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PRIME PERIODS OF PERIODICAL 
P-ADDITIVE FUNCTIONS 

STANISLAV JAKUBEC 

Dedicated to the memory of Ivan Korec 

I. Korec [Ko] introduced the following definition of a P-additive function. 

DEFINITION. A function F : N R is said to be Pythagorean-additive 
(P-additive, for short) if for all z, y, z € N 

x2 = y2 + z2 F(x) = F(y) + F(z). 

The aim of this paper is to determine all prime numbers that are periods 
of P-additive functions. The main result is the following theorem. 

THEOREM. Let the prime number p be a period of a P-additive func­
tion. Then p € {2,3,5,13}. 

PROOF. The existence of P-additive functions with the periods p in the 
set {2,3,5,13} is proved in [Ko]. 

Now we prove that there are no other periods. We start with the following 
theorem (see Theorem 5.6 in [Ko]). 

Let p > 5 be a prime number and let there exist a (non-constant) perio­
dical P-additive function with the period p. Then 
(i) p = 1 (mod 6). 
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(ii) For every triple of positive integers x,y,z such that p does not 
divide xyz and x2 + y2 — z2 there is j € {1,2,...,p — 1} such that x' ^ y' 
(mod p) and 

(xy)j = z2j (mod p), x3j + z3j = 0 (mod p). 

(iii) Under the assumption (ii), the elements - and | have orders divi­
sible by 6 in the multiplicative group modulo p. 

This statement reduces the proof of our Theorem to the following lemma. 

LEMMA. For every prime number p = 1 (mod 6), p ̂  13 there exist 
x,y,z £ N satisfying x2 + y2 = z2, (xyz,p) = 1 and such that either 
(-)J or {^Y is not a primitive 6th root of unity modulo p, for j = 
1*2,... , p - 1. 

PROOF OF THE LEMMA. Case 1. p = 3 (mod 4). 
Put x = 3, y — 4, z = 5. The number f • | = ł£ is not a square in the group 
(Z/pZ)*, because 

G ) - ( D - ( i ) — 
Thus exactly one of the numbers f, f is a square modulo p. If p = 3 (mod 4), 
then a primitive 6th root of 1 modulo p is a quadratic nonresidue. This proves 
the Lemma in Case 1. 

CASE 2. p = 1 (mod 4) and p ^ 1 (mod 8). 
We shall prove that for p > 1000 there exist (a;, y, z), with x2 +y2 = z2 such 
that f is a 4th power modulo p. This fact proves Lemma in the Case 2 (after 
numerical examination of primes p < 1000) because a primitive 6th root of 
1 modulo p is not a 4th power modulo p. 

L e t 7 = ^+ -̂ P u t u = x\, v = x%, xxx2 £ 0 (modp), xf - if ^ 0 
(mod p). The number p - 1 is not divisible by 8 and so z = xf + x\ 0 
(mod p). We prove that for p > 1000 there exist xi,X2,x3 6 N such that 
xix2 ^ 0 (mod p), x\ - x\ ^ 0 (mod p) and 

(*) x? + xf = 2x| (modp). 

Denote by N the number of solutions of (*). By Theorem 3, p. 22 in [BS] 
we have 

\N-p2\^27{p-l)y/p. 
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It is easy to see that the number of solutions of (*) that do not satisfy 
xix2 ^ 0 (mod p), x\ - x\ ^ 0 (mod p) is at most 96p +1. If p > 1000 then 

|96p+l-p2| >27(p-l)VP, 

therefore there exists a solution of (*) such that xxx2 ^ 0 (mod p), 
0 (mod p). 

Let xi, X2, x3 be such a solution. Then 

x 2uv 2x\x\ 2x\x\ , , . 
- V" (modp), z u2 + v2 x\ + x\ 2x 3 

and so j is a 4th power modulo p. To complete the proof in Case 2 it is 
necessary to check the primes p < 1000 such that p = 1 (mod 6), p = 5 
(mod 8), hence the primes: 

p =37,61,109,157,181,229, 
541,277,349,373,397,421,613,661, 709,733,757,829,853,877,997. 

The following list gives the values (p, j) such that (|)J it is not a primitive 
6th root of 1 modulo p, for j = 1,2,..., p — 1. 

(P. f) = (37, £ ) , (61,1) , (109,1) , (157,1) , (181, f) (229, f) , (277, g) , 
(349,1) , (373,1) , (397, f) , (421, f) , (541, f) , (613, f) , (661, f) , (709, f) , 
(733, f) , (757, |§) , (829, f) , (853, f) , (877, i ) , (997, f) . 

CASE 3. p = 1 (mod 8). 
Because 

( T H ; ) -
there exist a, b 6 Z such that a2 = -1 (mod p), 62 = 2 (mod p). Thus 

a2+62 = l 2 (modp). 

We are now in a position to apply the following theorem proved in [Sc]: 
/ / ord2 m is even and there exist integers x0,y0, ZQ satisfying x\ + J/Q = Ą 
(mod m), then there exist integers x,y,z such that x2 + y2 = z2, x2 = 
xl,y2 = yl,z2 = zl (mod m). 
Using this result we conclude that there exist x = ±a, y = ±6, z = ±1 
(mod p) such that x2 + y2 = z2. Hence f = ±a (mod p). Clearly ± a is a 
root of the polynomial X* — 1 = 0 (mod p), and so (±a) J is also a root 
of this polynomial. Hence it cannot be a primitive 6th root of 1 modulo p 
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because the polynomials X2 - X + 1 and X4 - 1 over the field Z/pZ are 
relatively prime. 

Now all the primes p have been verified. Thus the Lemma, and so also 
the Theorem, is proved. • 

REMARK. The referee of this paper proved that the exact number of 
solutions of (*) that do not satisfy x\x2 ^ 0 (mod p), ^ 0 (mod p) 
is 16(p - 1) + 1. Thus the inequality |16p - 15 - p2 \ > 27{p - l)y^ holds 
for all primes p > 800 and it is sufficient to verify the primes up to 800. 
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