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DENSITY THEOREMS FOR RECIPROCITY EQUIVALENCES

THoMAS C. PALFREY

Abstract. A reciprocity equivalence between two number fields is a Hilbert
symbol preserving pair of maps (t,T), in which ¢ is a group isomorphism
between the global square class groups of the two fields, and T is a bijection
between the sets of primes. For two reciprocity equivalent number fields,
it is proved that: Theorem A: The Dirichlet density of the wild set of any
reciprocity equivalence is zero. Theorem B: There exists a reciprocity equi-
valence whose wild set is infinite. Theorem C: Given (t,T), the bijection T
determines the global square class isomorphism ¢.

1. Introduction

This paper contains the results of the dissertation [Pa). I thank Robert
Perlis and P. E. Conner for their insights and guidance.

In [PSCL], Perlis, Szymiczek, Conner, and Litherland investigated Witt
rings of algebraic number fields. They proved that two number fields K and L
have isomorphic Witt rings if and only if the fields are reciprocity equivalent,
which is defined as follows:

K and L are reciprocity equivalent when there is a bijection

T:Qr — Qf
between the set Qi of primes of K and the set Qj of primes of L, and a
group isomorphism
: t:K*/K** — L*/L*
of global square classes such that Hilbert symbols are preserved; that is
(a, b)p = (ta, tb)Tp
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162 Thomas C. Palfrey

for every P in Qk and a,b in K*/K*?. We call the pair of maps (¢,T) a
reciprocity equivalence.

Let P denote a finite prime of K. When (¢,T) preserves P-orders, i.e.
when

ordp(a) = ordrp(ta) (mod 2)

for each a in K*/K*, then we say that (, T) is tame at P. Otherwise (¢, T) is
wild at P. The wild set of the reciprocity equivalence (¢, T') is the collection
of all finite primes P where (¢,7T') is wild. If the wild set is empty, we say
that the reciprocity equivalence (¢, T') is tame.

2. Summary of P-S-C-L

This section contains a summary of those results from the paper [P-5-C-L]
that will be used in this paper. Let P be a prime, finite or infinite, of the
number field K, and let Kp denote the completion of K at P. Let (¢,T) be
a reciprocity equivalence from K to L. The following is Lemma 4, parts a
and b, of [P-S-C-L]. For the purposes of this paper, we call it Lemma 1.

LEMMA 1.
1. There are local symbol-preserving isomorphisms

tp: Kp/K? — Lyp/Lie
for P ¢ Qg making the following diagram commute:

K*/K* —— Kp/KP

1 L
L*/L** —— Lip/LT%
2. The map T sends real primes to real primes, complez primes to

complezr primes, dyadic primes to dyadic primes, and finite nondyadic
primes to finite nondyadic primes.

Let S be a finite set of primes of K. Then S is said to be sufficiently
large when S contains all real and all dyadic primes of K and when the ring
of S-integers

Os = {z € K | ordp(z) > 0 for all primes P € Qg \ S}

has odd class number. If S already contains the real and dyadic primes, then
S is sufficiently large if and only if S also contains a set of generators of the
Sylow 2-subgroup of the ideal class group of K.
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Let Us be the group of units of Og. That is,
Us = {z € K | ordp(z) = 0 for all primes P € Qg \ S}.

By definition, an S-equivalence from K to L consists of:

1. A bijection T from a sufficiently large set S of primes of K to a sufficiently
large set 7'S of primes of L.

2. A group isomorphism

ts: US/U§ — UTS/U%S-
3. For each prime P of S a symbol-preserving isomorphism
tp:Kp/KE — Lrp/Lip.

4. A commutative diagram

diag * "
Us/UE —— [] K#/KF
L Pes

| e

PeS

diag .
Urs/U¢s — [] Lrp/L7s-
PeS

Our second lemma is Lemma 5 from [P-S-C-LJ.

LEMMA 2. Let S be a sufficiently large set of primes of K. Then the
map

Us/U:t  E38 [ Kp/KP
PeS

s injective.

We close this section by quoting two results from [P-S-C-L]. The first is
[P-S-C-L] Theorem 2, which we relabel Theorem 1:

THEOREM 1. An S-equivalence from K to L can be extended to a
reciprocity equivalence that is tame outside of S.

The next result is taken from Corollary 3 of [P-S-C-L], restated in terms
appropriate for this paper:

11*
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COROLLARY. Let (t,T) be a reciprocity equivalence between two num-
ber fields K and L with at most a finite wild set W. Let S be a sufficiently
large set of primes of K containing W. If TS is also sufficiently large,
then (t,T) restricted to Us/UZ is an S-equivalence.

3. Main Lemma

Let F be an algebraic number field and let M be a set of primes of F'.
The terminology almost all means ‘with the possible exception of a set
of Dirichlet density 0’. Define

G(M) = {% € F*/F*? such that Z = 1 in F}/F}? for almost all P in M}.

MAIN LEMMA. If G(M) is infinite, then the Dirichlet density of M is
zero.

PRrROOF. G(M) is a vector-space over the field F; of order 2. Being infi-
nite, G(M) has infinite dimension over F;. Hence, for any natural number
k there are Fj-linearly independent elements Z;,Z3,...,Zi in G(M). Set
Ex = F(\/z1,/%3,...,/Zk), where z; is any representative of Z;. Then
E) has degree [E) : F] = 2F over F. Let Dy be the set of finite primes of
F that split completely in Fi, and let A, denote the set of all primes P of
F which ramify in F}.

We assert that M is almost contained in D; U A,.

For k fixed and for each 7 in the range 1 < ¢ < k, let S; be the set of all
primes P in M for which z; is not a square in Fp. By definition of G(M),
each set S; has density 0. And Ay is also finite. Thus

k
Skl = (U 8:) u (2

i=1

has density 0. Let P be a finite prime in M \ S[k] and let Q) be a prime of
E, that lies over P. Since z; is a square in Fp for 1 < ¢ < k, the completion

(Ek)Q = FP(\/z_l’\/E’-“a\/ED = Fp.

Hence P splits completely in E); so P is contained in Dy. Since each prime
of M outside of S[k] lies in Dy, it follows that M is contained in the union
of Dy with the set S[k]. By Cebotarev’s Density Theorem, the density of D
is [Ey : F]~! = 27*. Since the set S[k] has density 0, the set M is a subset
of a set of density 2% for every natural number k. It follows that M has
Dirichlet density 0, proving the lemma.
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4. Theorems A, B, C

This section contains the proofs of the three theorems mentioned in the
abstract.

LEMMA 3. Each element z in K* is a local square at every wild prime
of (t, T) with the ezception of at most finitely many wild primes.

PROOF. Suppose not. Then, since z is locally a unit at all but finitely
many primes, there is an infinite set C' of finite nondyadic wild primes of
K such that z is locally a non-square unit at every prime in C. Applying
the square class map ¢ then shows that ¢(Z) is locally the square class of
a local prime element at 7P for an infinite set of primes TP of L. This is
impossible, proving the lemma.

THEOREM A. If (t,T) is a reciprocity equivalence from K to L, then
the density of its wild set is zero.

PROOF. Let M be the wild set of (t,T).

We assert that G(M) is equal to the infinite square class group K*/K 2,

The inclusion G(M) C K*/K*? is clear. Conversely, take Z in K*/K*?
and let r be an element of Z. By Lemma 3, z is a local square at almost
every element of M. Thus z lies in G(M), proving the assertion that G(M) =
K*/K*?, Hence G(M) is infinite and so by the Main Lemma, M has density
zero, proving Theorem A.

Let A be an abelian multiplicative group. Recall that the rank of A is the
minimal size of a set of generators of A. If no finite set of elements generates
A, then the rank of A is co.

REMARK. By the Dirichlet S-unit theorem, if S is a finite set of primes
of K containing all infinite primes, then U is finitely generated (in fact, Us
has rank |S| ~ 1). It follows that Us/U3 is also finitely generated.

Let P be a finite nondyadic prime of a number field K, let u be a nonsqu-
are unit of the ring of local integers of K p, and let 7 be a local uniformizing
parameter of P. Then we have the following values for Hilbert symbols:

(u,w)p =1,(m,u)p = —1, (um,u)p = —1.
Moreover (r,7)p = 1 if and only if —1 is a square in K3/K3.

LEMMA 4. Let S be a sufficiently large set of primes of a number
field K. Then there is a prime P' outside of S and a a self-equivalence
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(t',T") from Ug /U% onto Us /U% where S' = SU{P'} and where (t/,T")

1s defined as follows:

1. t' is the identity map on Us /U%.

2. T' s the identity map on S'.

3. For every prime P in S the local map t's of (t',T') is the identity on
K5/K2.

4. The local map tp : Kp/K¥¥ — Kp/K§ is defined by tp (1) = I,
tp(u) =u'n, tp(r') = 7' and tp(u'r') = @' where u' denotes up and
7' denotes mp.

Proor. By Dirichlet’s S-unit theorem, there exist a;,a3,---,a, in K
which generate Us/U%. Put ap = ~1 and let Ls denote the field

K (Vs /i, .. ,/am) .

Infinitely many primes of K split completely in Ls; choose P’ to be one
of these primes that is finite and nondyadic. Thus a; is a square at P’ for
0t n Let §'=SU{P'} and let (¢',T") be as in the statement of this
claim. Then the following diagram commutes:

dia
Us/U, — T[] Kp/K#
PeS'

.| Ng

PeS'

diag
2 * *2
UTS’/UTS’ ? I I LTP/LTP'
PeS'

It remains to check that Hilbert symbols are preserved. This is automatic
for all P € S since the local map is the identity, so it remains to check that
the local map at P’ preserves Hilbert symbols. Since ap = —1 is a square in
K3, /K3, we have the following Hilbert symbol equalities:

(v, u)p = (v, w')pr(u!, ﬂ.l)%m(ﬂ.l’ ™p = (W', u'n")p

and (v, 7')p = (v, 7 )p(r',7")p = (v'7',7")p.

From the two equalities above and the definition of ¢p, we see that tp
preserves local Hilbert symbols. Finally, since S’ is sufficiently large, (¢, 7")
is an S’-equivalence, proving Lemma 4.

LEMMA 5. Let (t,T) be a reciprocity equivalence from the number field
K to the number field L with a finite wild set W comprised of n elements
(where n can be zero). Suppose that S and T'S are sufficiently large sets
of primes of K and L, respectively, and suppose that S contains W. Then
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there ezists a prime P' of K outside of S, a set of primes S' = SU{P'}
and an S'-equivalence (', T') from Us /U} onto Urs [Us satisfying the
following properties:

1. (t',T") has ezactly n+ 1 wild primes;

2. (¢, T") restricted to Us/U% is precisely (t,T) restricted to Us/U}.

PROOF. By the Corollary to Theorem 1, (¢, T) restricted to Us/U}% is an
S-equivalence onto Urs/ U2g. By Lemma 4 applied to the field L, there
exists a prime P' of K outside of S such that, for S’ = § U {P'} (and
hence TS' = TS U {TP'}), there exists an T'S'- self-equivalence (¢',T")
from Urs /U2 onto Urg/UZg which satisfies properties 1, 2, 3, and 4 of
Lemma 4 (with the field L in place of K.)

Let (¢",T") denote the composition (¢ ot, T’ oT) of the given reciprocity
equivalence (t,T) from K to L with the T'S’-self-equivalence we just con-
structed. Then (¢”,T") is an S'-equivalence from Us/U% onto Urs /U,
with exactly » + 1 wild primes. The reader can easily see that property 2
holds under this construction. This proves Lemma 5.

Lemma 5 contains the main ingredients needed for constructing a recipro-
city equivalence with an infinite wild set. However, there are some necessary
technical details which are handled in the following lemma.

LEMMA 6. Let (t,T) be a reciprocity equivalence from K to L with
a finite wild set W(t,T). Let py,p2,ps,... denote an ordering of the
rational primes numbers. For every natural number n, let A, denote
the set of all prime ideals in K lying over a rational prime p; with
j € n. Similarly, let B, denote the set of all prime ideals in 'L lying
over a rational prime p; with j < n. We asert:

a). There ezists a sufficiently large set S; containing A,, the wild set
of (t,T), and containing at least one wild prime. There also ezrists an
 Sy-equivalence (t1,T1) for which T1(S1) D Bi.

b). Given a natural number n and given a sufficiently large set S, con-
taining S; and given an S,-equivalence (t,,T,) that restricts to (t1,T1),
and given that the wild set of (t,,T,) contains at least n primes, then
there is a set Spy1 containing S, and an Spyi-equivalence (tnt+1y Tnt1)
which restricts to (tn,T,) and whose wild set contains at least n + 1
primes, with Sp41 D Ant1 and Tnp1(Snt1) O Bry1-

PRrOOF. Let C be a finite set of primes which generates the Sylow 2-sub-
group of the ideal class group of K. Define So, a set of primes of K, to
be the union of all infinite primes, dyadic primes, and the set C. Similarly
define Sy, a set of primes of L, to be the union of all infinite primes, dyadic
primes and a set D of generators of the Sylow 2-subgroup of the ideal class
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group of L. Clearly any finite set of primes containing either Sy or Sy is
sufficiently large. Let S} = So UT~(So U By) UW(t,T)U A;. By Lemma
5 there exists a prime P, of K outside of Sj, a set S; = S; U{F} and an
Si-equivalence (t;,T;) from Us,/U% onto Urs,/U%g for which P, is wild
and which restricts to (t,T). Thus, the wild set W (t,,T;) contains at least
one wild prime. This proves part a).

For b), we first extend the given S,-equivalence (t,,7,) to a reciprocity
equivalence (¢}, T,), by Theorem 1. In fact, this extension (¢}, 7)) is tame
outside S, although that is not needed here. Let S}, = S, U Apy1 U
T'7*(Bp41). By Lemma 5 there exists a prime P,,; of K outside of S/, 41
and an extension of the given S,,-equivalence (t,,T,) to an S,+1-equivalence
(tn+1, Tnt1) where Spyy = S5 43 U{Pns1}, for which P, is wild. Thus the
wild set W(tr+1,Tn+1) contains at least n + 1 primes. This proves b) and
Lemma 6.

This brings us to

THEOREM B. If K s reciprocity equivalent to L, then there exists a
reciprocity equivalence between them with an infinite wild set.

Proor. Recall that Q denotes the collection of all primes (finite, dyadic,
infinite) of the field K and 2, denotes the set of all primes of L. Let (¢t,T’)
be a reciprocity equivalence from K to L. If the wild set W (t, T') is infinite,
there is nothing to prove. So assume the wild set is finite. By Lemma 6,
there is a sequence of sufficiently large sets

S1CS C---CS,C---
and a corresponding sequence of S,-equivalences (t,,T,), in which the
(n + 1)st extends the nth, and for which the wild set W(t,,T,) has at
least n primes. Then the union
U;.Lozls n= QK
since S,, contains the set A, defined in Lemma 6, and similarly

By compatibility, the bijections T,'s canonically induce a bijection T, from
Qg to Qp. Moreover,

U;L.O=IU3./U§. = K*/K*z’
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and therefore the compatible group isomorphisms ¢, canonically induce a
group isomorphism ¢, from K*/K*? to L*/L*?. Then the pair (¢.,7.) pre-
serves Hilbert symbols, since each pair (¢,,7,) does, and the wild set of
(ts,Ty) exceeds n for every natural number n. Thus (t.,T.) is the desired
reciprocity equivalence with an infinite wild set, proving Theorem B.

Having proved Theorems A and B, we turn our attention to the following
question: Given a reciprocity equivalence (t,T), to what extent does either
of the two maps determine the other? In [P-S-C-L}, Lemma 4, part f, it is
proved that the square class isomorphism ¢ determines 7" at the non-complex
primes. For use below, we cite a very special case. We refer to a reciprocity
equivalence from a field K to itself as a self-equivalence.

LEMMA 7. Let (t,T) be a self-equivalence on K. Ift =id, then T = id
ezxcept possibly at the complez primes.

It should be observed that, given a reciprocity equivalence (¢,7), one
can change T by arbitrarily permuting the complex primes, yielding a new
bijection T’ for which (¢,7") is another reciprocity equivalence. This settles
the question above in one direction. We now consider the question: Does T
determine ¢? The answer is given in Theorem C, below. The proof will take
some preparation; the key step involves the sets G(M) of the Main Lemma,
in section 3.

LEMMA 8. Let (t,T) be a self-equivalence on K, and let n be the ho-
momorphism from K*/K** to K*/K*? sending & to t(%)/(Z). Fiz an
element j of K*/K*?. Then there is a finite set, S(J), of primes so that
for any tame prime P ¢ S(§) with TP = P, then n(§) = 1 locally in
Kp/K3.

ProoF. Let § € K*/K*2, and y € j. We define S(7) to be the set of all
infinite primes, dyadic primes, and primes P for which ordp(y) # 0. Now
suppose that P is a tame prime outside of S(§) for which TP = P. Let up
be a local non-square unit at P. Then tp(up) = urp = up, by tameness.
But locally at P the class § is either a local square or the class of up at P.
So n(§) =tp(§)/§ = 1 locally at P, proving Lemma 8.

LEMMA 9. Let (t,T) be a self-equivalence on K and let ) be as before.
Suppose that the image of  is a finite set. Then TP = P for every
prime P of K outside of a finite exceptional set.

PrOOF. Let {Z;,%3,...,%,} denote the image of 7. The set of all dyadic
primes, infinite primes, and all primes P for which ord7p(%;) # 0 (mod 2)
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for some index ¢ is a finite set. Take P outside this finite set. We claim that
TP = P; we argue by contradiction. If TP # P, then by approximation,
there exist global square classes @, b such that @ is a local square at TP and a
local prime element at P, while b is a local non-square unit at P and a local
square at T'P. Write 7(@) = Z; and 7(b) = %;. Then we compute Hilbert
symbols as follows:

1= (@,B)p = (tp(@), tr(B))zr = (253, 34b)zp =

= (@,b)rp(Z;,0)7p(@, 2k)7P(Z;, T)Tp = 1

since @, b are local squares at TP and 7 ; and T are locally the square classes
of local units at the non-dyadic prime T P. This contradiction proves that
TP = P, proving the lemma.

LEMMA 10. Let (t,T) be a self-equivalence on K and n be as before.
If the image of 1 is finite, then t = id and T = id ezcept possibly at the
compler primes of K.

ProoF. We will show that ¢ = id; then T(P) = P for non-complex P
follows immediately from Lemma 7. To show that ¢ = id we will show that
the image of 17 is 1. We begin by partitioning the set of primes of K into
three disjoint subsets A, B and C. Let A be the set of all dyadic primes,
infinite primes, and all tame primes P of (¢, T) such that TP # P. The set
A is finite by Lemma 9. Let B be the set of all nondyadic tame primes P of
(t,T) such that TP = P; and let C be the set of all nondyadic wild primes
of (¢,T). The subsets B and C can be infinite. Let 7 ¢ K*/K*%. By Lemma
8, 7(Z) = 1locally at P for every prime P in B outside a finite exceptional
set. By Lemma 3, 7(Z) = 1 locally at P for every prime P of C outside of
a finite exceptional set. Thus 7(Z) is a local square at P for every prime P
of K outside of a finite set, and so by the Global Square Theorem, 7(z) = 1
in K*/K*?. Hence t = id; whence T' = id except possibly at the complex
primes.

Recall that, for a set M of primes of K, then G(M) is the set of all global
square classes that are local squares at P for almost all P in M.

LeEMMA 11. Let (¢,T) be a self-equivalence on K and let M be the set
of primes P of K such that TP = P. Then n(Z) ¢ G(M) for every
e K*/K*2,

PrOOF: Let Z be a fixed element of K*/K*? and let A (respectively B)
be the set of all tame (respectively wild) primes P of (¢,7) contained in M
such that 7(z) # 1in K}3/K}2. By Lemma 8, the density of A4 is zero.
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Since the wild set has density 0 by Theorem A, the subset B has density
zero. Therefore the density of A U B is zero. Hence 7(Z) is a local square
at P for every P € M outside AU B, proving the lemma.

CoROLLARY. Let (t,T) be a self-equivalence on K and M be the set of
primes P of K such that TP = P. If the density of M is bigger than
zero, thent =id and T = id except possibly at the complez primes of
K.

PROOF. Suppose that ¢ # id or T # id except possibly at the complex
primes of K. By Lemma 10 the image of 7 is infinite. It follows from Lemma
11 that G(M) is infinite, and hence, by the Main Lemma, the density of M
is zero, contrary to our hypothesis. This establishes the corollary.

THEOREM C. Let (t1,T1) and (t;,T2) be reciprocity equivalences from
K to L.

1. Ifty = t;, then Ty = T, ezcept possibly at the complex primes
of K.

2. Let M be a set of primes of K of positive density. If hP = T,P
for every prime P in M, thent, = t; and Ty = T ezcept possibly at
the complez primes of K.

ProorF. Note that (t;ltl,Tz"lTl) is a self-equivalence on K. If t; = t,,
then ¢;'t; = id, and so part 1 follows from Lemma 7.

If Ty P = TP for every prime P contained in M, then T; Ty P = P for
P ¢ M. By the Corollary to Lemma 11, t;ltl = 1d and T2_1T1 = id except
possibly at the complex primes of K, and 2 follows, proving the theorem.

CoroLLARY. Let (t,T) be a reciprocity equivalence from K to L. Fiz
two distinct noncomplez primes Py, Qo of K. Define a new map Ty on
primes by T1(P) = T(P) for P not in {P,Qo}, T1(P) = T(Qo) and
T1(Qo) = T(Fo). Then for any square class map t;, the pair (t;,T}) is
not a reciprocity equivalence.

PRrOOF. Suppose (¢;,7) is a reciprocity equivalence. The complement
of the set {Fy,Qo} in the set of all primes of K has density 1. Hence, by
Theorem C, T = T; at the non-complex primes, contrary to the definition
of 71, proving the corollary.
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