Annales Mathematicae Silesianae 10. Katowice 1996, 67-78

Prace Naukowe Uniwersytetu Slgskiego nr 1564

SECOND-ORDER DIFFERENTIAL SYSTEMS
AND A REGULARIZATION OPERATOR

PAVEL CALABEK®*

Abstract. Sufficient conditions for the existence of solutions to the bound-
ary value problems with a Carathéodory right side for the second order or-
dinary differential systems are established by means of a continuous approx-
imations. ’

1. Introduction

In this paper there are proved theorems of existence of a solution to the
differential system

(1L1) " = f(¢,z,2')
satisfying the boundary condition
(1.2) V(z) =o,

where V' is a continuous operator of boundary conditions and o is a zero
(2n times)

e s,
point of the space R?®, o = (0,0, ...,0).

My results have been motivated by the fact that many methods used
for ordinary differential systems haven’t the same results when the function
on the right side of (1.1) is Carathéodory or continuous one. The problem
(1.1), (1.2) with the L*°-Carathéodory function, the most similar to the
continuous one, has been approximated here by a sequence of problems with
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a continuous right side. The existence of a solution to the problem (1.1),
(1.2) will be proved as a consequence of the existence of solutions to the
approximated problems.

Let —c0 < a < b < o0, I = [a,b], R = (—00,00), n, k natural numbers.
R™ denotes as usual Euclidean n-space and |z] denotes the Euclidean norm.
Ck¥ = C*([a,}],R") is the Banach space of functlons u such that u®) is
continuous.on I with the norm

i = mmase { Il s }
where o
[lul| = max {Ju(t)},t € I}.

Let C,, denote C2. C3 = C*(R,R") is the space of functions ¢ such
that for each k € {1 2,...} there exists continuous on R function ¢*) and a

support of function ¢ is a bounded closed set, supp ¢ = {z € R; |¢(z)| > 0}.
Finally let L = L((a,b), R") be as usually a space of measurable functions

Wlth a ﬁnite norm
u = inf u ult

where M is a set of all measurable subsets of an interval I with a measure
Zero. ,

DEFINITION 1.1. A function f : I x R?® — R" is a L*°-Carathéodory
function provided: if f = f(¢,u,p)
(i) the map (u,p) — f(t,u,p) is continuous for almost every ¢ € I,
(ii) the map ¢ — f(t,u,p) is measurable for all (u,p) € R* x R",
(iii) for each bounded subset B C R™ xR" the function sup{| f(Z, 4, p)|, (u,p) €
B} € L=(I).

DEFINITION 1.2. A function w : I x R — R is a Carathéodory function
provided: if w = w(t,9)
(i) the map & — w(t,d) is continuous for almost every ¢ € I,
(ii) the map t — w(t,d) is measurable for all § € R,
(iii) for each bounded subset B C R the function sup{|w(t,6)|,6 € B} is
Lebesgue integrable function on interval I.

LEMMA 1.1. Let f: I x R?* — R™ be a L*™-Carathéodory function and
B a bounded subset of R™ x R™.
Then there exists a constant K € R and a set M € M such that

If(t,up)l <K fortel—-M, (u,p) €B.
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PROOF. It is a trivial consequence of the definition L> and the definition
1.1. : v O

In the whole paper assume f : I x R* — R" is the L>-Carathéodory
function and V : C} — R?" is a continuous operator.

If f is continuous, by a solutions to the equation (1.1) we mean a classi-
cal solution with a continuous 2"¢ derivative, while if f is a Carathéodory
function, a solution will mean a function z which has an absolutely continu-
ous 1°t derivative such that z fulfills the equality z"(t) = f (¢, z(t), z'(t)) for

almost every t € I.
By zy in R"® we mean a scalar product of two vectors from R™.

2. Regularization operator

Let ¢ be in C7% such that

-
s 20veR, swp=[-11, [ od=1
-1

For an example of such function see (3] page 26.
Instead of problem (1.1), (1.2) we will consider the equation

(2.1¢) g’ = fe(t,z,2')

with the boundary condition (1.2), where ¢ is a positive real number and for
V(u,p) € R* x R*

b _ ‘
ftun =1 [ 6(50) rnwpdn

€

or equivalently
1 —
fe(t’ u7p) = / ) f(t — €1, 'u‘ap)¢(77) d’?;

f(@t,u,p) tE€la,b]

where f(t,u,p) = { 0 t¢[a,b]

LEMMA 2.1. Let B be a bounded subset R* x R™ and ® = max{¢(t);t €
[-1,1]}. Then the function f(t,u,p) is continuous on I x B and for every
e>0,t€ I and (u,p) € B ' ‘

|fe(t,u,p)] < 2KV/n@.



70

PRroOOF. Continuity of f. follows from the theorem on continuous depen-
dence of the integral on a parameter.

Boundeness of f, follows from the inequalities bellow where we use lemma
1.1.

1
Vet =1 [ Tt = en,wp)to) drl
1
<va [ 17t~ en,u.p)lé(n) dn < 2K vrd
-1
O
DEFINITION 2.1. Let w : I x [0,00) — [0,00) be a Caratéodory function.
We say w € M(I x [0,00);[0,00)) if there will be satisfied this conditions:
(i) For almost every t € I and for every d;,ds € R, d; < d»
w(t,di) < w(t,dz).
(ii) For almost every t € I w(t,0) = 0.

DEFINITION 2.2. Let B be a compact subset of R?", 7 € Rand § € [0, 00).
Let us denote by w(,4d) a function

w(r,8) = max{|f(,u,p) — f(r,u',p")}; (u,p), (¥, p') € B,
Ju -2}, Ip-p'l <6}

and by w¢(7, ) a function

oitrd) = [ 6Tty

or equivalently

1
wird) = [ wlr = en, 8)¢(o)

LEMMA 2.2. Let B be a bounded closed subset of R® x R™. Then for
every € > 0:
(i) w,we € M(I x [0,00); [0, 00)).
(ii) For every (u,p) € B, for every § > 0 and for almost every t € T

fe(t7u,p) _)f(t,u7p) fore—)o’



(¢!

we(t, ) = w(t,d) for e — 0.
(iii) For every (u,p) € B and for almost every t € I
1fe(t,u,p)—fe(t,u',p') — f(t,u,p) + F(t, 4, p)]
<Vrnwe(t, max{ju — u'|,Ip - P'I})
+ w(t7 max{lu - ul|a Ip - p’I})'

(iv) For every (u,p) € B and for almost every t € I

t
/ fo ((ryu,9) — f(7,0,p)) dr

converges uniformly to 0 for € — 0 on the set I x B.

PROOF.

(i) Since f(r,.,.) is L*°-Carathéodory and B is a compact set then for al-
most every 7 € I 0 < w(7,0) < 2K, w(r,.) is nondecreasing and continuous,
w(., ) is measurable and

lim w(r,d) =
60+

It means, that w(r,0) = 0 for almost every ¢t € I. Therefore we can see that
w € M(I x [0,00); [0, 00)).

From the theorem on continuous dependence of the integral on a parame-
ter there follows that w, is for arbitrary ¢ > 0.continuous function. Therefore
w, is Carathéodory function such that w(7,0) = 0 for almost every 7 € I.
From inequalities for §; < 05, 7 € I

(22) 0 S w(T, 51) S w(’l', 52)

follows for almost every n € I

0< ¢( )wWJﬂ< ¢( )wmﬁﬂ

and therefore
(2.3) 0 < we(,61) < we(T,82).

It means that w, € M(I x [0, 00); [0, 00))
(ii) This statement is a consequence to [2] theorem 2.5.3 which assert that
on our assumption there hold for every § > 0, (u,p) € Bandi=1,2,...,n

hm/ |lwe(r,6) — w(r, 8)| dr =0,

e—0+
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El_l)%l_’_ ‘fez(T’u p) fi(T’ u,p)l dr =0,

where f;, f.; is i-th component of the function f, fe respectively.
(iii) Obviously for Ju —v'[,jp —p'| < ¢

nff(t7 uap)—fe(ta U',P')ﬂ = I/;l ¢(77) (?(t — €1, 'u,,p) - T(t — €n, u',p')) d’ll
1
<V / 7t = en0) = (e en,ul, o) lon) d
1
0 / ol —en, 8)6n) dn = Vi (1)

Now it is easy to see that statement (iii) of this lemma holds.

(iv) Firstly we will prove that for every (t,u,p) € I x B and every € > 0
there exists ¢ > 0 and neighbourhood Ot y,5) of (t,u,p) in the set I x B
such that for every 0 < € < ¢p and for every (t',u',p’) € O(s,u,p)

.
L[ Gl p) = flrd') ] <

By (ii) and by Lebesgue dominated convergence theorem there exists €; >
0 such that for every 0 < e < ¢;

/Ife(T,up) f(r,u,p)ldr < —= \/_

Since w € M(I x [0,00); [0, 00)) there exists such § > 0 that

b e
/a w(r,8)dr < o

By (ii) and by Lebesgue dominated convergence theorem there exists €z >
0 such that for every 0 < € < €2

b e
d —_
/awe(T,d) T < o

Let us denote Oz 4 p) = {(t', v, p") € I X B; Ju—v'| <6, lp—p'| < 6} and
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€0 = min{e;, €2}. Now for every 0 < € < ¢ and for every (', u',p') € Ou,p)

t t!
I/ (fe(T)u”p,)— f('r,u',p')) dTH < I/ (fe(T"u',p) - f('r,'u,,p)) dTu
¢
+ ||/ (fe('r, u,p) — fe(T, u',p') - f(r,u,p) + f(r, u',p')) dr|

b b
<Vm / f(ryu,p) — f(r,wp)| dr + V7 / Vrwe(r,8) + w(r,8) dr

e e e
— +n— —<e.
<\/ﬁ4\/ﬁ+n2n+\/ﬁ4n“e

This means, that the system of the sets {O(t,u,p)}(t wp)eIxp COVers the

compact set I x B and therefore there exists a finite subsystem which covers
the set I x B and therefore the statement of the (iv) holds. 0

LEMMA 2.3. Let B C R?" be a compact set. Let E be a set of e > 0 such
that systems of functions {T¢}ecE, {Z.}ccE, Tc : I — R" are equi-continuous
and0 € E.

Then f: fe(,ze(T), 7L(T)) — f(7,2e(7), 2.(7)) dT converges uniformly to
0 on the set I.

PROOF. This proof is a modification to the proof of lemma 3.1 in [5].
Let us denote for e € B

t
ae=sup{| [ frup) - frupdrk a<a<t<h, ) eB},
8

. .
B. = max {I/ fe(T,z(7), 2L (T)) — f(T,xe(T),:L‘,e(T)) drf;a <t < b} .

By (iv) of lemma 2.2

lim a, = 0.
e—0

We want to prove
lim B, = 0.
€—=0

Let € > 0 be an arbitrary real number. Then there exist by (i) of lemma

2.2 such 6 > 0 that
e

b
/a w(r,8)dr < I
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and by (i), (ii) of lemma 2.2 such €; > 0 that for every ¢ € E, € < €;

b
2e
/a we(T,0)dT < 3

Since {Z}ecE, {Z.}ccE are equi-continuous there exists dy > 0 such that
|ze(t) — ze(7)] <6, JzL(t) —zl(T)| <& fort,7 €I, |t —7| < dp,e € E.

Let k be such integer that k¥ < b"“ < k + 1. Let us denote t; = a + idg, .

Z.(t) = z(t;) and z(t) = z.(&;) for t; <t < tiy1, wherei = 0,1,... k.
Then

lze(t) — 2L ()] < §,
forte I and e € E and

t
| [ g t) ) - S22, ) dr < G+ D

fora<t<bande<eg, ec€ E.
Therefore by (iii) of lemma 3.5 we obtain

u / (fu(r, me(r), L)) — f (7, 2e(r), 2(7))) dr]

<y / Fe(r,e(r), 24()) = (7, 2e(r),2L(7)) — ol Ta(r), T(T))
+ F(r, (), T(r) | dr
+1 / Folr,B2(r), T(0)) — £(r,Talr), TE(r))) dr]

< \/7—1/ (Vnwe(T, 8) +w(T,8)) dr + (k + )a. < e+ (k+ 1)a.

fortel,e<e,e€ B
Therefore 8. < e + (k + 1)a, for € < €1, € € E. Since lim,—0 0 = 0 and
e is arbitrary then lim._,¢ 8. = 0. O

THEOREM 2.1. Let f : I x R?® = R" be the L°°-Carathéodory function.
Denote by E the set of positive € such that for Ve € E there exists a solution
z. to the problem (2.1.), (1.2). Suppose that 0 € E and that there exists a
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compact subset B C R2" independent on € such that forVee E andVte I
(ze(t), ze(t)) € B

Then there exist a sequence {ex}, €x € B, ¢x — 0 and a function z : I —
R™, (z(t),z'(t)) € B Vt € I, such that (Ter>7h,) = (z,2') and 2, — ="
pointwise and z is a solution to the problem (1.1), (1.2).

PROOF. At first let us prove that by the conditions of Theorem 2.1 the
set {Zc}ccE is relatively compact in C}. Really, to be satisfied assumptions
Arzela-Ascoli theorem, it is necessary to prove equi-continuity of the set

{xé}eeE-
Suppose t1,t2 € I and compute

ta t2
Izt (t) — sl =l | addtl=1] fe(t,ze(t),zc(2)) dt]

t; t1

ta 1 _
= / F(t — en, 2 (8), 21(8)) $(m) d dt]
t -1

to 1
<In / | / (e en, (0, 2, E)lln)

Since the function f is L>-Carathéodory then by the Lemma 1.1 there
exist a constant K and a set M € M such that

1ftu,p) <K fortel—- M, (u,p) € B.

Since ¢ is a continuous function there exista constant @ such that ¢(t) < @.
Now we have '

/ 2 /_11 [F(t - en, ze(2), 2(6) I$(m) d dt|

<

ta 1
/ / Ko dndt| _<__ 2K¢|t2 -1
t -1

This means that the set {z.}ccr is relatively compact in Cj. Therefore -
there exist sequence {¢x}, ex € E, ¢x — 0 and function z : I — R™ such that
z(t) e B,Vte I, z,, = z in CL.

Now, since z., is the solution to the equation (2.1¢) for € = €k, we have

(2.4) x, (t) = ¢, (a) + /t feo (1,3, (1), 2, (1)) dT  ,VtEL

Using lemma 2.3 we get

2(t) = 2'(a) + / f(r,a(r),2' (7)) dr



76

which means, that z is a solution to the equation (1.1).
Since (z.,,z,,) =3 (z,2'), V is a continuous operator V : C} — R?" and
T, is a solution to the problem (2.1, ), (1.2), we see that

V(ze,) =o,
and therefore for ¢;, — 0 we have
V(z) =o.
It means that z is a solution to the problem (1.1), (1.2). O
3. An application

As an example how to use theorem 2.1 we may consider the equation (1.1)
with four point boundary conditions

(3.1) z(0) =x(c),  =z(d) ==z(1),
where 0 < ¢ < d < 1. In [1] we proved the following result.

THEOREM 3.1. Let f : [0,1] x R?2® — R"™ be a continuous function and
let us consider the problem (1.1), (3.1). Assume
(i) there is a constant M > 0 such that uf(t,u,p) > 0 for Vt € [0,1],
Yu €R", |u| > M and Vp € R*, pu = 0.
(ii) Suppose there exist continuous positive functions A;, B;, j € {1,2,...,
n}
A;:[0,1] x R**-1 3R, B;:[0,1] x R**~1 4 R

such that
!fj(txuvp)l < Aj(t7 U:P17P27(- .- 7pj—1)p? + Bj(t7 U,P1,P2;--- 7pj—1)1

| where f = (flaf2a v 7f'n); u€e€ R‘n’ pE R™ b= (Pl,Pz, o ’pn)' and for
j =1, A; and B; are independent of p functions.
Then the problem (1.1), (3.1) has a solution.

REMARK 3.1. From the proof of this theorem and from the topological
transversality theorem in [4] it follows, that the solution to the problem (1.1),
(3.1) is bounded by a constant M which is dependent only on M, A4;, B;.

Now we can extend the results of Theorem 3.1 onto the L>°-Carathéodory
case.
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THEOREM 3.2. Let f : [0,1] x R?" — R™ be a L>-Carathéodory function
and let us consider the problem (1.1), (3.1). Assume
(i) there is a constant M > 0 such that uf(t,u, p) > 0 for almost every t
in[0,1), Vu € R", Ju] > M and Vp € R", pu =0.
(ii) Suppose there exist continuous positive functions A;,B;, j € {1,2,...,
n}
A;:[0,1] x R*1 5 R, B;:[0,1] xR* 1 5 R

such that for almost every t € [0, 1]
‘f](t) U,p)‘ < AJ(t7 u,p1,P2,:-- ’pj—l)p?_}' Bj(t’ Uy,P1,P2,--- ’pj—-l)’
where f = (f1,f2,.--,fn), uER*, peR" p= (p1,P2,-..,Pn) and for

j =1, A; and B, are independent of p functions.
Then the problem (1.1), (3.1) has a solution.

PROOF. Let fe ’be an approximated function as in Pa.rﬁ 2; Then
1) for Ve € (0,1), for Vt € [0,1], Vu €R"™, Ju]j > M and Vp € R, pu=0

fe(t,u,p)u= (%/ﬂde (t — n) £(n,u,p) dn) u

== / o (t—‘—'l) Fn,u,p)udn >0

by assumption (i) of this theorem.
2) Let j € {1,2,...,n},u € R", pe R, p= (p1,P2,-.-,Pn)>

A_’i(uapl7p27 see apj-—l) = tren[g')i]{AJ(t’ U,P1,P2y--- ,Pj—l)}

and

B_‘i(u7p17p27 (R 7pj—1) = tren[g')i]{B{l(t’ U,P1,P2, - 7pj—1)}'

Since A;, B; are continuous functions then .A;, B; are continuous too.

Now we have
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1 1
|fe.i(t, u, )| =] /_ 1fj(t—en,u,p)d)(n) dn| < /_ . |£i(t — en,u, p)|d(n) dn

1
S / I(Aj(u1p17p2, oo apj-vl)p?
+ Bj('U',phpz, v ’pj—l))¢(n) d"?

1
g/lAj(u,pl,pz,---,pj-l)pffb(n) dn

1
+ / Bi(wpupae 20 dn
=-Aj(U,P1,P2, v ,pj—l)p? + Bj(u’p17p21 fee apj—l)'

By the theorem 3.1 and remark 3.1 there exists a solution to the approx-
imated problem (2.1¢), (3.1) for every € and ||z.||; < M.

Now all assumptions theorem 2.1 are fullfiled end therefore there exists
the solution to the problem (1.1), (3.1). O
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