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DIFFERENTIAL EQUATIONS OF THE SECOND
ORDER WITH MEASURES AS COEFFICIENTS

WLADYSLAW KIERAT AND URSZULA SZTABA

Abstract. The note deals with differential equations of the second order
with Borel measures as coefficients. The problem of existence and uniqueness
of solutions is discussed. The Ritz—Galerkin method is used for determining
of approximate solutions

1. We shall consider the boundary value problem

—u" + = po
M) u(a) = u(b) =0,

where p; and pg are real Borel measures, uy > 0.

If 4y and po are integrable functions with respect to the Lebesgue mea-
sure, then the Ritz—Galerkin method is often used to investigate Problem
(1). Here we shall show that this method may be applied to solving Prob-
lem (1) under the above assumptions, too. We are looking for a continuous
function u vanishing at the end points a, b and fulfilling Equation (1) in the
weak (distributional) sense. This means that

b b b

(2) —/u<p”d:1r,'+/ucpd,‘1 (z) = /<pd,‘2 (z) for ¢ € D(a,b),

a a a

b b
where [ @d,,(z) := [qd)u,|(), |p2| is the variation of sz and |g(z)| = 1

a a
a.e. ([3], p- 137) and D(a,b) denotes the Schwartz space of the test functions
with support contained in (a, b).
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We shall start with presenting some facts concerning the Sobolew space
(1], p-22).

DEFINITION 1.

W?(a,b) ={u € L%*(a,b): Du€ L*(a,b), where Du is
the distributional derivative}

1
2

The natural norm of u in W42(a,b) is |lull == (||lul|?. + |IDul|2:)?>.
space W12(a,b) is complete with respect to this norm.

The

DEFINITION 2. W?(a,b) is the closure of D(a,b) in W?(a,b) with
respect to the norm || - ||.

One can show that

Wi (a,b) ={u: u is absolutely continuous, u(a)=u(b) =0
and Du € L%*(a,b)}.

For simplicity of notation we put

b b
alp#) = [ DoDwds + [ pd(a),

b

8e) = [ o @

a

for o, 9 € W(,1 2(a,b). It is easy to check that a is a bilinear symmetric
positive definite form on W¢%(a,b) and B is a linear form on Wi (a,b). If
we are looking for a solution u in Wy?(a,b), then Equation (2) is equivalent
to the equation

b b b
®  [puwdst [wdu@) = [edu®),  ¢eD@D)

a

or, using the above notation, too

a(u,p) = B(p), ¢ € D(a,b).



In the sequel we shall need the following two norms
1
llla := [e(u,w)}?  and Jlullp := | Dullr:

for u in Wy (a, b).
Now we are in a position to state

THEOREM 1. The following norms || ||, || - l|p and || - || are equivalent on
Wi(a, b).

PROOF. It is easy to see that |¢(z)| < (b~ a)}|ollp for z € [a,b] and
€ Wy*(a,b). Since '

(4) - lellze < (5 —a)tliello
and
(5) lellzs < (0 - a)liellp

it follows that the norm ||-|| and ||-]|p are equivalent on the space Wi?(a,b).
Note that '

lolla < lollp + lelless,  for © € Wo*(a,b).
Therefore we have
el < llolla < el +llollza,, — for o € W5(a,b).
By (4) we obtain
lpllZz,, < lelfeple,b]) < (6-a)llelb pa,b)).

Finally we get

6) lellp < llella < [t + (- @ualla, )] llello.

Thus the proof of our theorem is finished.

Let (-,-)rz and (-,-)r2,, denote the ordinary inner product on the space
L?*(a,b) and L%u,(a,b). We set

(¢, %) p :=(Dyp, D)2, @, 9 € Wy*(a,b);
(0, %) :=(0, %) + (0, ¥)12, @,% € Wy*(a,b),

6 ~ Annales...
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and thus we have

alp,¥) = (0, ¥)p + ()12,

for o, € W3%(a,b).
We know that (W;'%(a,b), (-,-)) is a Hibbert space.

COROLLARY 1. The spaces (W,%(a,b), (,-)p) and (W;"*(a,b), af-,-)) are
Hilbert spaces, too.

Now, we are in a position to prove the main
THEOREM 2. Problem (1) has exactly one solution in W,**(a, b).

PROOF. By the definition of Wol’z(a, b), the set D(a,b) is dense in
Wg%(a, b) so there exists at most one solution of Problem (1) in Wy % (a, b).
Since the space (Wol’z(a, b), (-,-)) is a Hilbert space and 8 is a continuous

linear form on Wo1 ?(a,b) there exists a function u in W,*(a,b) such that
(3) holds. This finishes the proof.

In general there exist no more regular solutions of Problem (1), apart
from those belonging to W, %(a, b).

ExAMPLE 1. Let us consider the defferential equation
-z + 8 z=f
with the boundary condition
z(0) = z(1) =0,

where d; is the Dirac measure concentred at the point ¢ = 1 and f € L(0,1).

It is easy to see that this problem has no classical solutions (belonging to
2,2
WO (Oa 1))

2. In this section we use the Ritz—Galerkin method to determine approx-
imate solutions of Problem (1). We begin with a formulation of the Ritz
theorem.

Let E be a real vector space and o : E x E — R be a bilinear symmetric
positive definite form. Moreover, let 8 : E — R be a linear form. Let us
consider the quadratic form

F(z) := %a(a:,a:) — B(z).
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THEOREM 3. (Ritz) ([2], p- 21). The following conditions are equivalent:

N oflzy)=py) for yek
(I1) F(z) = inf F(y).
yEE

We introduce the norm ||zfjo = [a(z, :r,)]i' in the space E. If we assume that
(E, || - ll«) is complete, then (E,af-,-)) is a Hilbert space. Let {zn : n =
1,2,...} be a sequence of elements z,, belonging to E such that

) cd(lin{z,: n=12,...})=E

where lin {z, : n = 1,2,...} denotes the vector space spanned by the
elements z,. Let E, be the space spanned by elements ;... z,. Let z; be
an element in E, such that F(z}) = mf F(y). It is known that ||z, — z|la

tends to zero, when F(z) = mf F(y)

The above information w1ll be used to determining approxxmate solutions
of Problem (1) in the space Wy'2(0,1).

Now, we construct a sequence {fn} in the space W, 5°2(0,1) which has
property (7). For m = 2 we put f(t) =tfor 0 <¢ < i, f2(t) =1-tfor
2 < t < 1. In the general case we take

2%—%’,;&% for 2—"—}?<t<—2-,-.-.p1-
fm(®) = -2%t+ ¢ for ZEl <t< 2
0 for other ¢ in [0, 1],

wherem =2"+k, 1<k<2* n=12,..
THEOREM 4. The functions f,, n = 2,3,... constitute a complete or-
thonormal system in (W3(0,1),(-,-)p).

PRrOOF. Note that the Haar function ¥, is the distributional derivative
of f,. For f € W*%(0,1) we have

T

f(z) = / o(t)dt

0

for some g € L?(0,1), = € [0,1]. The function g has the Fourier representa-
tion

n=2

1 o0
8) g= / 9(z)dz + ) _ CaXn
0

6*
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1
with respect to the Haar functions. It is clear that [ g(z)dz = 0. Since the
0

space (W32(0,1),(-,)p) is complete therefore there exists a function fin
W37%(0,1) such that :

9) Y efa=1.

n=2

Series (9) converges in the distributional sense. Hence we have

(10) Y enxa = Df.

n=2

It is known that series (10) converges to Df in the space L2(0,1) (also a. .€.).
This implies that Df = g a.e. on [0,1]. From thls we obtain that f(z) = f(z)
for each z € [0,1). Finally we have

= Z(f, fn)Dfn-
n=2

This completes the proof of the theorem.

COROLLARY 2. cl(lin {fn: n=2,3,...}) = W(}’ztO, 1) with respect to
the norm || - ||a-

Let E, be the vector space spanned by the functions fa,...,fn. The
quadratic form F takes the following form

F(y) G(A% n) ; .
n n 1
=3 (Z PP / DfiDf;dx + Z Z Aidj / fifidy, (a:))
(11) i=2 j=2 0 i=2 j=2

n 1

=3 [ fidua(a),

i=2 0

where y = Ao fo+ ... + Anfn-
Formula (11) may be rewritten in matrix form

GIA) = %AT(F +A)A—ATP,



where
A2 (fo,fo)p .- (f2,fa)D
A= P I'= )
Aﬂ (fn’f2)D s (fna fn)D
1 1 1 |
{f2f2du1 () ... {f2fndm (z) | .({f2dm(x)
A= : : , P=
1 ) 1 ) 41
{fandm (37) {fnfndm (x) {fnduz (37)

It is easy to check that
LA . f
G(A*) AE1}1%1"_1G(A),
when -
(12) o (C+A)A* =P.
Obviously I is a diagonal matrix. For the differential equation

—x"+6%z=1

(13) z(0)=z(1) =0

we obtain the following matrix equation

£ o0 ... ... 0 A2 as
0 1 : :
0 S * = )
0 : :
o ... ... 0 1 Agm+1 Qom+1
where a; = 1, agy = 2=%¥-2frl=12,...,2% k=1,...,m.

exact solution of (13) is

£ g9 : ‘ 1
2(t) = L+ 55t for 0<t<}

g4, 1 6 lct<i

2 20 20 2 —= 7 =

The following graphs compare z and z;, for n = 2,4,8.
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