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PRIME PERIODS OF PERIODICAL
P-ADDITIVE FUNCTIONS

STANISLAV JAKUBEC

Dedicated to the memory of Ivan Korec

I. Korec [Ko] introduced the following definition of a P-additive function.

DEFINITION. A function F : N — R is said to be Pythagorean-additive
(P-additive, for short) if for all z,y,z2€ N

?=y*+22 = F(z)=F(y)+F(2).

The aim of this paper is to determine all prime numbers that are periods
of P-additive functions. The main result is the following theorem.

THEOREM. Let the prime number p be a period of a P-additive func-
tion. Then p € {2,3,5,13}.

PROOF. The existence of P-additive functions with the periods p in the
set {2,3,5,13} is proved in [Ko].

Now we prove that there are no other periods. We start with the following
theorem (see Theorem 5.6 in [Ko]).

Let p > 5 be a prime number and let there exist a (non-constant) perio-
dical P-additive function with the period p. Then
(i) p=1 (mod 6).
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(i) For every triple of positive integers z,y,z such that p does not
divide zyz and £® +y? = 2% there is j € {1,2,...,p—1} such that o £ y
(mod p) and

(zy)) =2 (modp), 2% +2=0 (mod p).

(iii) Under the assumption (ii), the elements £ and ¥ have orders divi-
sible by 6 in the multiplicative group modulo p.

This statement reduces the proof of our Theorem to the following lemma.

LEMMA. For every prime number p =1 (mod 6), p # 13 there ezist
z,y,z € N satisfying z* + y* = 2%, (zyz,p) = 1 and such that either
(5)J (%)J is not a pmmztwe 6th root of unity modulo p, for j =
1,2,...,p—1.

PROOF OF THE LEMMA. Casel. p=3 (mod 4).
Put ¢ = 3,y = 4,z = 5. The number 2 - § = 12 is not a square in the group

(Z/pZ)*, because
()=-®=-()==

Thus exactly one of the numbers 2 5 5 is a square modulo p. If p = 3 (mod 4),
then a primitive 6th root of 1 modulo p is a quadratic nonresidue. This proves
the Lemma in Case 1.

CAsE 2. p=1 (mod 4) and p# 1 (mod 8).
We shall prove that for p > 1000 there exist (z, y, z), with 22 + y? = 22 such
that Z is a 4th power modulo p. This fact proves Lemma in the Case 2 (after
numerical examination of primes p < 1000) because a primitive 6th root of
1 modulo p is not a 4th power modulo p.

Let £ = 24 Put u = 7}, v = 24, 7172 # 0 (mod p), :z:1 - zz #0
(mod p). The number p — 1 is not divisible by 8 and so z = z§ + z§ # 0
(mod p). We prove that for p > 1000 there exist z,,z;,z3 € N such that

z1z2 # 0 (mod p), 28 — 2§ # 0 (mod p) and
(*) 23 + 28 =223 (mod p).

Denote by N the number of solutions of (*). By Theorem 3, p. 22 in [BS]
we have

IN - 9| < 27(p — 1)4/p.
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It is easy to see that the number of solutions of (*) that do not satisfy
z123 0 (mod p), 28 — 28 # 0 (mod p) is at most 96p+ 1. If p > 1000 then

|96p+ 1 - p*| > 27(p - 1)v/P,
therefore there exists a solution of (*) such that z,2, # 0 (mod p), 28—z} #

0 (mod p).
Let z,, 73, z3 be such a solution. Then

4,4 4,4
2uv 2riz3 2zi7; (mod
—=a— =3 = 2 mod p),
z u*+tv i + 3 223

and so £ is a 4th power modulo p. To complete the proof in Case 2 it is

necessary to check the primes p < 1000 such that p = 1 (mod 6), p = 5
(mod 8), hence the primes:

p =37,61,109, 157, 181,229,
541,277,349, 373, 397, 421, 613, 661, 709, 733, 757, 829, 853, 877,997.

The following list gives the values (p, £) such that (—:—)J it is not a primitive
6th root of 1 modulo p, for j =1,2,...,p— 1.

(p2) = (37, 153) (61,2), (109,3), (157
(349,2), (373,2), (397,%),(421,5),(5
(733,%) (757,33) (829,3),(853,2), (87

2)-0)-

there exist a,b € Z such that a> = —1 (mod p), b2 = 2 (mod p). Thus

,8), (181,3) (229,5),, (277, 33) ,
'2),(613,2), (661, 3) , (109, 4),
7%), (697,2)

Cask 3. p=1 (mod 8).
Because

a? +b2 =1 (mod p).

We are now in a position to apply. the following theorem proved in [Sc]:

If ord; m is even and there ezist integers xo, Yo, 20 satisfying 3+ =23
(mod m), then there ezist integers z,y,z such that 224+ y? =22 22 =
z8,y* = 1§, 2% = 2} (mod m).

Using this result we conclude that there exist z = ta,y = +b,2 = +1
(mod p) such that z2 + y? = 22. Hence £ = +a (mod p). Clearly +a is a
root of the polynomial X* — 1 = 0 (mod p), and so (+a)’ is also a root
of this polynomial. Hence it cannot be a primitive 6th root of 1 modulo p
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because the polynomials X2 — X + 1 and X* — 1 over the field Z/pZ are
relatively prime.

Now all the primes p have been verified. Thus the Lemma, and so also
the Theorem, is proved. O

REMARK. The referee of this paper proved that the exact number of
solutions of (*) that do not satisfy z;z; # 0 (mod p), 23 — 2§ # 0 (mod p)
is 16(p — 1) + 1. Thus the inequality |16p — 15 — p?| > 27(p — 1),/p holds
for all primes p > 800 and it is sufficient to verify the primes up to 800.
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