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A G E N E R A L I Z E D a - W R I G H T - C O N V E X I T Y 

A N D R E L A T E D F U N C T I O N A L E Q U A T I O N 

J A N U S Z M A T K O W S K I A N D M A Ł G O R Z A T A W R Ó B E L 

Abstract. Let I be an interval and M,N : I x I I some means with the 
strict internality property. Suppose that <p : J —• R is a non-constant and 
continuous solution of the functional equation 

<p(M(x, y)) + ip(N(x, y)) = <p(x) + <p{y). 

Then tp is one-to-one; moreover for every lower semicontinuous function 
/ : / - » R satisfying the inequality 

f(M(x,y)) + f(N(x,y)) < /(*) + f(y), 

the function / o ip~l is convex on <p(I). This is a generalization of an earlier 
result of Zs. Pales. An application to the a-Wright convex function is given. 

1. Introduction 

Let J C R be an interval and a G (0,1) a fixed number. A function 
/ : / — > • R is said to be o-Wright convex if, for all x, y £ 7, 

(1) f(ax + (1 - a)y) + / ( ( l - a)x + ay) < f(x) + f(y). 

It is shown in [3] that every lower semicontinuous a-Wright convex function 
is convex. 
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Clearly, every linear function / converts (1) into equality. In this connec­
tion let us note that Zs. Pales [4] found a close relation between the more 
general functional inequality 

(2) f(M(x,y)) + f(N(x,y))<f(x) + f(y), x,y e J , 

and the corresponding functional equation 

(3) <p(M(x,y)) + <p(N(x,y)) = <p(x) + <p(y), x,y E I, 

where M , N : I x I -+ I are continuous functions satisfying the following 
strict internality condition 

(4) x,y E I, x ^ y =• M(x, y), N(x,y) e (min(x,y), max(a;,y)), 

(in particular, M and N are means on I). He proved that: if there exists a 
continuous strictly monotonie solution (p : I —> R of (3), then a continuous 
function f : I -» R satisfies (2) if, and only if, foip~l is a convex function on 
<p(I). In this note we show that this result remains true if <p is non-constant 
and continuous, and / lower semicontinuous. 

2. Main result 

The following result improves the result of Pales [4] 

T H E O R E M . Let M,N : I x I —t I be continuous functions satisfying con­
dition (4), and suppose that cp : I —> R is a non-constant and continuous 
solution of equation (3). Then <p is one-to-one, and for every lower semi-
continuous function f : I —> R satisfying inequality (2), the function / o y > - 1 

is convex on <p{I). 

P R O O F . Put N 0 := N U {0}. Define Mk, Nk:IxI-*It ke N 0 , by 

M0(x, y) := M(x, y), N0(x, y) := N(x, y), 

Mjfc+i(a;,y) := M(Mk(x,y),Nk{x,y)), 

Nk+i(x,y) := N(Mk(x,y),Nk(x,y)), 

and mk, nk : I x I -> I, k G N 0 , 

mk{xyy) := min((Mk{x,y)),(Nk(x,y)), 

nk(x,y) := max((Mk(x,y)),(Nk(x,y)). 
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Of course all the functions Mk,Nk, mk, nk are continuous. As M and N are 
means we have 

m0(x,y) <mi(x,y) < . . . <mk(x,y) <nk(x,y) 
<... < n!(x,y) < n0{x,y), 

and 

(6) Mk(x,y),Nk(x,y) G [mk(x,y), nk(x,y)], 

for all fc e N 0 and x,y G I. It follows that the sequences (mk) and (nk) 
converge on I x I. Thus there exist moo, "oo : / x / - + J such that 

l im mk(x,y) =: m^O^y) < noo(a;,y) := l im n f c(x,y), 
fc-+oo fc->oo 

for al l x,y € I. Since the functions of both sequences are continuous, (mk) is 
increasing and (nk) is decreasing, the function moo is lower semicontinuous, 
and rioo is upper semicontinuous on J x I. Suppose that there are x,y £ I 
such that moo(a;,y) < noo(a:,y)- Hence, as M and N are the strict means, 
we would get 

Af(m 0 0(a;,y),n 0 0(x,y)), iV(m 0 0(x,y),n 0 0(a;,y)), 6 (moo(^,y),noo(a;,y))-

Now the continuity of M and N implies that for sufficiently large k 

M(Mk(x,y),Nk(x,y)),N(Mk(x,y),Nk(x,y)) G (moo(a;,y),noo(aJ,J/)), 

i.e. 

Mk+i(x,y),Nk+i(x,y) E (moo(a:,y),noo(z,2/))-

Hence, by the definition of the sequences (mk) and (nk), 

mk+i(x,y),nk+1(x,y) G (m 0 0(x,y),n 0 0(a;,y)), 

for sufficiently large k which is a contradiction. This proves that for all 
x,yel 

™oo(x,y) = "oo(a:,y)-

Define K : I x J -> I by 

K(x,y) := moo(a;,y), x,y G I. 

The function K, being lower and upper semicontinuous, is continuous. The 
pointwise convergence of the sequences (Mk) and (Nk) to i f is a consequence 
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of relation (6). Take x,y E I and x ^ y. Without any loss of generality we 
can assume that x < y. Then 

x < M{x, y) <y, x < N(x, y) < y. 

Since 

mm(M(x,y),N(x,y)) < K{x,y) < max(M(x,y),N(x,y)), 

we infer that K has strict internaUty property. 
The definitions of (Mk),(Nk), and relation (2) and (3), by an obvious 

induction imply, that for all k E N 

f(Mk(x,y)) + f(Nk(x,y)) < f(x) + f(y), x,y E I, 

and 
ip(Mk(x,y)) + (p(Nk(x,y)) = (p{x) + <p(y), x,y £ I. 

Letting k tend to the infinity, and making use of the lower semicontinuity of 
/ , the continuity of ip, and the relation 

l im Mk(x,y) = K(x,y) = l im Nk(x,y), 
fc—>oo fc-KJO 

which is a consequence of (6), we hence get 

(7) 2f(K(x,y))<f(x) + f(y), x,y € I, 

and 

(8) 2<p(K(x, y)) = ip{x) + <p{y), x,yEl. 

Suppose that there are a,b £ I, a^b, such that ip(a) = ip(b), and put 

C := {x € I: (p(x) = (p(a)}. 

By the continuity of ip, the set C is closed in J . Note that C is an interval. 
In the opposite case we could find a\,b\ 6 C, o i < b\, such that (p(x) ^ (p(a) 
for all x E [ai, &i]. Setting in equation (8) x = o i , y = b\ we would get 

2ip{K{aiM)) = vKoO + y»(6i) = 2ip(a), 

i.e. (p(K(a,i,bi)) = <p{a), which according to the choice of the interval [oi, b\] 
is impossible. Now the continuity of K and the property (6) easily imply 
that C = I. This contradiction proves that <p is one-to-one. 
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From (8) we have 

K{x, y) = ip i (<p{x) + y(y) x,y El. 

Substituting this into (7) we get 

^^M)]<f(x) + f(y), x,y el. 

Setting here x := <p~l(s), y :— <p~l(t), for s,t £ <p(I) gives the Jensen 
convexity of the function / o y > - 1 on the interval <p{I). This function is lower 
semicontinuous as the composition of the continuous function (p and lower 
semicontinuous function / . It follows that foip-1 is convex (cf. for instance 
[1], Chapter I, Cor. 2.5). This completes the proof. 

C O R O L L A R Y . Let I C R be an interval and a € (0,1) a fixed number. If 
f : I -> R is iower semicontinuous and 

for all x,y £ I, then f is convex (and continuous). 

P R O O F . Since the function <p : I -»• R, (p := i d | / is a non-constant and 
continuous solution of the functional equation 

f(ax + (1 - a)y) + f(l - a)x + ay) = f(x) + f(y), x,y G I, 

and the functions M,N : I x I -> I, defined by 

M(x,y) := ax + (1 - a)y, N(x,y) := (1 - a)x + ay, x,y E I, 

are continuous means with the strict internality property, the result follows 
from the above theorem. 

R E M A R K . The a-Wright convex functions appear in a natural way in 
connection with the converse of the Minkowski inequality (cf. [3]). Note 
that in [2] (answering to the question posed in [3]) it was shown that there 
exist a-Wright convex functions which are not Jensen convex. 

f(ax + (1 - a)y) + / ( ( l - a)x + ay) < f(x) + f{y) 
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