SOME CHARACTERIZATIONS OF FUNCTIONS GENERATING K-SCHUR CONCAVE SUMS AND OF K-CÓNCAVE SET-VALUED FUNCTIONS

\author{

- Tiziana Cardinali
}

Abstract

In this note we establish some characterizations of (single valued) functions, that assume values in a Banach space, generating K-Schur concave sums. These results improve some theorems obtained in [13] and [11]. Moreover we prove that a set-valued function is K-concave if and only of it is K-t-concave and K-quasi concave (where t is a fixed number in (0,1)). This result improves the theorems obtained in [11], [2], [5] and extends the theorem of [3].

1. Introduction. It is known in literature [7] that many inequalities in \mathbb{R} can be obtained by means of appropriate Schur-convex functions: then many Authors have devoted themselves to finding some characterizations of Schur-convex functions. C.T. Ng [13] in 1986 has proved that, if D is an open and convex subset of \mathbb{R}^{n}, a function $f: D \rightarrow \mathbb{R}$ generates Schur-convex sums if and only if it can be represented as the sum of an additive function and of a convex function or if and only if it is a Wright-convex function.

Later, in 1989, K. Nikodem [11] has showed that f is Wright-convex if and only if it is midconvex and satisfies the following condition

$$
\begin{gathered}
f(t x+(1-t) y)+f((1-t) x+t y) \leq 2 \max \{f(x), f(y)\}, \\
\forall x, y \in D \text { and } \forall t \in[0,1] .
\end{gathered}
$$

In more general linear spaces, where there is not a natural order structure but, as it is well known, we can provide it with partially order structure endowed with a cone K, inequalities can be obtained by means of K-Schur

[^0]concave (convex) functions. The first part of this note has been devoted to finding some characterizations of (single valued) functions generating K-Schur concave sums. We prove (cf. Theorem 2) that, if Y is a Ba nach space (that is partially ordered by the order structure endowed with a normal and closed cone K of Y), every function $f: D \rightarrow Y, D$ is an open and convex subset of \mathbb{R}^{n}, that produces K-Schur concave sums has the following representation
$$
f(x)=A(x)+V(x), \quad \forall x \in D,
$$
where $A: \mathbb{R}^{n} \rightarrow Y$ is an additive function and $V: D \rightarrow Y$ is a $K-$ concave function. Moreover, in the same theorem, we prove that a function ' $f: D \rightarrow Y$ generates K-Schur concave sums if and only if f is K-Wright concave or if and only if it is K-midconcave and satisfies the following condition
\[

$$
\begin{aligned}
& f(t x+(1-t) y)+f(1-t) x+t y) \in 2 \operatorname{co}\{f(x), f(y)\}+K, \\
& \quad \text { for all } x, y \in D \text { and } t \in[0,1] .
\end{aligned}
$$
\]

Our result, in the particular case that $Y=\mathbb{R}$ and $K=]-\infty, 0]$, reduces itself to the mentioned Theorems of C.T. Ng and K. Nikodem.

In the second part of this note we obtain a characterization of K-concave set-valued functions. This problem was studied for single-valued functions in 1989 by K. Nikodem [11] who proved that a function f, defined on an open and convex subset of \mathbb{R}^{n} and taking its values in \mathbb{R}, is convex if and only if is quasiconvex and midconvex. Recently F.A. Behringer [2] and Z. Kominek [5] showed that the previous characterization of the convex functions is true also in the more general context when the function f is defined on any convex subset of a real vector space, not necessarily open. Later, in [3], this result has been generalized to set-valued functions: let D be a convex subset of a real vector space X, Y be a real topological vector space that can be represented in the form $Y=\bigcup_{n \in \mathbb{N}}\left(B_{n}-K\right)$, where $\left(B_{n}\right)_{n \in \mathbb{N}}$ is a family of bounded and convex subsets of Y and K be a closed cone of Y. In these conditions the Authors proved that if F is a set-valued function defined on D and taking its values in the family of the compact (non empty) subsets of Y, then
F is K-convex $\Leftrightarrow F$ is K - t-convex and K-quasiconvex, where $t \in(0,1)$.
Here we obtain an analogous result for the K-concave set-valued functions but in the case "that Y is any real locally convex topological véctor space (cf. here Corollary). This theorem extends the Theorem proved in [3] and, moreover, it strictly contains the mentioned results proved in [11], [2] and [5] (cf. here Remark 5).

Finally, we obtain a sufficient condition (cf. Theorem 4) for a set-valued function to be K-midconcave. This result is a generalization to set-valued functions of a result of N. Kuhn [6] stating that t-convex (single-valued) functions are midconvex (cf. Remark 4).
2. Definitions and remarks. Let X and Y be two real topological vector spaces (satisfying the T_{0} separation axiom). Given two real numbers α, β and two sets $S, T \subset Y$, we put

$$
\alpha S+\beta T=\{y \in Y: y=\alpha s+\beta t, s \in S, t \in T\}
$$

For every set $A \subset Y$, we denote by $\operatorname{co} A$ and by $\mathrm{cl} A$ respectively the convex hull of A and the closure of A.

A set $K \subset Y$ is said to be a "cone " if it satisfies the following conditions:

$$
K+K \subset K, \quad \alpha K \subset K, \quad \forall \alpha \in[O,+\infty[
$$

moreover we say that a set $A \subset Y$ is " K-convex" if

$$
t A+(1-t) A \subset A+K, \quad \forall t \in[0,1] .
$$

A cone $K \subset Y$ is said to be "normal" if
(2.1) there exists a base $\mathcal{V}(0)$ of neighbourhoods of zero in Y such that:

$$
V=(V+K) \cap(V-K), \quad \forall V \in \mathcal{V}(0)
$$

We denote by

$$
\begin{align*}
& n(Y)=\{S \subset Y: S \neq \emptyset\}, \tag{2.2}\\
& C(Y)=\{S \subset Y: \quad S \text { compact, convex, } S \neq \emptyset\} \tag{2.3}\\
& C_{K}(Y)=\{S \subset Y: \quad S \text { compact, } K \text {-convex, } S \neq \emptyset\} \tag{2.4}
\end{align*}
$$

Let D be a non-empty convex subset of X and t be a fixed number of $(0,1)$. A set-valued function $F: D \rightarrow n(Y)$ is called " $K-t$-convex" if

$$
\begin{equation*}
t F(x)+(1-t) F(y) \subset F(t x+(1-t) y)+K \tag{2.5}
\end{equation*}
$$

for all $x, y \in D$. If $t=\frac{1}{2}, F$ is called "K-midconvex"; while F is said to be " K-convex" if (2.5) holds for every $x, y \in D$ and for every $t \in[0,1]$.

Moreover, a set-valued function $F: D \rightarrow n(Y)$ is said to be " $K-t$ concave" if

$$
\begin{equation*}
F(t x+(1-t) y) \subset t F(x)+(1-t) F(y)+K \tag{2.6}
\end{equation*}
$$

for all $x, y \in D$. If $t=\frac{1}{2}, F$ is called " K-midconcave"; while F is said to be " K-concave" if (2.6) holds for every $x, y \in D$ and for every $t \in[0,1]$.

The set-valued function F is said to be " K-quasiconvex" if for every convex set $A \subset Y$ the lower inverse image of $A-K$, i.e. the set

$$
F^{-}(A-K)=\{x \in D: F(x) \cap(A-K) \neq \emptyset\}
$$

is convex; while F is called " K-quasiconcave" if

$$
F(t x+(1-t) y) \subset \operatorname{co}(F(x) \cup F(y))+K, \quad \forall x, y \in D \text { and } t \in[0,1] .
$$

The set-valued function F is said to be " K-Wright convex" if

$$
F(x)+F(y) \subset F(t x+(1-t) y)+F((1-t) x+t y)+K
$$

for all $x, y \in D$ and $t \in[0,1]$; while F is called " K-Wright concave" if

$$
F(t x+(1-t) y)+F((1-t) x+t y) \subset F(x)+F(y)+K
$$

for all $x, y \in D$ and $t \in[0,1]$.
Let $\mathrm{X}=\left(x_{1}, \ldots, x_{p}\right)$ and $\mathrm{Y}=\left(y_{1}, \ldots, y_{p}\right)$ be p-tuples of vectors $x_{i}, y_{i} \in$ \mathbb{R}^{n}. Then X is said to be majorized by Y , written $\mathrm{X} \prec \mathrm{Y}$, if there exists a doubly stochastic $p \times p$ matrix H such that $\left[x_{1}, \ldots, x_{p}\right]=\left[y_{1}, \ldots, y_{p}\right] H$; here $\left[x_{1}, \ldots, x_{p}\right]$ denotes the $n \times p$ matrix whose i-th column vector is x_{i}.

Let S be a subset of $\left(\mathbb{R}^{n}\right)^{p}$, a set-valued function $\phi: S \rightarrow n(Y)$ is said to be " K-Schur convex" if

$$
\phi(\mathrm{y}) \subset \phi(\mathrm{x})+K, \quad \text { for all } \quad \mathrm{x}, \mathrm{y} \in S \text { such that } \mathrm{x}<\mathrm{y}
$$

while ϕ is said to be " K-Schur concave" if

$$
\phi(\mathrm{x}) \subset \phi(\mathrm{Y})+K, \quad \text { for all } \quad \mathrm{X}, \mathrm{Y} \in S \quad \text { such that } \quad \mathrm{X} \prec \mathrm{Y} .
$$

Fixed two bases of neighbourhoods of zero, $\mathcal{U}(0)$ and $\mathcal{W}(0)$, respectively in X and in Y, the set-valued function F is said to be " K-lower semicontinuous" in a point $x_{0} \in D$ if $:$
($K-$ l.s.c.) $\quad \forall \dot{W} \in \mathcal{W}(0)$ there exists a neighbourhood $U \in \mathcal{U}(0)$ such that

$$
F\left(x_{0}\right) \subset F(x)+W+K, \quad \forall x \in\left(x_{0}+U\right) \cap D
$$

while F is said to be ψK-upper semicontinuous " in $x_{0} \in D$ if
(K-u.s.c.) $\quad \forall W \in \mathcal{W}(0)$ there exists a neighbourhood $U \in \mathcal{U}(0)$ such that

$$
F(x) \subset F\left(x_{0}\right)+W+K, \quad \forall x \in\left(x_{0}+U\right) \cap D
$$

moreover F is said to be "K-continuous" in the point $x_{0} \in D$ if it is " K-lower semicontinuous" and " K-upper semicontinuous" in this point.

Finally the set-valued function F is said to be " K-lower bounded" (" K upper bounded") on a set $A \subset D$ if
there exists a bounded set $B \subset Y$ such that

$$
\begin{equation*}
\bigcup_{x \in A} F(x) \subset B+K\left(\bigcup_{x \in A} F(x) \subset B-K\right) \tag{2.7}
\end{equation*}
$$

3. On the representation of functions generating $K-S c h u r$ concave sums. In the next theorem we give a characterization of functions, that assume values in a Banach space, generating K-Schur concave sums. To obtain this theorem we first estabilish the Lemma 1 and a slightly weaker version of a proposition proved in [14] (cf. Theorem), because the hypothesis iii) of our Theorem 1 is more general than hypothesis iii) of the Theorem in [14].

Lemma 1. Let X be a real vector space and Y be a real topological vector space T_{0}, D be a convex subset of X, K be a closed cone in Y and $F: D \rightarrow C(Y)$ be a K-midconcave set-valued function. In these conditions, F has the following property:

$$
\begin{equation*}
F\left(\frac{x_{1}+\ldots+x_{n}}{n}\right) \subset \frac{F\left(x_{1}\right)+\ldots+F\left(x_{n}\right)}{n}+K, \forall x_{1}, \ldots, x_{n} \in D . \tag{3.1}
\end{equation*}
$$

Proof. Proceeding by induction, from the K-midconcavity of F, it follows that

$$
\begin{equation*}
F\left(\frac{x_{1}+\ldots+x_{2 p}}{2^{p}}\right) \subset \frac{F\left(x_{1}\right)+\ldots+F\left(x_{2 p}\right)}{2^{p}}+K \tag{3.2}
\end{equation*}
$$

for every $p \in \mathrm{~N}_{0}$ and for every $x_{1}, \ldots, x_{2 p} \in D$.
Now fixed $n \in \mathrm{~N}$, and choosen $p \in \mathrm{~N}$ such that $n<2^{p}$, take arbitrary $x_{1}, \ldots, x_{n} \in D$, and let

$$
x_{k}=\frac{x_{1}+\ldots+x_{n}}{n}, \quad \text { for } \quad k=n+1, \ldots 2^{p}
$$

Since D is' convex, $x_{k} \in D$, for $k=n+1, \ldots, 2^{p}$. We have $\frac{x_{1}+\ldots+x_{2 p}}{2 p}=$ $\frac{x_{1}+\ldots+x_{n}}{n}$, whence by (3.2) it follows

$$
\begin{aligned}
& \left(\frac{2^{p}-n}{2^{p}}\right) F\left(\frac{x_{1}+\ldots+x_{n}}{n}\right)+\frac{n}{2^{p}} F\left(\frac{x_{1}+\ldots+x_{n}}{n}\right) \\
& \subset \frac{F\left(x_{1}\right)+\ldots+F\left(x_{2 p}\right)}{2^{p}}+K \\
& =\frac{1}{2^{p}}\left[F\left(x_{1}\right)+\ldots+F\left(x_{n}\right)\right]+\left(\frac{2^{p}-n}{2^{p}}\right) F\left(\frac{x_{1}+\ldots+x_{n}}{n}\right)+K,
\end{aligned}
$$

so, because the values of F are compact and convex and K is closed, by the "law of cancellation" (rf. (15]) we obtain

$$
n F\left(\frac{x_{1}+\ldots+x_{n}}{n}\right) \subset F\left(x_{1}\right)+\ldots+F\left(x_{n}\right)+2^{p} K
$$

which yields (3.1).
Now, for every fixed cone K in a Banach space Y, we consider the following (non empty (cf. [9], Theorem 1)) class \mathcal{A}_{K} of subsets of a convex and open set $D \subset R^{n}$:

$$
\mathcal{A}_{K}=\left\{\begin{array}{c}
T \subset D: \text { every } K \text {-midconvex function defined on } D, \tag{3.3}\\
\text { taking its values in } Y \text { and } K \text {-upper } \\
\text { bounded on } T, \text { is } K \text {-continuous on } D .
\end{array}\right\}
$$

It holds the following
Theorem 1. Let Y be a Banach space, K be a normal and closed cone in Y, D be an open and convex subset of \mathbb{R}^{n} and $f, g: D \rightarrow Y$ be two functions such that:
i) f is K-midconvex on D;
ii). \dot{g} is K-midconcave on D;
iii): $\exists T \in \mathcal{A}_{K}, \exists$ a bounded set $N \subset Y: g(x)-f(x) \in N+K, \quad \forall x \in T$. Then there exist two functions $F, G: D \rightarrow Y$ respectively K-convex and K-concave and an additive function $A: \mathbf{R}^{n} \rightarrow Y$ such that:
(1) $f(x)=F(x)+A(x), \quad \forall x \in D$,
(2) $g(x)=G(x)+A(x), \quad \forall x \in D$.

We omit the proof because it is analogous of the proof of the Theorem of [14].

Now we are in a position to prove the following
Theorem 2. Let Y be a Banach space, K be a normal and closed cone in Y, D be an open and convex subset of \mathbf{R}^{n} and $f: D \rightarrow Y$ be a function. In these conditions, the following statements are equivalent:
(1) there exists $p \geq 2$ such that the sum $\sum_{i=1}^{p} f\left(x_{i}\right)$ is K-Schur concave;
(2) f is K-Wright concave;
(3) f is K-midconcave and verifies the condition;

$$
f(t x+(1-t) y)+f((1-t) x+t y) \in 2 \cos \{f(x), f(y)\}+K
$$

for every $x, y \in D$ and for every $t \in[0,1]$;
(4) there exist a K-concave function $V: D \rightarrow Y$ and an additive function $A: \mathbb{R}^{n} \rightarrow Y$ such that: $f(x)=V(x)+A(x), \quad \forall x \in D ;$
(5) for all $p \geq 2$, the sum $\sum_{i=1}^{p} f\left(x_{i}\right)$ is K-Schur concave.

Remark 1. The implication (2) $\Rightarrow(3)$ is also true in the more general case that D is a non-empty convex subset of a real vector space X, K is a cone in a real vector space Y and $F: D \rightarrow n(Y)$ is a set-valued function.

Proof. In order to prove (1) \Rightarrow (2) we fix $x, y \in D, t \in[0,1]$ and let $\mathrm{x}=\left(z_{1}, z_{2}, \ldots, z_{p}\right) \in D^{p}$, where $z_{1}=t x+(1-t) y, z_{2}=(1-t) x+t y, z_{3}=$ $\ldots=z_{p}=x$, and $\mathrm{Y}=\left(w_{1}, w_{2}, \ldots, w_{p}\right) \in D^{p}$, where $w_{1}=x, w_{2}=y, w_{3}=$ $\ldots=w_{p}=x$. Since $\mathbf{X} \prec \mathrm{Y}$, taking (1) into account, we have that

$$
f(t x+(1-t) y)+f((1-t) x+t y) \in f(x)+f(y)+K,
$$

which was to be proved.
As we said in Remark $1,(2) \Rightarrow(3)$. To prove (3) $\Rightarrow(4)$ we fix a point $p \in D$ and we consider a positive number ε such that the closed ball $\operatorname{cl} B(p, \varepsilon)$ is included in D. Let $\left\{e_{1}, \ldots, e_{n}\right\}$ be the standard ortonormal base in \mathbb{R}^{n} and we denote by $L_{i}, i \in\{1, \ldots, n\}$, the line segment joining the points $a_{i}=p+\varepsilon e_{i}$ and $b_{i}=p-\varepsilon e_{i}$. For every $x \in L_{i}$ there exists a $t \in[0,1]$ such that $x=t a_{i}+(1-t) b_{i}$. Then $2 p-x=(1-t) a_{i}+t b_{i} \in L_{i} \subset D$, hence, we have

$$
\begin{equation*}
f(x)+f(2 p-x) \in 2 \operatorname{co}\left\{f\left(a_{i}\right), f\left(b_{i}\right)\right\}+K, \quad \text { for all } \quad x \in L_{i} \tag{3.4}
\end{equation*}
$$

Now we consider the set

$$
\begin{equation*}
M=\operatorname{co}\left\{f\left(a_{1}\right), \ldots, f\left(a_{n}\right), \ldots, f\left(b_{1}\right), \ldots, f\left(b_{n}\right)\right\} \tag{3.5}
\end{equation*}
$$

and the function $g: \operatorname{cl} B(p, \varepsilon) \rightarrow Y$ defined by $g(x)=-f(2 p-x), \forall x \in$ $\mathrm{cl} B(p, \varepsilon)$. Taking the K-midconcavity of f into account, we have that g is $(-K)$-midconcave. Moreover, by (3.4) and (3.5) it follows

$$
\begin{equation*}
g(x)-f(x) \in-2 M-K, \quad \forall x \in \bigcup_{i=1}^{n} L_{i} \tag{3.6}
\end{equation*}
$$

Now, put

$$
\begin{equation*}
T=\left\{\frac{x_{1}+\ldots+x_{n}}{n}: x_{1}, \ldots, x_{n} \in \bigcup_{i=1}^{n} L_{i}\right\} \cap B(p, \varepsilon) . \tag{3.7}
\end{equation*}
$$

For every $y=\frac{x_{1}+\ldots+x_{n}}{n} \in T$, we obtain (cf. Lemma 1 and (3.6))

$$
\begin{align*}
& g(y)-f(y) \in \frac{1}{n}\left[g\left(x_{1}\right)-f\left(x_{1}\right)+\ldots+g\left(x_{n}\right)-f\left(x_{n}\right)\right]- \tag{3.8}\\
& -K-K-2 M-K .
\end{align*}
$$

Now we have that the restrictions of f and g to the set $B(p, \varepsilon)$ satisfy the hypothesis of our Theorem 1. In fact f is $(-K)$-midconvex, g is $(-K)-$ midconcave and (3.8) is true on the set with non empty interior $T \in \mathcal{A}_{-K}$ (cf. (3.7), (3.3) and [12], Corollario 3.3). Therefore, there exist a ($-K$)convex function $F: B(p, \varepsilon) \rightarrow Y$, a $(-K)$-concave function $G: B(p, \varepsilon) \rightarrow Y$ and an additive function $A: \mathbb{R}^{n} \rightarrow Y$ with the properties

$$
\begin{array}{ll}
f(x)=F(x)+A(x), & \forall x \in B(p, \varepsilon) \\
g(x)=G(x)+A(x), & \forall x \in B(p, \varepsilon) . \tag{3.10}
\end{array}
$$

Now, we consider a function $V: D \rightarrow Y$ defined by

$$
\begin{equation*}
V(x)=f(x)-A(x), \quad \forall x \in D . \tag{3.11}
\end{equation*}
$$

Using (3.9), we have that V is K-concave on $B(p, \varepsilon)$; therefore the function V is K-continuous on $B(p, \varepsilon)$ (cf. [1], Theorem 5.5). On the other hand, V is $\cdot K$-midconcave on D and then we can say that V is K-continuous on D (cf.' [1], Corollary 1). So, by the Theorem 5.4 of [1], V is K-concave on D. Thus, taking (3.11) into account, the statement (4) is proved.

Now, we suppouse that f has the representation $f=V+A$, where V is a K-concave function and A is an additive function. Fixed an arbitrary number $p \in \mathbf{N}$, if $\mathrm{X}=\left(x_{1}, \ldots, x_{p}\right), \mathrm{Y}=\left(y_{1}, \ldots, y_{p}\right) \in D^{p}$ are such that $\mathrm{x} \prec \mathrm{Y}$, we can say that (cf. [12], Theorem.2.3)

$$
\begin{align*}
\sum_{j=1}^{p} V\left(x_{j}\right) & =\sum_{j=1}^{p} V\left(\sum_{i=1}^{p} h_{i, j} y_{i}\right) \in \sum_{j=1}^{p} \sum_{i=1}^{p} h_{i, j} V\left(y_{i}\right)+K \tag{3.12}\\
& =\sum_{i=1}^{p} V\left(y_{i}\right)+K
\end{align*}
$$

where $H=\left(h_{i, j}\right)$ is the doubly stochastic $p \times p$ matrix such that
$\left[x_{1}, \ldots, x_{p}\right]=\left[y_{1}, \ldots, y_{p}\right] H ;$ moreover, since $\sum_{i=1}^{p} x_{i}=\sum_{i=1}^{p} y_{i}$ holds, it follows that

$$
\sum_{i=1}^{p} A\left(x_{i}\right)=\sum_{i=1}^{p} A\left(y_{i}\right)
$$

hence, by (3.12), we obtain

$$
\sum_{i=1}^{p} f\left(x_{i}\right) \in \sum_{i=1}^{p} V\left(y_{i}\right)+K+\sum_{i=1}^{p} A\left(y_{i}\right)=\sum_{i=1}^{p} f\left(y_{i}\right)+K
$$

Therefore (4) implies (5).
The obvious implication (5) \Rightarrow (1) completes the proof.
Remark 2 This result contains, as special case, the Theorem proved by C.T. Ng in [13] and the Theorem 2 stated by K. Nikodem in [11]. It is easily seen if we assume $Y=\mathbb{R}$ and $K=]-\infty, 0]$.

4. On the characterization of K -concave set-valued functions

In this section we obtain a necessary and sufficient condition for a given set-valued function to be " K-concave". We need first the following Lemma which is an analogous to a result for functions [8] and for set-valued functions [3].

Lemma 2. Let K be a cone in a real topological vector space Y. If the set-valued function $F:[0,1] \rightarrow C_{K}(Y)$ is K-midconcave on $[0,1]$ and " K-concave" on $(0,1)$, then F is cl K-concave on $[0,1]$.

Proof. Fixed $x ; y \in[0 ; 1]$ and $t \in(0,1)$, we put $z=t x+(1-t) y$. Now let $u=\frac{x+z}{2}$ and $v=\frac{y+z}{2}$. Then we have that $u, v \in(0,1)$ and $z=t u+(1-t) v$. Since F is K-concave on $(0,1)$ and K-midconcave on $[0,1]$ and, moreover, the values of F are K-convex, it follows

$$
\begin{align*}
F(z)+ & t F(u)+(1-t) F(v) \subset \\
& \subset t[F(u)+F(u)]+(1-t)[F(v)+F(v)]+K \subset \tag{4.1}\\
& \subset \mathrm{cl}(t F(x)+(1-t) F(y)+K)+t F(u)+(1-t) F(v) .
\end{align*}
$$

Since the set cl $(t F(x)+(1-t) F(y)+K)$ is convex and F has compact values, by the "law of cancellation" and by Lemma 1.9 of [12]; it follows :

$$
F(z) \subset t F(x)+(1-t) F(y)+\mathrm{cl} K
$$

namely F is $\mathrm{cl} K$-concave on $[0,1]$.
1 heorem 3. Let X be a real vector space. Y be a real locall convex topological vector space T_{0}, D be a convex subset of X, K be a closed cone in Y and $F: D \rightarrow C_{K}(Y)$ be a set-valued function. In these conditions, F is K-concave if and only if F is K-midconcave and K-quasiconcave.

Proof. The necessary condition is trivial (cf. [12], Theorem 2.9). Now, we suppose that F is μ-midconcave and K-quasiconcave. Fixed $x, y \in D$, we define the set-valued function $H:[0,1] \rightarrow C_{K}(Y)$ by putting

$$
\begin{equation*}
H(t)=F(t x+(1-t) y), \quad \forall t \in[0,1] . \tag{4.2}
\end{equation*}
$$

From Theorem 2.11 of [12] it follows that H is " K-quasiconcave" on $[0,1]$ and, on the other hand, it is easy to see that H is also K-midconcave on $[0,1]$. Fixed $x, y \in D$, since F is K-quasiconcave, we obtain

$$
H(t) \subset \operatorname{co}(F(x) \cup F(y))+K, \quad \forall t \in[0,1]
$$

hence, being the set $\operatorname{co}(F(x) \cup F(y))$ bounded, the set-valued function H is K-lower bounded on $[0,1]$. Therefore, from the Theorems 5.3 and 5.4 of [1] and from our Lemma 2, it follows that H is K-concave on $[0,1]$. Finally, by (4.2), we get

$$
F(t x+(1-t) y) \subset t F(x)+(1-t) F(y)+K, \quad \forall t \in[0,1]
$$

namely F is K-concave.
Remark 3. This Theorem 3 is not still true if we drop the assumption that the values of set-valued function F are $K-$ convex, as it is easy to observe by the following example: let $X=Y=\mathbb{R}, K=\{0\}$ and $F: R \rightarrow n(R)$ be the set-valued function so defined

$$
F(x)= \begin{cases}\{0,1\}, & x \in \mathbb{Q} \\ {[0,1],} & x \in \mathbb{R} \backslash \mathbb{Q} .\end{cases}
$$

In fact, F is K-midconcave and K-quasiconcave but F is not K-concave.
Theorem 4. Let X be a real vector space, Y be a real topological vector space T_{0}, D be a convex subset of X, K be a closed cone in Y and t be a fixed number in $(0,1)$. In these conditions, if $F: D \rightarrow C_{K}(Y)$ is a K - t-concave set-valued function, then F is K-midconcave.

Proof. Let $x, y \in D$; by using the $K-t$-concavity of F and the fact that its values are K-convex, we get (cf. [12], Lemma 1.1)

$$
\begin{aligned}
2 t(1-t) & F\left(\frac{x+y}{2}\right)+[1-2 t(1-t)] F\left(\frac{x+y}{2}\right) \subset \\
& \subset t F\left((1-t) x+t \frac{x+y}{2}\right)+(1-t) F\left(t y+(1-t) \frac{x+y}{2}\right)+K \subset \\
& \subset t(1-t) F(x)+t(1-t) F(y)+[1-2 t(1-t)] F\left(\frac{x+y}{2}\right)+K
\end{aligned}
$$

Since the set $t(1-t) F(x)+t(1-t) F(y)+K$ is convex and closed and the set $[1-2 t(1-t)] F\left(\frac{x+y}{2}\right)$ is bounded, by the law of cancellation, it follows that

$$
2 t(1-t) F\left(\frac{x+y}{2}\right) \subset t(1-t) F(x)+t(1-t) F(y)+K
$$

hence

$$
F\left(\frac{x+y}{2}\right) \subset \frac{1}{2}[F(x)+F(y)]+K
$$

Remark 4. The idea of the proof of Theorem 4 is due to Z. Daroczy and Z. Pales [4]. Moreover, we observe that if $Y=\mathbb{R}, K=]-\infty, 0$] and F is a (single-valued) function, our Theorem 4 reduced itself to a well-known result of N. Kuhn [6].

As an immediate consequence of Theorem 3 and of Theorem 4 we obtain the following

Corollary. Let X be a real vector space, Y be a real locally convex topological vector space T_{0}, D be a convex subset of X, K be a closed cone in Y and t be a fixed number in (0,1). In these conditions, a set-valued function $F: D \rightarrow C_{K}(Y)$ is K-concave if and only if F is $K-t$-concave and K-quasiconcave.

Remark 5. It follows easily that if $\left.\left.X=\mathbb{R}^{n}, Y=\mathbb{R}, K=\right]-\infty, 0\right]$ and F is a (single-valued) function, our Corollary strictly contains the Proposition 3 of [11], the Theorem 2 of [2] and the Theorem proved in [5]; moreover, it extends the Corollary 1 of [3].

References

[1] A. Averna, T. Cardinali, Sui concetti di K-convessità (K-concavità) e di K-convessità* (K-concavitã* ${ }^{*}$, Riv. Mat. Univ. Parma (5) 16 (1990), 311-330.
[2] F. A. Behringer, Convexity is equivalent to midpoint convexity combined with strict quasiconvexity, Optimization (ed. K. H. Elstev, Ilmenan, Germany), (to appear).
[3] , T. Cardinali, K. Nikodem, F. Papalini, Some results on stability and on characterization of K-convexity of set-valued functions, Annales Polonici Mathematici, LVIII. 2 (1993),185-192.
[4] Z. Daroczy, Z. Pales, Convexity with given infinity weight sequences, Stochastica 11 (1987), 76-86.
[5] Z. Kominek, A characterization of convex functions in linear spaces, Zeszyty Naukowe Akademii Górniczo-Hutniczej Im. Stanislawa Staszica, No 1277 Opuscula Math. 5 Kraków, 1989, 71-75.
[6] N. Kuhn, A note on t-convex functions, General Inequalities 5 (Proc. of the 5 th International Conference on General Inequalities, Oberwolfach, 1968), 269-276.
[7] A.W. Marshall, I. Olkin, Inequalities: Theory of Majorization and its Applicalions.. Academic Press, New York, 1979.
[8] C. T. Ng, K. Nikodem, On approximately convex functions, Proc. Amer. Math. Soc. 118 (1993), 103-108.
[9] K. Nikodem, Continuity of K-convex set-valued functions, Bull. Polish Acad. Sci. Math. 35 (1986), 392-399.
[10] K. Nikodem, Approximately quasiconvex functions, C. R. Math. Rep. Acád. Sci. Canada - Vol. X, No 6 (1988), 291-295.
[11] K. Nikodem, On some class of midconvex functions, Annales Polonici Mathematici L (1989), 151-155.
[12] K. Nikodem, K-convex and K-concave set-valued functions, Zeszyty Nauk. Politech. Lódz. 559 (Rozprawy Mat. 115), Lódz 1989.
[13] C. T. Ng, Functions generating Schur-convex sums, General Inequalities 5 (Proc, Oberwolfach, 1986), 533-538.
[14] F. Papalini, Decomposition of a K-midconvex (K-midconcave) function in a Banach space, Riv. Mat. Univ. Parma (5) 2 (1993).
[15] H. Rädström, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.
`Department of Mathematics of Perugia University
Via Vanvitelli 1
06123 Perugia
Italy

[^0]: AMS (1991) subject classification: 26B25, 26B40, 54 C 60.

