider a graph where the set of nodes consists of all these comple­
tions of Ms (for all s ^ 1) over which / is anisotropic and arrows correspond 
to the field extension relation between compatible completions of Ms and 
Ms+1. 
This graph is a forest satisfying assumptions of Konig's infinity lemma [KM, 
Ch.IX, Th. l,p. 326]. By the lemma, there is an infinite chain of the comple­
tions in the graph defined above. The chain can be interpreted as follows: 

There is a compatible chain (MSi<r)se^ of completions of the fields Ms 

such that / is anisotropic over each MS<(T. (Here a is a common name of the 
chosen valuations on the fields Ms) These valuations define a valuation on 
K = UseN MS. Here K„ = UseN MS,<T because any finite degree subextension 
of K/F is contained in some Ms. 

The form / is anisotropic over K„ because otherwise it would be isotropic 
over some M S ) ( T as the isotropy relation involves only finitely many elements 
of a field. 

COROLLARY 5. Let K be as in Theorem Ą., j be a quadratic form over 
K of dimension at least 2 and a G K. Then a is represented by f over 
K if and only if a is represented by f over every localization Ka of K. 

P R O O F . Observe that a G Duf if and only if the form / _L (-a) is 
isotropic, and then apply Theorem 4 to this form. 

COROLLARY 6. Let K be as in Theorem Ą and a e K. Then a G R{K) 
if and only if a € R{Kff) for every localization Ka of K. 

P R O O F . TO prove this Corollary one should only observe that that every 
square class of KQ can be represented by an element of K by the Local Square 
Theorem (cf. [L], Corollary 2.20) and density. Now apply Corollary 5. 
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R E M A R K 7. In Corollary 6 we can replace the Kaplansky radical R(K) 
by the Yucas radicals Rn (n > 1) defined in [Y]. 

COROLLARY 8. Let K be as in Theorem Ą and a G K. If a G K*2 for 
every localization K„ of K, then a G R(K). 

P R O O F . It suffices to use the inclusion K*2 C R(Ka). 

Let H denote the subgroup of K* consisting of all "local squares", i.e., 

H = {a G K* : a G K*2 for every localization Ka of K). 

It is clear (by Corollary 8) that H C R(K). 
If K is a global field, then every element of K which is a local square is 

actually a square in K, i.e., H = K*2. This property is not true for infinite 
extensions of global fields, in general, but we show, in the next theorem, that 
this is the necessary and sufficient condition for the generalized local-global 
principle to hold. 

PROPOSITION 9. Let K be as in Theorem Ą. Then the following sta­
tements are equivalent: 

(1) H = K*2. 
(2) For every quadratic form f over K, f is isotropic over K if and 

only if f is isotropic over every localization Ka of K. 
(3) For every quadratic form f over K and every a G K* we have 

aef l j f / <==> a G DKJ for every localization KA of K. 

P R O O F . (1) => (2) If dim / ^ 3 we apply Theorem 4. A form of dimension 
1 cannot be isotropic, hence it remains to consider the case d im/ = 2. 
Notice that / = (a, 6) = a(l, ab) is isotropic if and only if (1, ab) is isotropic. 
Therefore / is isotropic over every Ka if and only if — ab G K*2 for every a. 
This is equivalent to -ab G H = K*2 and as a consequence to the isotropy 
of / over K. 

(2) (3) We apply (2) to the form / _L (-a) 
(3) => (1) It is easily seen that the set of elements represented by the form 

(1) coincides with the group of squares of the field. Combining this with (3) 
yields (1). 

The question: When does the group H defined above equal K*21 -
remains open. Below we give 2 examples of the possible situation. 

PROPOSITION 10. Let F be a global field and let F C M0 C Mi C . . . C 
Mn C . . . be a tower of finite extensions of F. If all but a finite number 
of degrees [M, + i : Mi] are odd and K — ( J n e N M„„ then H = K*2. 
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P R O O F . This is a consequence of Springer's Theorem for odd degree exten­
sions (cf. [L, Chapter 7, Theorem 2.3]). 

E X A M P L E 11 (W. Scharlau [SI]). Here we construct an infinite algebraic 
number field where 2 is a local square but not a global square. 

Using Dirichlet's theorem we choose an infinite sequence of different ra­
tional primes £>2>P3)P5) • • • with the following property: 

1° p2 is a square in Q2 (e.g. pi = 17) 
2° 2 • pi is a square in for all odd primes I. 
Now we consider the multiquadratic extension of the rational number 

field: 
K = Q(V^ T P2, VPI, y/ps,---)-

Obviously, every localization contains Q 2 ( \ / 2 • P2) = ©_2(v/2) or Qe{\/Pi)i 
so 2 is a square in Kc. 

On the other side 2 is not in K* 2 because by Kummer's theory 
(cf. [N, p.15]). 

K* 2 H Q = Q*2- < 2-p2,p3,PB,.-.> • 

4. Witt rings over infinite algebraic extensions of global fields 

Now we consider the natural homomorphism of Witt rings 

*:W{K)—>Y[W{K0), 

where Ka ranges over all localizations of K. 

PROPOSITION 12. The kernel of $ is the ideal ofW(K) generated by 
the set 

{ ( l , - o ) :a € H}. 

P R O O F . Let us consider a form / in ker* without loss of generality we 
can assume that F is anisotropic. Because <£(/) = 0, we have dim/ < 2 
by Theorem 4. If dim / = 1, then <£(/) ^ 0. Hence / can be written 
/ = b • (1, -a). For every valuation a of K, the form b • (1, -a) is hyperbolic 
over Ka if and only if a € K*2, thus / = b • (1, -a) with a e H. This shows 
that ker<£ C ((1, —a) : a € H). The converse inclusion is obvious. 

Now formulate an analogue of the local-global principle for the non-dege­
nerated parts of Witt rings. Recall that 

Wni(K) = W(K)/{(1, -a):ae R(K)}. 
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PROPOSITION 13. Let K be an algebraic extension of a global field F. 
Then the natural homomorphism 

^:Wnd(K)^HwDd{Kc) 

where K„ ranges over all localizations of K, is a monomorphism. 

P R O O F . Let / be a form representing a coset in Wnd(K) that goes to 0 
under the homomorphism There is no loss of generality in assuming that 
/ is anisotropic. Of course, /<g> Ka is represented by a form in {(1, —a) : a € 
R(Ka)} for every a. Obviously, if dim/ ^ 3, then / ® K„ is isotropic for 
every a and Theorem 4 leads to a contradiction. 
If dim / = 2, then / = c(l, -d) for some c,d€ K and f & Ka = (1, -aa) for 
suitable aCT e R(K0). Now we have (1, -d) = c(l, -aa) = (1, -a„) because 
(1,-ap) is universal. By the Witt Cancellation Theorem aaK*2 = dK*2. 
Thus d e R(Ka) for all localizations Ka. Applying Corollary 6 completes 
the proof. 

5. Fields with finite square class group 

In this section we assume that K is an extension of a global field and 
K*/K*2 is finite. It is easy to see that this extension has infinite degree. 
Moreover every valuation of K has rank 1, because the value group of the 
valuation is contained in the additive group of the rationals. Denote by 
S(K) the set of all (mutually independent) valuations of K. Moreover define 
S0(K) := {a € S(K) : \K*/K*2\ > 1}. Applying the independence theorem 
for valuations one can prove the following. 

L E M M A 14. Let K be an extension of a global field and let \K*/K*2\ < 
oo. Then: 

(1) The natural mapping <p : K*/K*2 —> I L e T ^ / ^ 2 " a n eP*~ 
morphism for every finite subset T of S(K). 

(2) Every localization of K has finite square class group. 
(3) The set S0{K) is finite. 

P R O O F . The statement (1) follows from [K, Theorem 2.2] immediately. 
It follows from (1) that \KZ/K?\ < \K*/K*2\ < oo, so we have (2). 
To prove (3),suppose \K*/K*2\ = 2 N and \S0(K)\=k. Since \K*JK?\>2 

for all a G S0(K), so 2" = \K*/K*2\ > UaeMK) \K*JK2\ Ź 

Now we are in a position to prove the final result of the paper, which 
implies the elementary type conjecture for infinite extensions of global fields. 
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T H E O R E M 15. Every finitely generated Witt ring of an algebraic exten­
sion of a global field is a direct product of Witt rings of finite or local 
fields. 

P R O O F . Let K be an algebraic extension of a global field. Using Pro­
position 13 and the fact that Wnd(KA) is trivial for every a e' SQ(K) we 
get 

*:WDA(K)—> Yl W n d ( f f „ ) 
<7£5o(K) 

is a monomorphism. Applying Lemma 14 and the well-known fact that 
W(K) is fintely generated if and only if K*/K*2 is finite we conclude that ip 
maps K*/K*2 onto Uces,[K) K^/Kf- Recall, the Witt rings WND(K) and 
Wndfóe) are generated by the sets of all 1-dimensional forms (i.e. elements 
of G(K)/R(K) and G(KA)/R(K(T), resp.). Thus * is an isomorphism. Com­
bining this and Corollary 2 we see that Wnd(K) is of elementary type. To 
complete the proof it is enough to apply the fact that every Witt ring is a 
direct product of its non-degenerate part and a suitable totally degenerated 
Witt ring. 

It is worth noticing that the above theorem states more than the elemen­
tary type conjecture. In fact, we have proved that every finitely generated 
Witt ring of algebraic extension of a global field can be built from the basic 
indecomposables without using the group ring formation. 
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