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GRZEGORZ BANASZAK 

At the Thirteen Czech-Slovak International Number Theory Conference 
in Ostravice in 1997 and at JA in Limoges in 1997 A. Schinzel proposed the 
following problem. 

PROBLEM 1. Disprove the following statement. 

There exists such a prime number po, that for all prime numbers p> po 
and all n e N the following condition holds 

2 n = 3 mod p & 3 n = 2 mod p. 

We can reformulate Problem 1 in the following way. 

Prove that for every prime number pQ there is a prime number p > po 
and there is an n G N such that either 

2" = 3 mod p and 3" ^ 2 mod p 

or 

2 n ^ 3 mod p and 3" = 2 mod p. 

We solve Problem 1 by proving the following theorem. 
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THEOREM 1. 
(a) For every prime number po there is a prime number p > po and 
there is an n £ N such that 

2 n = 3 mod p and 3 n ^ 2 mod p. 

(b) For every prime number p0 there is a prime number p > po and 
there is an n G N such that 

3" = 2 mod p and 2" ^ 3 mod p. 

PROOF . First we prove (a). The proof will be done in three steps. 

Step 1. Let 
Pl,P2,P3,---

be the sequence of consecutive, odd prime numbers. Define a sequence of 
natural numbers 

ni = Pi - 1 

n2 = {pi - 1)(P2 - 1) 

nk = (Pi - 1)(?2 - 1) . . . (p* - 1) 

We observe that for each k 

2n" - 3 = - 2 mod Pi 

for all 1 ̂  i ^ k, by Little Fermat Theorem. It follows that 2n» - 3 is divisible 
only by prime numbers bigger then pk-

Step 2. Observe that for each fc>lwe have 

2n* - 3 = 5 mod 8 

Numbers 1,3,5,7 are all odd residues mod 8. In addition 

72 = 1 mod 8 
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Hence for each k there must be a prime number p such that p = 3 or 5 mod 8 
and 2n* - 3 = 0 mod p. 

Step 3. Summing up, we proved in steps 1 and 2 the following fact. 

For each k > 1 there is a prime number p > Pk such that 
(1) 2™* = 3 mod p. 
(2) p = 3 or 5 mod 8 

Observe that 3n» ^ 2 mod p because is even. Indeed, we know that 2 is 
not a quadratic residue mod p for p = 3 or 5 mod 8, cf. [H] p. 78. 

Proof of (b) is based upon the idea of the proof of (a). Namely observe that: 
(1) 3 n ' - 2 = -2 mod pi, 
(2) 371' - 2 = -1 mod pi for 1 < i ^ fc, 
(3) 3n* - 2 = 7 mod 12 for A; > 1. 

Numbers 1,5,7,11 mod 12 are all elements of the group (Z/12) x £ Z/2 0 
Z/2. Hence we get a prime number p > Pk such that: 

(4) p = 5 or 7 mod 12, 
(5) 3 n ' = 2 mod p. 

By quadratic reciprocity law [H] p. 79 we easily check that 3 is not a qua
dratic residue mod p iff p = 5 or 7 mod 12. Hence 2n* ̂  3 mod p because 
rik is even. • 

REMARK 1. Note that either part (a) or (b) of theorem 1 solve problem 
1. 

For p as in Step 3 of (a) we prove that 3 n 2 mod p for all n. Indeed, 
it follows by (1) in Step 3 of (a) that 3 is a square mod p because nk is 
even. Hence mod p logarithm Log^l does not even exist for such a prime p. 

In the same way for p from the proof of (b), we see that mod p logarithm 
Log-fi does not exist. 

It is natural to ask for generalizations of Problem 1. Let us state the following 
problem suggested by A.Schinzel. 

PROBLEM 2. Let a,b,c,d€ N be such that a > 1, c > 1, o ̂  c. Disprove 
the following statement. 
There exists such a prime number po, that for all prime numbers p> po 
and all n € N the following condition holds 

an = b mod p cn = d mod p 
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REMARK 2. Problem 1 is a very special case of problem 2 with a — d = 2 
and b = c = 3. 

PROPOSITION 1. 
(a) For every prime number po there is a prime number p > po and 
there is an n € N such that 

2 n = 5 mod p and 5 n 2 mod p. 

(b) For every prime number po there is a prime number p > po and 
there is an n £ N such that 

5 n = 2 mod p and 2™ =ś 5 mod p. 

PROOF . The proof is very similar to the proof of theorem 1. To prove (a) 
note that: 

(1) 2 n ' - 5 = - 4 mod p{ for 1 < i ^ k 
(2) 2n" - 5 = 3 mod 8 for k > 1. 

To prove (b) observe that 
(1) 5n* — 2 EE - 2 mod p2, 
(2) 5"' - 2 EE -1 mod pi for i = 1 or 2 < i 0 
(3) 5n* - 2 = 3 mod 10 for A; ̂  1. 

Numbers 1,3,7,9 mod 10 are all elements of the group (Z/10) x ^ Z/4. Note 
that 9 2 EE 1 mod 10. So we get a prime number p> Pk such that: 

(4) p EE 3 or 7 mod 10, 
(5) 5 n ' EE 2 mod p. 

In addition 5 is not a quadratic residue mod p iff p = 3 or 7 mod 10, by 
quadratic reciprocity law [H] p. 79. Hence 2™' 5 mod p because nk is 
even. • 

REMARK 3. Proposition 1 shows that numbers a = d = 2 and b — c — 5 
give another solution to Problem 2. We would like to point out, that the 
solution of Problem 2 in the case 6 = d = 1 and a, c arbitrary, follows from 
[CR-S] p. 277, theorem 1. The result of Corrales-Rodrigańez and Schoof 
mentioned above is done over any number field and was further generalized 
by A. Schinzel [S]. 
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THEOREM 2. There are infinitely many tuples (a,b,c,d) giving solu
tions to the problem 2 with 6 ^ 1 , d^l. 

PROOF . The proof is based upon ideas of proofs of theorem 1 and pro
position 1. Following notation of theorem 1 we take r e N to be a natural 
number such that the prime number pr+i = 3 or 5 mod 8. Let m 0 € N be 
odd and let mi, m 2 , . . . , mr be arbitrary positive integers. Let us define: 

(1) ar = 2m°plm>plm> ...p2

r

m> 
(2) br = pr+1. 

Observe that the number a?^n' - br is not divisible by primes p ^ pr+i-
On the other hand by Little Fermat theorem 

a" ' / n ' - br = 1 - pr+i mod pt, 

for r + 1 < i ^ k. Hence Or'^n' - br is only divisible by primes p > pk- In 
addition 

a?i/n' - br = 3 or 5 mod 8. 

So, arguing in the same way as in the proof of theorem 1, we see that there 
is a prime number p> Pk and p = 3 or 5 mod 8 such that 

ank/nr _ fcr = o mod p. 

On the other hand 
bn

r

lln' -ar^0 mod p, 

since 2 - hence also ar - is not a square mod p. It follows that for each r as 
above we can take a = d = ar and b = c = br to get a solution to problem 
2. • 

We may consider a generalization of problem 2 into the setting of group 
schemes. Let A/Q be an abelian group scheme over Q (we understand under 
this notion a group scheme [B] whose group structure is abelian without 
further restrictions, cf. [Mi] for narrower definition), with some reasonably 
good model A/Z. It is natural to propose the following problem. 

PROBLEM 3. Let x,y,w,z e A(Q) be four points in the Mordell-Weil 
group A(Q). Assume that x and w are non-torsion and x ^ w. Find ad
ditional conditions on x, y, w, z such that the following statement holds. 

There exists such a prime number po, that for all prime numbers 
p > Po and all n € N the following condition holds 

nxp = yv in *4P(FP) & nwp = zp in AP(WP), 

10 - Annales. 
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where AP is the reduction of A mod p and points xp, yp, wp, zp e AP are 
reductions ofx,y,w,z mod p respectively. 

REMARK 4. Problem 3 is solved in the case when A is an elliptic curve 
and y = z = 0 [CR-S] p. 277, theorem 2. Actually the authors in [CR-S] 
deal with elliptic curves over any number field F. We have decided to for
mulate problem 3 for abelian schemes over Q, however the reader can easily 
formulate appropriate problem over any number field. 

REMARK 5. Problem 2 is a special case of problem 3. Problem 2 concerns 
the group scheme G m / Q . Obviously, other interesting examples for A in 
problem 3 are those of elliptic curves and more generally, abelian varieties 
over Q. Note that 

<MQ) = Q x = © z e { i , - i } . 
p 

Hence <Gm(Q) is not finitely generated and has infinite rank over Z . On 
the other hand if A is an abelian variety [Mi] over Q then A(Q) is a fini
tely generated abelian group by Mordell-Weil theorem. The Z-rank of the 
Mordell-Weil group A(Q) for abelian variety A / Q is very hard to compute 
and should equal (due to the conjecture of Birch-Swinnerton Dyer) the order 
of vanishing at s = 1 of Hasse-Weil zeta function of A. 

REMARK 6. Problem 3 would have had some trivial solutions if we had 
alowed x and w to be torsion points. Namely, if a: is a torsion point, we can 
always take such a natural number m € N that m?x = x. Define y = mx, 
so we obviously get my = x. This easily implies that orders of x and y are 
equal and for every n € N; nx = y if and only if ny = x, already in A(Q). 
Hence due to a result of Katz [K] p. 501, we observe that for all p > 2 and 
for all n 6 N; nxv = yp if and only if nyp = xp in AP(WP). 

PROPOSITION 2. Let F be a number field and let A/F be an abelian 
variety over F. Let A/OF be the Neron model (see [BLR]) of A over 
OF- Let kv denote the residue field for a finite prime ideal in OF, and 
let AV be the reduction at v. Then the natural map 

A(F)^Y\Av(kv) 
V 

is an injection. 

PROOF. We know that torsion subgroup of A(F) imbeds into J[V Av(kv) 
by a theorem of Katz [K] p. 501. We need to prove that non-torsion elements 
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are not in the kernel of the map from the proposition. Take a projective 
imbedding A/F -> Pn/F such that the identity element of the abelian group 
A(F) has projective coordinates [1,0,0,..., 0]. Let x G A(F) be non-torsion. 
Let x = [to,h,...,tn] in P n . Take v such that all non-zero coordinates 
are prime to v. Let U denote the reduction mod v of the coordinate t{. If x 
reduces to indentity in Av(kv) then there is A G F prime to v such that 

[to,h,... Jn] = [X,0,0,...,0] mod v 

This shows that U = 0 for 1 ^ i' ̂  n. Hence 

z = [t o,0,...,0] = [ l ,0, . . . ,0]G A(F)cFn(F). 

• 

REMARK 7. We can trivially check that for any finite set S of prime ideals 
in OF the map 

o h -* n *»x 

v$S 
is an injection. Observe that in the case of Gm we have 

G M ( F ) = F*Ć Of<s = Gm,Ov{0F,s). 

It differs from the case of an abelian variety AjF and its Neron model A/OF-
Namely, we have 

A(F) = A{OF) [K] p. 501. 

REMARK 8. Proposition 2 and remark 7 show some similarity between 
OFS and A(F) with respect to the problem of reduction modulo various 
primes v. However we would like to point out that the structure of fc£ is 
much better known then the structure of Av(kv) as v varies. The reader 
easily observes that knowledge of the structure of multiplicative groups of 
residue fields F p was one of main keys to the solution of Problem 1. In that 
case we dealt with the map 

< M z £ , | ] ) = ( z £ , \]r -+ n W P = n <MFP) 

p>3 p>3 

X ->(xp) 
Because of the structures of Av{kv) and Mordell-Weil group A(F), problem 
3 may be a little bit harder then problem 2. 
10* 
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