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T O P O L O G I C A L D E G R E E M E T H O D S 

IN B V P S W I T H N O N L I N E A R C O N D I T I O N S 

I R E N A R A C H Ů N K O V Á 

Abstract. We consider the second order differential equation 

x" = f{t,x,x'), 

where / is a Caratheodory function. We prove the existence of at least one 
solution of the equation satisfying the nonlinear boundary conditions 

gi(x(a),x'(a)) = 0, g2(x(b),x'(b)) = 0. 

Our methods of proofs are based on the topological degree arguments for 
auxiliary operator equation. 

1. Introduction 

We study the nonlinear BVP 

(1.1) x" = f(t,x,x% 

(1.2) 9l(x(a),x'(a)) = 0, g2(x(b),x'(b)) = 0, 

where J = [a,b] C M, / 6 Car (J x K 2 ) , gug2 € C (E 2 ) . 
The existence principles for problem (1.1), (1.2) or for similar nonlinear 

problems were studied earlier in [1], [2], [3] or [6]. In the first three papers 
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the authors require monotonicity of 31,32 or growth conditions for / or an 
appropriate linear part in (1.2). In [6] we need only sign conditions. Let us 
show the typical result of [6]. 

T H E O R E M [6, Theorem 3.1]. Let r,Re (0,00) be such that for a.e. te J 
and each x € [—r, r] the conditions 

9i(-r,0)gi(r,0)<0, g2(-r,0) • g2(r,0) < 0, 

g2(x,R)g2(x,-R) <0, 

/ ( i , - r , 0 ) < 0 , / ( i , r ,0 )>0 , 

/<*, x, R) > 0, f(t, x, -R) < 0, 

are fulfilled. 

Then problem (1.1), (1.2) has at least one solution u satisfying 

-r < u(t) < r, -R < u'(t) < R for each t E 3. 

In this paper, our approach has been motivated by [1] and is close to [6]. 
We introduce auxiliary operators L and N and study the operator equation 
Lx = XNx with a real parametr A. It is important to find a proper form of 
L and N in this approach. Here, we define L and N by a different way than 
in [6] and we get dim ker L = 1 in contrast to [6], where it was 2. Therefore 
the application of the Continuation Theorem (see below) is easier and we 
get results that can be used for differential equations which cannot be solved 
by the theorems of the above papers. 

C O N T I N U A T I O N T H E O R E M [1, p.40]. Let X, Y be Banach spaces, L : 
dom L C X -> Y a Fredhohn map of index 0 and ft C X an open bounded 
set. Let N : X ->• Y be L-compact on ft, Q : Y -> Y a continuous projector 
with Ker Q =Im L and J : Im Q -> Ker L an isomorphism. Suppose 

a) for each A € (0,1) every solution xofLx = XNx is such that x £ dfl; 
b) QNx ź 0 for each x GKerZ, n dft and 
c) the Brouwer degree d[JVo,ftn KerL, 0] / 0 , where N0 = JQN : 

KerL -)• KerL. 
Then the equation Lx = Nx has at least one solution in domL n ft. 

2. Bounded nonlinearity 

• First we suppose that / is bounded by an integrable function ip and prove 
the existence of at least one solution. 
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T H E O R E M 2.1. Letrur2 G R , rx < r2, -Ri,R2 € [0,oo), n,u e {-1,1} 
and <p G L( J) be such that for a.e. t G J and each x,y G K 

(2.1) Wi(r i ,0) <0, M«7i(r 2,0)>0, 

(2.2) 

and 

(2.3) 

vg2{x,Ri) < 0, ug2(x,R2) > 0 

|/(*,x,y)| 

are satisfied. 
Then problem (1.1), (1.2) has a solution u with 

(2.4) r i < «(a) < r 2 , Ri < u'(b) < R2. 

P R O O F . 

1. Auxiliary problems. 
Let us set for n G N 

(2.5) 

gm(x,y) = 
( 9i (r2,0) + ft(x - r2 - 1/n) for i > r 2 ł 1/n 

9i(r2,y) 
+bi( R 2,0) - gi(r2, y)]n(a; - r 2 ) for r 2 < x < r2 + 1/n 
9i{x,y) for n < a; < r 2 

3i(n,y) 
- f a i f a , 0) - gi(r!,y)]n(x - r i ) for r x - l / n < a; < r x 

I. 3i(r i , 0) - /i(ri - 1/n - z) for x < r x - 1/n 

( g2(x,R2) iox y>R2 

g2(x,y) for Ri<y<R2 

g2{x,Ri) for y < Ru 

and, for fixed n G N, n > 1, study auxiliary problems 
(2.7) x" = Xf(t,x,x'), AG [0,1], 

(2.8„)A \gm(x(a), x'(a)) = 0, Xg2n(x(b), x'(b)) = -vx'(b)/n. 
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If we set X = C ^ J ) , Y = L(J) x R 2 , dom L = A C ^ J ) , 

L : domL - > Y , x i — * (x",0, -vx'(b)/n), N : X -—^ Y , 

x ^ (/(•,*(•),*'(•)), ftnMaJ.a^a)), 32n(x(&),x'(&))) 

we can write (2.7), (2.8n).\ in the form 

(2.9)A LX = XNx. 

We can see that L is a Fredholm map of index zero, because Ker L = {x G 
X : x{t) = c, c € R}, Im L = L(J) x {0} x R is closed in Y and dim Ker 
L — codim Im L = 1. 

Further, the maps 

P : X — > X , x — » x ( a ) , Q : Y —• Y , (y, a,/3) H->• (0, a, 0) 

are continuous projectors and we can find the generalized inverse (to L) 
operator Kp : Im L —» Ker P (1 dom L 
in the form 

t b 

KP;{y,0,P)^-nl3{t-a)lv-j J y{s)dsdT. 
a T ' 

ThenQN-.X—> X , x—> (0,</in(x(a),x'(a)),0), 

KP(I-Q)N: X'-rX, 
t b 

xi—-ng2n(x{b),x'(b))(t - a)/v - J j f{s,x{s),x'(s))dsdT. 
a r 

Using the Arzela-Ascoli Theorem we can show that for any open bounded 
set O C X , the sets QN(U) C Y and KP(I - Q)N{U) C X are relatively 
compact. This means that N : Q -—^ Y is L-compact. Therefore we can 
use the Continuation Theorem for problems (2.9)\. 

2. A priori estimates. 
Before using the Continuation Theorem we need to find a priori estimates 

for solutions of (2.9)A- Thus, suppose that problem (1.7), (1.8n),\ has a 
solution u for some A 6 (0,1] and some n 6 N. Let u'(b) > R2. Then 
vXg2n{u(b),u'(b)) = -u'(b)/n < 0. But, by (2.2), vXg2n{u(b),u'(6)) = 
vXg2(u(b),R2) > G, a contradiction. Similarly, for u'(b) < Ri, we get 
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vXg2n(«(&),u'(b)) — -u'(b)/n > 0, and according to (2.2), 
*/Ajf2n(«(6),u'(6)) = t/\g2(u(b),R\) < 0, a contradiction. Thus 

(2.10) Ri < u'(b) < R2. 

Further, let u(a) > r2 + 1/n. Then, by (2.2), (2.5), /iAg l n(tx(a),«'(o)) = 
\/j.(gi(r2,0) + n(u(a) — r2 — 1/n)) > 0, which contradicts (2.8„)A- Similarly, 
if ii(a) < ri - 1/n, we get fi\gln(u(a),u'(a)) = Xn(gi(ri,0) - /i(r x - 1/n -
u(a)) < 0, which also contradicts (2.8„)A. Thus 

(2.11) rx - 1/n < u(a) < r 2 + 1/n. 

Now, integrating (2.3) from b to t G J , we get 

(2.12) Pi < u'{t) < Q2 for each t G J , 

b b 
where Qi — Ri — f <p(t)dt, g2 — R2 + f ip(t)dt. Finally, integrating (2.12) 

a a 
from a to t € J , we have 

(2.13) ci - 1/n < u{t) <c2 + 1/n, * 

where Cj = r» 4- Qi(b — a), i = 1,2. 
3. Application of the Continuation Theorem to problem (2.9)\. 
Let us put Q = {x € X : ci - 1 < x(t) < c2 + 1, ^ i - 1< rc'(<) < g2 + 1 

for each t € J}. Then Ker L C\ 6SI = {x e X: x(t) = c, c = ci — 1 or 
c = C2 + 1}. Estimates (2.12) and (2.13) ensure that condition (a) of the 
Continuation Theorem is valid. 

Let us check condition (b). The equation QNx = 0 for x G dfin Ker L 
has the form gi„(ci — 1,0) = 0 or (jfin(c2 + 1,0) = 0. But iig\n(c\ — 1,0) = 
A*0i(»"i,O)-(ri-l/n-ci+l) < 0and/z<7i„(c2+l,0) = ^ i ( r 2 , 0 ) + ( c 2 + l - r 2 -
1/n) > 0. Now put J : Im Q —• Ker L, (0,a,0) i — • a. Then N0 = JQN : 
Ker L —• Ker L has the form NQ(C) = gin(c,0), c G (ci — l , c 2 + 1). Since 
sgn <h„(ci - 1,0) # sgn <h„(c2 + 1,0), we have d[iVo,(ci - l , c 2 + 1),0] ^ 0 
and (c) is valid. Therefore problem (2.9)j has at least one solution in 
dom LnQ. 

4. Limitting process 
In order to complete the proof observe that for any n G N n > 1, problem 

(2.7), (2.8n)i has a solution un satisfying (2.10), (2.11), (2.12), (2.13). By 
the Arzela-Ascoli Theorem and the integrated form of the equation one gets 
the existence of a uniformly converging subsequence of {un)f whose limit is 
a solution of (1.1), (1.2) satisfying (2.4). The proof is complete. • 
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Conditions (2.1) and (2.2) can be modified in the following way: 

T H E O R E M 2.2. Letn,r2 G R, rx < r2, -Ri,R2 e [0,oo), y.,v € {-1,1} 
and (p G L(J) be such that for a.e. t G J and each x, y G M the conditions 
(2.3), 

(2.14) m(ri,0) <0, ./*0»(r 2,O)>O, 

(2.15) v9l{x,R{) < 0, i ^ i ( x , i i 2 ) > 0 

are satisfied. 
The problem (1.1), (1.2) has a solution u with 

(2.16) T-! < tt(6) < r 2 , Ri < u'(a) < R2. 

3. Unbounded nonlinearity 

Here, we replace the boundedness (1.5) in Theorems 2.1 and 2.2 by ap­
propriate sign conditions. 

T H E O R E M 3.1. Let there exist ri,r2 G R, r x < r 2 , -R\,R2 G [0,oo), 
H,v G {—1,1} such that for a.e. t G J and each x G [di,d2] with dj = 
r-j + Ą ( 6 - a), t' = 1,2, the conditions (2.1), (2.2) and 

(3.1) /(*, x, i? 2) > 0, f(t, x, R^ < 0 

are fulfilled. 
Then problem (1.1), (1.2) has a solution u satisfying 

(3.2) r i < u(a) < r 2 , i? x < u'(t) < R2 for each t G J . 

for x > d2 

for di < x < d2 , 
for x < di 

for y > R2 

for Ri<y<R2, 
for y < R\ 

{ R2 

Q(y) = { y 
Ri 
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f(t,x,y) = f(tM*),Q(y)) + 

9i{x,y) = 9i(<r(x),y), i = 1,2, 

and consider the problem 

(3.3) x" = f(t,x,x') 

(3.4) 9l(x(a),x'(a)) = 0, g2(x(b),x'(b)) = 0. 

The function / fulfils (2.3) of Theorem 2.1 with ip{t) = sup{|/(t, x, y)\ : x G 
[rfi,rf2], y G [R\,R2]} + 1 and g~i,g2 fulfil (2.1), (2.2) respectively for each 
I G R . So, problem (3.3), (3.4) has a solution u satisfying (2.4). Suppose 
max{u'(i) : t G J} = u'(to) > R2. Then t 0 G [a, b) and we can find 8 > 0 
such that R2 < u'(t) < u'(to) for each t G (to, tQ + 6]. On the other hand, by 
(3.1), 

t0+6 t0+6 

J U"(r)dr = J [ / (T , a (u (T ) ) ,Ą) + J^]^ J > 0, 
to to 

a contradiction. The inequality Ri < u'(t) for each t G J can be proved by 
similar arguments. Thus Ri < u'(t)' < R2 for each t G J . Integrating the 
latter from a to i € J , we get d\ < u(t) < d2 and we can see that u is a 
solution of (1.1), (1.2) as well. • 

T H E O R E M 3.2. Let there exist rltr2 G K, r x < r2, -R1}R2 G [0,oo), 
/ i , v G {—1,1} such that tor a.e. ( € J and each x G [di,d2] with rfj = 
n + -R»(& - a), i = 1,2, the conditions (2.14), (2.15) and 

f{t,x,R2)<0, f(t,x,Ri) >0 

are fulfilled. 
Then problem (1.1), (1.2) has a solution u satisfying 

r\ < u(b) < r 2 , Ri < u'(t) < R2 for each t G J . 

P R O O F . Using Theorem 2.2 instead of Theorem 2.1 and setting 
f(t,x,y) = f(t,a(x),Q(y)) + (g(y)-y)/{\y-Q(y)\ + l), we can prove Theorem 
3.2 similarly as Theorem 3.1. D 
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E X A M P L E . Let us show / , gi, g2 satisfying the conditions of Theorem 3.1. 
Suppose v?i,v?2 € L(J), ip3 € L°°(J), <pi >0, n € N. We can choose both 
quickly growing functions, e.g. 

f(t,x,y)=<p1(t)-ex-y2n-1+<p3(t), 
gi(x, y)=x2-ev + ex- y, g2(x, y) = y2n • ex - 1, 

or oscillating functions, e.g. 

f(t,x,y) = sin2(x + (p2(t)) • cosy, 
gi(x,y) -sm(x + y) + y + l, i = 1,2. 

Let us note that the theorems of [6] cannot be used in this case. 
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