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Prace Naukowe Uniwersytetu $lgskiego nr 1564

TOPOLOGICAL DEGREE METHODS
IN BVPS WITH NONLINEAR CONDITIONS

IRENA RACHUNKOVA

Abstract. We consider the second order differential equation
mll = .f(t1 3’,3,)1

where f is a Carathéodory function. We prove the existence of at least one
solution of the equation satisfying the nonlinear boundary conditions

91(z(a), z'(a)) = 0, g2(z(b),='(b)) = 0.

Our methods of proofs are based on the topological degree arguments for
auxiliary operator equation.

1. Introduction
We study the nonlinear BVP

(1'1) g = f(t,x,:l:’),

(1.2) 91(z(a),z'(a)) =0,  g2(z(b),2' (b)) =0,

where J = [a,b] CR, f € Car (J xR?), g1,9» € C(R?).
The existence principles for problem (1.1), (1.2) or for similar nonlinear
problems were studied earlier in [1], [2], [3] or [6]. In the first three papers
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the authors require monotonicity of g;, g2 or growth conditions for f or an
appropriate linear part in (1.2). In [6] we need only sign conditions. Let us
show the typical result of [6].

THEOREM [6, Theorem 3.1]. -Let r, R € (0,00) be such that for a.e. t € J
and each z € [—r,r] the conditions

g1(~=7,0) - g1(,0) <0, g2(—r,0) - g2(r,0) <O,

gZ(z’ R) ) gZ(x, ’R) < 0$
f(ta =T, 0) < 0, f(t,f‘, 0) > 0’
f'(t7 z, R) > 0’ f(ta z, _R) < 0,

are fulfilled.
Then problem (1.1), (1.2) has at least one solution u satisfying

—r<u(t)<r, -R<v'(t)<R foreach teJ.

In this paper, our approach has been motivated by [1] and is close to [6].
We introduce auxiliary operators L and N and study the operator equation
Lz = ANz with a real parametr \. It is important to find a proper form of
L and N in this approach. Here, we define L and N by a different way than
in [6] and we get dim ker L = 1 in contrast to [6], where it was 2. Therefore
the application of the Continuation Theorem (see below) is easier and we
~ get results that can be used for differential equations which cannot be solved
by the theorems of the above papers. ‘

CONTINUATION THEOREM [1, p.40]. Let X, Y be Banach spaces, L :
dom L ¢ X — Y a Fredholm map of index 0 and 2 C X an open bounded
set. Let N : X = Y be L-compact on (2, Q:Y — Y a continuous projector
with Ker Q =Im L and J : Im Q — Ker L an isomorphism. Suppose

a) for each ) € (0,1) every solution x of Lz = ANz is such that z & 98);

b) QNz # 0 for each z €KerL N 8 and

c) the Brouwer degree d[No, N KerL, 0] # 0, where No = JQN :
KerL — KerL.

Then the equation Lz = Nz has at least one solution in domL N Q.

2. Bounded nonlinearity

. First we suppose that f is bounded by an integrable function ¢ and prove
the existence of at least one solution.
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THEOREM 2.1. Let r;,r2 € R, r; <79, —Ry;, R € [0,00), p,v € {—1,1}

and ¢ € L(J) be such that for a.e. t € J and each z,y € R

(21) ‘ l‘gl(rl’o) S 0, /—"gl('r270) Z 0’
(2.2) vga(z,R1) <0, vga(z,R2) 20
and

(2.3) | (2, y)| < o(t),

are satisfied.

Then problem (1.1}, (1.2) has a solution u with

(2.4) r1 <u(a) <r;, Ry </ (b) <R,

PROOF.
1. Auziliary problems.
Let us set for n € N

gln(a:’ y) =_
( 91(r2,0) +p(z —r2—1/n) ~ for z>r+1/n
g1(r2,y)
(2 5) +[g1(7‘2,0) - gi(r21y)]n(x - 7'2) for ro <z <12 + l/n
’ S 91(z,v) for rm<z<ro
91(r1,y)
—[91(r1,0) — g1 (r1, Y)In(z — 1) for m—1l/n<z<r
C 91(r1,0) —pu(ri—1/n—2z)  for z<r —~1/n
. : g2(z, Ry) for y> Ry
(26) g?.n(x,y) = 92(w1 y) for Rl S ) S R2
92($’R1) . for y< Rly

and, for fixed n € N, n > 1, study auxiliary problems

(27) g = A.f(ta Z, z’)s A€ [0’ 1]’

(2.8n)a Mjin(2(a),2'(a)) =0,  Adan (2(8), 7' (6)) = ~va'(b)/n.
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If we set X = C1(J), Y = L(J) x R?, dom L = A C!(J),

L:domL —Y, z+(z",0,-vz'(b)/n), N:X —Y,

o (f(,2(12'()),  Gin(2(a),7'(a)), Fan(2(b), 2 (b))

we can write (2.7), (2.8,)x in the form
(2.9 - v . Lz = ANz.

We can see that L is a Fredholm map of index zero, because Ker L = {z €
X: z(t) =c, ce€ R}, Im L = L(J) x {0} x R is closed in Y and dim Ker
L =codimIm L =1. :
Further, the maps

P:X——)X :z:-——):r,(a), Q:Y—Y, 4(y,a,,3)r-—)(0,a,0)

are contmuous prOJectors a.nd we can find the genera.llzed inverse (to L)
operator Kp:Im L — Ker P N dom L
in the form

, v ' Tt b
Kp: ,0,6) — ~nBt-a)fv - [ [u(s)dsar

Then QN X — X, z—(0,d1n(z(a),2'(a)),0),

Kp(I-QN: X > X,

t b _
2 —> —niian(2(8), 2’ (B)) (¢ — a) /v — / / £(s,2(5),'(s))dsdr.

Using the Arzela—Ascoh Theorem we can show that for any open bounded
set @ C X, the sets QN(@) C Y and Kp(I — Q)N(Q) C X are relatively
" compact. This means that N : Q — Y is L-compact. Therefore we can
use the Continuation Theorem for problems (2.9),.

2. A priori estimates.

Before using the Continuation Theorem we need to find a priori estimates
for solutions of (2.9)x. Thus, suppose that problem (1.7), (1. 8,)x has a
solution u for some A € (0,1] and some n € N. Let u'() > Rz. Then
VAJen (u(b), /(b)) = —u'(b)/n < 0. But, by (2.2), ¥Adan(u(b),u'(b)) =
vAgz(u(b), Rz) > 0, a contradiction. Similarly, for u’(b) < Ry, we get
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VAGa2n (u(b), w' (b)) = —u/(b)/n > 0, and according to (2.2),
VAGon (u((b),u' (b)) = vAga(u(b), Ry) <0, a contradiction. Thus

(2.10) R <Y/()) LR

Further, let u(a) > r2 + 1/n. Then, by (2.2), (2.5), pAgia(u(a),v'(a)) =
(g1 (r2,0) + p(u(a) — r2 — 1/n)) > 0, which contradicts (2.8,)x. Similarly,
if u(a) < r1 — 1/n, we get pAgin(u(a),u'(a)) = Au(ga(r1,0) — p(r1 —1/n~
u(a)) < 0, which also contradicts (2.8,)x. Thus

(2.11) - l/n < u(a) <rs+ l/n
Now, mtegratmg (2.3) from b to t € J, we get

(2.12) . e <Y()<e foreach tel,

where o; = R; — f p(t)dt, o2 = Ry + f p(t)dt. Finally, mtegratmg (2 12)

fromato t € J, we have
(2.13) a—-1/n<u(t)<c+ 1/n, =

where ¢; = r; + 0i(b—a), i =1,2.

3. Application of the Continuation Theorem to problem (2.9)x.

Letusput Q={z € X: a1~ 1<z(t)<ce+1, o1 —1<z'(f) < o2 +1
foreacht € J}. Then Ker LN ={z € X: z(t) =c, c=c—1or
¢ = cz + 1}. Estimates (2.12) and (2.13) ensure that condition (a) of the
Continuation Theorem is valid. :

Let us check condition (b). The equation QNz = 0 for z € 90N Ker L
has the form §i5,(c1 — 1,0) = 0 or Gin(c2 + 1,0) = 0. But pgin(c; — 1,0) =
ug1(r1,0)~(r1—1/n—c1+1) < 0and pgin(ca+1,0) = pgi(re, 0)+(c2+1—r2—
1/n) > 0. Now put J : Im Q — Ker L, (0,,0) — a. Then No = JQN :
Ker L —» Ker L has the form Ny(c) = gin(c,0), ¢ € (c1 —1,c2 +1). Since
sgn §in(c1 — 1,0) # sgn gin(c2 + 1,0), we have d[Ny, (c; — 1,c2+1),0} # 0
and (c) is valid. Therefore problem (2.9); has at least one solution in
dom LNQ.

4. Limitting process

In order to complete the proof observe that for any n € Nn > 1, problem
(2.7), (2.8,)1 has a solution u, satisfying (2.10), (2.11), (2.12), (2.13). By
the Arzeld—Ascoli Theorem and the integrated form of the equation one gets
the existence of a uniformly converging subsequence of (u,);° whose limit is
a solution of (1.1), (1.2) satisfying (2.4). The proof is complete. : O
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Conditions (2.1) and (2.2) can be modified in the following way:

THEOREM 2.2. Let r1,73 € R, 1 < r2, —Ry1, Rs € [0,00), p,v € {-1,1}
and ¢ € L(J) be such that for a.e. t € J and each z,y € R the conditions

(2.3),
(214) . ”92(7‘.170) S 0) ”'92(7'2)0) Z 0:

(2.15) vgi1(x,R1) <0, vgi(z,R2) >0

are satisfied.
The problem (1.1), (1.2) has a solution u with

(2.16) r <u(b) <rs, Ry <ul(a)<Ry.

3. Unbounded nonlinearity

Here, we replace the boundedness (1.5) in Theorems 2.1 and 2.2 by ap-
propriate sign conditions.

THEOREM 3.1. Let there exist r1,72 € R, 11 < r2, —Rj1,R2 € [0,00),
p,v € {~1,1} such that for ae. t € J and each x € [d1,d;] with d; =
r; + R;(b— a), i = 1,2, the conditions (2.1), (2.2) and

(31) f(t, z, RZ) Z Oa f(t1 $1R1) S 0,

are fulfilled.
Then problem (1.1), (1.2) has a solution u satisfying

(3.2) ri<u(a) <r2, R <v(t) <R foreach teJ.

PROOF. Let us set

do for z>d;
o(z)=4¢ =z for di<z<ds, .
dy for z<d;
R, for y> R,
oly) =4 v for Ry <y<Rz,

R, for y<R;
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y—o(y)
ly —e(w)| +1’

§1(a:,y) = gl(a(m),y), i= Iaza

f(t,:z:,y) = f(t,O'(Z), Q(y)) +

and consider the problem

(3.3) ="’ = f(t,z,7)

(3-4) d1(z(a),2'(a)) =0, G2(z(b),2’'(b)) = 0.

The function f fulfils (2.3) of Theorem 2.1 with ©(t) = sup{|f(¢,z,y)|: z €
[d1,d3), ¥ € [R1,Ra]} + 1 and §1, g2 fulfil (2.1), (2.2) respectively for each
z € R. So, problem (3.3), (3.4) has a solution u satisfying (2.4). Suppose
max{u'(t) : t € J} = u'(to) > Rz. Then to € [a,b) and we can find § >0
such that Ry < u'(t) < u'(to) for each t € (o, to +J]. On the other hand, by
(3.1),

to+6 totd ,
t,,/ u'(r)dr = / [f(f,a(u(f)),mwr%] dr >0,

a contradiction. The inequality R; < u/(t) for each ¢ € J can be proved by
similar arguments. Thus R; < u/(t)’ < R, for each ¢t € J. Integrating the
latter from a to t € J, we get d; < u(t) < d2 and we can see that u is a
solution of (1.1), (1.2) as well. ' O

THEOREM 3.2. Let there exist r1,72 € R, 1 < 12, —R1,R2 € [0,00),
p,v € {—1,1} such that for a.e. t € J and each z € [d1,d2] with d; =
r; + Ri(b— a), i = 1,2, the conditions (2.14), (2.15) and

f(t, z, R2) S 01 f(t,erl) Z 0

are fulfilled.
Then problem (1.1), (1.2) has a solution u satisfying

ri <ulb)<ry, Ri<u'(t)<R; foreach telJ.

Proor. Using Theorem 2.2 instead of Theorem 2.1 and setting

ft,z,y) = £(t,0(z), 0(y))+(e(y)—y)/(ly— e(y)|+1), we can prove Theorem
3.2 similarly as Theorem 3.1. o
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EXAMPLE. Let us show f, gi', g2 satisfying the conditions of Theorem 3.1.
Suppose 1,92 € L(J), @3 € L*®(J), ¢1 2 0, n € N." We can choose both
quickly growing functions, e.g.

f(ta :z:,y) = Sol(t) . ez . y2n—-1 + ‘p3(t)a
gi(z,y)=2%-e' +e"-y, galz,y) =y " -1,

or oscillating functions, e.g.

f(t7 z, y) = Sinz(:r + (p2(t)) - cosy,
ai(z,y)=sin(z+y)+y+1, i=1,2

Let us note that the theorems of [6] cannot be used in this case.
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