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S O M E C H A R A C T E R I Z A T I O N S O F F U N C T I O N S 

G E N E R A T I N G K ' - S C H U R C O N C A V E S U M S A N D 

O F K - C O N C A V E S E T - V A L U E D F U N C T I O N S 

T l Z I A N A C A R D I N A L I 

A b s t r a c t . In this note we establish some characterizations of (single valu­
ed) functions, that assume values in a Banach space, generating /f-Schur 
concave sums. These results improve some theorems obtained in [13] and 
[11]. Moreover we prove that a set-valued function is /<"-concave if and 
only of it is A'-t-concave and A'-quasi concave (where t is a fixed number 
in (0,1)). This result improves the theorems obtained in [11], [2], [5] and 
extends the theorem of [3]. 

1. Introduction. It is known in literature [7] that many inequalities in 
R can be obtained by means of appropriate Schur-convex functions: then 
many Authors have devoted themselves to finding some characterizations of 
Schur-convex functions. C . T . Ng [13] in 1986 has proved that, if D is an 
open and convex subset of R n , a function / : D -> R generates Schur-convex 
sums if and only if it can be represented as the sum of an additive function 
and of a convex function or if and only if it is a Wright-convex function. 

Later, in 1989, K. Nikodem [11] has showed that / is Wright-convex if 
and only if it is midconvex and satisfies the following condition 

f(tx + (1 - t)y)+/((l - t)x + ty) < 2 max{/(x), f(y)}, 

V&.'y € D and V« G [0,1]. 

In more general linear spaces, where there is not a natural order structure 
but, as it is well known, we can provide it with partially order structure 
endowed with a cone K, inequalities can be obtained by means of K-Schur 
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concave (convex) functions. The first part of this note has been devoted 
to finding some characterizations of (single valued) functions generating 
A"-Schur concave sums. We prove (cf. Theorem 2) that, if Y is a Ba­
nach space (that is partially ordered by the order structure endowed with 
a normal and closed cone K of Y), every function / : D -> Y, D is an 
open and convex subset of R n , that produces A'-Schur concave sums has 
the following representation 

f{x) = A(x) + V(x)t V x e D , 

where A : R n —> Y is an additive function and V : D —> Y is a A ' -
concave function. Moreover, in the same theorem, we prove that a function 
/ : D —> Y generates A'-Schur concave sums if and only if / is A'-Wright 
concave or if and only if it is A"-midconcave and satisfies the following con­
dition 

f(tx+(l - t)y) + / ( l - t)x + ty)e2 co{/(x), f{y)} + A', 

for all x,y e D and t € [0,1]. 

Our result, in the particular case that Y = R and K = ] — oo,0], reduces 
itself to the mentioned Theorems of C . T . Ng and K. Nikodem. 

In the second part of this note we obtain a characterization of A'-concave 
set-valued functions. This problem was studied for single-valued functions in 
1989 by K. Nikodem [11] who proved that a function / , defined on an open 
and convex subset of R " and taking its values in R, is convex if and only if 
is quasiconvex and midconvex. Recently F . A . Behringer [2] and Z. Kominek 
[5] showed that the previous characterization of the convex functions is true 
also in the more general context when the function / is defined on any 
convex subset of a real vector space, not necessarily open. Later, in [3], this 
result has been generalized to set-valued functions: let D be ą convex subset 
of a real vector space X, Y be a real topological vector space that can be 
represented in the form Y = U n e N ( ^ n — 0̂> w n e r e ( B n ) n 6 N is a family of 
bounded and convex subsets of Y and A* be a closed cone of Y. In these 
conditions the Authors proved that if F is a set-valued function defined on 
D and taking its values in the family of the compact (non empty) subsets of 
y , then 

F is A"-convex & F is A'-z-convex and A*-quasiconvex, where t G (0,1). 
Here we obtain an analogous result for the A"-concave set-valued func­

tions but in the case*that V is any real locally convex topological vector 
space (cf. here Corollary ). This theorem extendsHhe Theorem proved in 
[3] and, moreover, it strictly contains the mentioned results proved in [11], 
[2] and [5] (cf. here Remark 5). 



19 

Finally, we obtain a sufficient condition (cf. Theorem 4) for a set-valued 
function to be A'-midconcave. This result is a generalization to set-valued 
functions of a result of N. Kuhn [6] stating that i-convex (single-valued) 
functions are midcohvex (cf. Remark 4). 

2. Definitions and remarks. Let X and Y be two real topological 
vector spaces (satisfying the To separation axiom). Given two real numbers 
a, 0 and two sets 5 , T C V , we put 

aS + (JT = {ye Y : y = as + 0t, seS,teT}. 

For every set A C V , we denote by coA and by c\A respectively the convex 
hull of A and the closure of A. 

A set K C Y is said to be a "cone " if it satisfies the following conditions: 

'K + K C A', aK C A', Va € [O, +oo[; 

moreover we say that a set A C Y is "A"-convex" if 

tA + { l - t ) A c A + K, V i e [0,1]. 

A cone K C Y is said to be "normal " if 

(2.1) there exists a base V(0) of neighbourhoods of zero in Y such that: 

v = {v + K)n{v - K), VKeV(O). 

We denote by 
(2.2) n{Y) = { S c Y : 5 ^ 0 } , 
(2.3) C(Y) = {S CY : S compact, convex, 5 ^ 0 } , 
(2.4) CK(Y) = { 5 C T : S compact, /(-convex, 5 ^ 0 } 

Let D be a non-empty convex subset of X and t be a fixed number of 
( 0 , 1 ) . A set-valued function F : D —> n(Y) is called "A'-i-convex" if 

(2.5) . tF{x) + (l-t)F{y)cF{tx + (l-t)y) + K 

for all x,y € D. If t = i , F is called " K-midconvex"; while F is said to be 
"A"-convex" if (2.5) holds for every x,y G D and for every t 6 [0,1]. 

Moreover, a set-valued function F : D —• n(Y) is said to be UK — t-
concave" if 

(2.6) F(tx + (1 - t)y) C tF(x) + (1 - t)F(y) + K, 

•2" 
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for all x,y € D. If t = i , F is called "A'-midconcave"; while F is said to 
be "/if-concave" if (2.6) holds for every x,y £ D and for every t G [0,1]. 

The set-valued function F is said to be "A-quasiconvex" if for every 
convex set A C Y the lower inverse image of .4-A', i.e. the set 

F~ (A — A') = {x € D : F(x) n (4 - A') # 0}, 

is convex; while F is called "A'-quasiconcave" if 

F(tx + (1 - t)y) C co (F(x) U F(y)) + K, Vx, y £ D and i G [0, l j . 

The set-valued function F is said to be "A'-Wright convex" if 

F(x) + F{y) C F{tx + (1 - t)y) + F ( ( l - t)x + ty) + A', 

for all x,y G D and ł G [0,1]; while F is called "A'-Wright concave" if 

F(tx + (1 - + F ( ( l - t)x + ty) C F(x) + F(y) + A', 

for all x, y G D and t G [0,1]. 
Let X = ( x i , . . . , x p) and Y = ( y i , . . . , y p) be p-tuples of vectors x;, ŷ  G 

R" . Then X is said to be majorized by Y, written X -< Y, if there exists a 
doubly stochastic p x p matrix,// such that [ x i , . . . , xp] = [y\,... , yp] H; 
here [ x j , . . . , xp] denotes the n x p matrix whose i-th column vector is x,. 

Let S be a subset of ( R n ) p , a set-valued function <j>: S —¥ n(Y) is said to 
be "A'-Schur convex" if 

<£(Y) C <£(X) + K, for all X, Y G 5 such that X -< Y, 

while <f> is said to be "A'-Schur concave" if 

<£(x) C <£(Y) + K, for all X, Y G S such that X -< Y. 

Fixed two bases of neighbourhoods of zero, U(Q) and W(0), respectively in X 
and in Y, the set-valued function F is said to be UK-lower semicontinuous " 
in a point xo G D if v 

(A"-l.s.c.) V i y G >V(0) there exists a neighbourhood U G U{0) such.that 

> ( x 0 ) ' C F ( x ) + W + K, Vx G (x 0 + U) n D; 

while F is said to be #K -tipper semicontinuous " in xo G D if 

(A"-u.s.c.) VW € W ( 0 ) there exists a neighbourhood U G U(0) such that 

F(x) C F (x 0 ) + W + K, Vx G (x 0 + U) n £>; 
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moreover F is said to be "K-continuous " in the point aro G D if it is 
"A'-lower semicontinuous" and "A'-upper semicontinuous" in this point. 

Finally the set-valued function F is said to be "A*-lower bounded" ("A'-
upper bounded") on a set A C D if 

there exists a bounded set B C Y such that 

(2.7) 

(J F(x) C B + K ( (J F{x) C B - I<) 
xeA \xeA / 3. O n the representation of functions generating A' -Schur con­

cave sums. In the next theorem we give a characterization of functions, 
that assume values in a Banach space, generating A'-Schur concave sums. 
To obtain this theorem we first estabilish the Lemma 1 and a slightly weaker 
version of a proposition proved in [14] (cf. Theorem), because the hypothesis 
iii) of our Theorem 1 is more general than hypothesis iii) of the Theorem 
in [14]. 

L E M M A 1. Let X be a reai vector space and Y be a real topological 
vector space To, D be a convex subset of X, K be a closed cone in Y and 
F : D —» C(Y) be a K-midconcave set-valued function. In these conditions, 
F has the following property: 

F ( z t + . . . + z „ \ F M + . . . + F M + K V t i i n g c 

\ n / n 

P R O O F . Proceeding by induction, from the A"-midconcavity. of F , it 
follows that 

(3.2) 
p Cxi + . . . + x2,^ c F (s 1 ) + . . . + F ( s 2 , ) + K 

for every p 6 No and for every X i , . . . , x%r 6 D. 
Now fixed n € N, and choosenp € N such that n < 2P, take arbitrary 

x i , . . . , xn 6 D , and let 

X l + . , . + xn for Jb = n + l , . . . 2 p . 
n ' 

Since D is convex, xk 6 D, for = n+ 1 , . . . ,2". We have » i + - t " a r = 

^ - l - - ^ " , whence by (3.2) it follows 

^ F(x,) + . . . + F (x 2 , ) 



22 

so, because the values of F are compact and convex and A' is closed, by the 
"law of cancellation" (cf. (15]) we obtain 

^xi + ... + xn^ 
nF ^ • Ł 1 " r - ; ; " r - Ł " ) C F(x,) + ...+ F(xn) + 2"A', 

which yields (3.1). 
Now, for every fixed cone A' in a Banach space V , we consider the follow­

ing (non empty (cf. [9 ], Theorem 1 ) ) class AK of subsets of a convex and 
open set D C Rn: 

(3.3) A K = < 

( T C D : everyA'-midconvex function defined on DĄ 

taking its values in Vand A'-upper 

bounded on T , is A"-continuous on D . 

It holds the following 

T H E O R E M 1. Let Y be a Banach space, K be a normal and closed cone in 
Y, D be an open and convex subset of R " and f,g:D-*Y be two functions 
such that: 
i / / is K-midconvex on D; 
ii) g is K-midconcave on D; 
iii) 3T e AK, 3 a bounded set N C Y : g{x) - f(x) e N + K, Vx € T. 

Then there exist two functions F,G : D —• Y respectively A"-convex and 
A*-concave and an additive function A : R " —» Y such that: 

(1) f(x) = F(x) + A(x), V x € £ > , 
(2) g{x) = G(x) + A(x), Vx G D. 

We omit the proof because it is analogous of the proof of the Theo­
rem of [14]. 

Now we are in a position to prove the following 

T H E O R E M 2. Let Y be a Banadi space, K be a normal and closed cone 
in Y, D be an open and convex subset of R n and f : D -¥ Y be a function. 
In these conditions, the following statements are equivalent: 

v 
(1) there exists p > 2 such that the sum /(x«) , s -K-Schur. concave; 

t=i 
(2) / is K-Wright concave; 
(3) / is K-midconcave and verifies the condition; 

f{tx + (1 - t)y) + f((l - t)x + ty) € 2co{/(x), /(y)} + A', 
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for every x,y G D and for every t G [0, 1]; 
(4) there exist a A'-concave function V : D Y and an additive func­

tion A : R n - » Y such that: f(x) = V{x) + A{x), Va: G D; 
p 

(5) for all p > 2, the sum ^ f(xi) is K-Schur concave. 
t=i 

R E M A R K 1. The implication (2) (3) is also true in the more general 
case that D is a non-empty convex subset of a real vector space X, K is a 
cone in a real vector space Y and F : D —• n(Y) is a set-valued function. 

P R O O F . In order to prove (1) (2) we fix x, y G D, t G [0,1] and let 
X = (zx, z2,. • • , zp) G Dp, where zx = tx + (1 - t)y, z2 = {\-t)x + ty, z3 = 
. . . = zp = x, and Y = (wj, W 2 , . . . , wp) G Dp, where w\ = x, u>2 = y, w$ = 
. . . = wp = x. Since X ̂  Y, taking (1) into account, we have that 

f(tx + (1 - t)y) + / ( ( l - t)x + ty) G f{x) + f{y) + K, 

which was to be proved. 
As we said in Remark 1, (2) =2> (3). To prove (3) (4) we fix a point 

p G D and we consider a positive number e such that the closed ball clfi(p,e) 
is included in D. Let {e\,... ,en} be the standard ortonormal base in R " 
and we denote by L , , i G {1,... ,n}, the line segment joining the points 
a, = + ee, and b{ = p — £e, . For every x G Li there exists a t G [0,1] such 
that x = tat + (1 - O^i- Then 2p — x — (1 - t)ai + tbi £ L{ C D, hence, we 
have 

(3.4) /(x) + /(2p-a:)€2co{/(o t -),/(6i)} + A' ł for all x £ Lt. 

Now we consider the set 

(3.5) M = co{f(a1),...,f(an)i...,f{b1)t...J{bn)} 

and the function g : c\B(p,e) —> Y defined by g(x) = —f(2p — x), Va; G 
c\B(p,e). Taking the A'-midconcavity of / into account, we have that g is 
(—A")-midconcave. Moreover, by (3.4) and (3.5) it follows 

n 

(3.6) g{x) - f(x) G - 2 M - K, Vx G |J Lt. 
i=i 

Now, put 

(3.7) T = | » i + - + » n . xu Xn € y L.| n B j ( p e ) 
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For every y = xi+-^+x<> £ T, we obtain (cf. Lemma 1 and (3.6)) 

(3.8) 9 { V ) " € n [ 9 { X { ) ~ f { X l ) + ' * * + 5 ( " T n ) " / ( X n ) ] " 
- A' - K - 2M - K. 

Now we have that the restrictions of / and g to the set B(p, e) satisfy the 
hypothesis of our Theorem 1. In fact / is (—A")-midconvex, g is (—A')-
midconcave and (3.8) is true on the set with non empty interior T 6 A-K 
(cf. (3.7), (3.3) and [12], Corollario 3.3 ). Therefore, there exist a ( - A ' ) -
convex function F : B(p,e) —> V , a (—A")-concave function G : B(p,s) -> V 
and an additive function A : R n —>. Y with the properties 

(3.9) f\x) = F{x) + A(x), V i € B ( p , e ) 

(3.10) g(x) = G{x) + A(x), Vx € S ( p , £ ) . 

Now, we consider a function V : D —> Y defined by 

(3.11) V(x) = f(x) - A(x), V x G D . 

Using (3.9), we have that V is A'-concave on B(p, e); therefore the function 
V is A"-continuous on B(p,e) (cf. [1], Theorem 5.5). On the other hand, V 
is 'K-midconcave on D and then we can say that V is A*-continuous on D 
(cf. [1 ], Corollary 1). So, by the Theorem 5.4 of [1], V is A'-concave on D. 
Thus, taking (3.11 ) into account, the statement (4) is proved. 

Now, we suppouse that / has the representation / = V + A, where V 
is a AT-concave function and A is an additive function. Fixed an arbitrary 
number p G N, if X = ( x i , . . . , x p ) , Y = ( y i , . . . , y p ) G Dp are such that 
X -< Y, we can say that (cf. [12 ], Theorem 2.3) 

X>(£ IHJV) € E E Win) + K 

»=1 

where H = (hij) is the doubly stochastic p x p matrix such that 
v v 

[ x i , . . . , xp] = [ y i , . . . , yp]H; moreover, since xi = Z) y« holds, it follows 
i=l i=l 

that 

t=i t=i 

(3.12) i = 1 
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hence, by (3.12), we obtain 

£ /(*<) € £ V(Vi) + K+J2 A(Vi) =± £ / ( y i ) + i f . 
i=i «=i 1=1 i=i 

Therefore (4) implies (5). \ 
The obvious implication (5) =>• (1) completes the proof. • 

R E M A R K 2 This result contains, as special case, the Theorem proved by 
C . T . Ng in [13 ] and the Theorem 2 stated by K. Nikodem in [U'] , ft is 
easily seen if wc assume Y = R and K — ].— oo,0]. 

4. O n the characterization of K-concave set-valued functions 

In this section we obtain a necessary and sufficient condition,.for a given 
set-valued function to be "A-concave". We need first the following Lemma 
which is an analogous to a result for functions [8] and for set-valued functions 
[3]. 

L E M M A 2. Let K be a cone in a real topological vector space Y. If 
the set-valued function F : [0,1] -t CK(Y) is K-midconcave on [0,1] and 
"K-concave" on (0,1), then F is clK-concave on [0,1]. 

P R O O F . Fixed x,y € [0,1] and t € (0,1)-, we put z = tx + (l-t)y. Now let 
u = zte- and v = Then we have that u, v € (0,1) and z = iu+ (1 -t)v. 
Since F is K-concave on (0,1) and /f-midconcave on [0,1] and, moreover, 
the values of F are K-convex, it follows 

F(z)+tF(u) + (l-t)F(v)C 

(4.1) C t[F(u) + F{u)] + (1 - t)[F(v) + F(v)] + K Q 

C c\(tF(x) + (1 - t)F{y) + K) + tF(u) + (I - t)F(v). 
/ - , . . 

Since the set cl (tF(x) + (1 — t)F(y) + K) is convex and F has compact 
values, by the "law of cancellation" and by Lemma 1.9 of [12]* it follows : 

F{z) C tF(x) + {l - t)F(y) 4- clA\ 

namely F is cl A"-concave on [0,1]. • 

I H E O R E M 3. Let X be a real vector spate. Y t e a real local! convex 
topological vector space To,D be a convex subset of X, Ksbe a closed cone 
in Y and F : D —> CK{Y) be a set-valued function. In these conditions, F 
is K-concave if and only if F is K-midconcave and, K-quasiconcave. 
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PROOF . T h e necessary condition is trivial (cf. [12], Theorem 2.9). Now, 

we suppose.that F is A'-midconcave and A'-quasiconcave. Fixed x,y£ D, 
we define the set-valued function H : [0,1] —> CK(Y) by putting 

(4.2) H(t) = F(tx + (l-t)y), Vt 6 [0,1]. 

F r o m Theorem 2.11 of [12] it follows that H is "A'-quasiconcave" on [0,1] 
and, on the other hand, it is easy to see that H is also A' -midconcave on 

[0,1]. Fixed x , y € D, since F is A'-quasiconcave, we obtain 

H{t) C c o ( F ( x ) U F ( y ) ) + A', V* e [0,1], 

hence, being the set c o ( F ( x ) U F(y)) bounded, the set-valued function // is 

A"-lower bounded on [0,1]. Therefore, from the Theorems 5.3 and 5.4 of [1] 
and from our L e m m a 2, it follows that H is A"-concave on [0,1]. Finally, by 

(4.2), we get 

F{tx + (1 - t)y) C tF{x) + (1 - t)F{y) +.K, V i € [0,1], 

namely F is A'-concave. • 

R E M A R K 3. T h i s Theorem 3 is not still true if we drop the assumption 

that the values of set-valued function F are A'-convex, as it is easy to observe 

by the following example: let X = Y = R , A' = {0} and F : # -> n(R) be 

the set-valued function so defined 

f{o,i}, xeQ 
* V ' \[0,1], x e R \ Q . 

In fact, F is A' -midconcave and A"-quasiconcave but F is not A"-concave. 

T H E O R E M 4. Let X be a real vector space, Y be a reai topological vector 
space To, D be a convex subset of X, K be a closed cone in Y and t be a fixed 
number in (0,1). In these conditions, if F : D CK(Y) is a K-t-concave 
set-valued function, then F is K-midconcave. 

P R O O F . Let x, y £ D; by using the A'-z-concavity of F and the fact that 

its values are A*-convex, we get (cf. [12 ], L e m m a 1.1 ) 

2t(l " t)F ( ^ ) + [1 - 2t(l - t ) ] F J ^ ± ^ C 

C tF ((1,-0* + +(l~t)F (ty + (1 - t)^^j +KC 

C t(l - t)F(x) +1(\ - t)F(y) + [1 - 2t(l - t)]F (̂ y1) + K. 
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Since the set t(l - t)F(x) + /(1 - t)F(y) + K is convex and closed and the 
set [1 — 2/(1 - t)]F (^y^) is bounded, by the law of cancellation, it follows 
that 

2/(1 - OF (^) C t(l - t)F(x) + t(l - t)F(y) + K, 

hence 

F (̂ r) c \ [ F { x ) + F { y ) ] + 

• 
R E M A R K 4. The idea of the proof of Theorem 4 is due to Z. Daroczy 

and Z. Pales [4]. Moreover, we observe that if V = R, K = ] — oo, 0] and F 
is a (single-valued) function, our Theorem 4 reduced itself to a well-known 
result of N. Kuhn [6]. 

As an immediate consequence of Theorem 3 and of Theorem 4 we obtain 
the following 

C O R O L L A R Y . Let X be a real vector space, Y be a real locally convex 
topological vector space To, D be a convex subset of X, K be a closed cone 
in Y and t be a fixed number in (0,1). In these conditions, a set-valued 
function F : D -> CK(Y) is K-concave if and only if F is K-t-concave and 
K-quasiconcave. 

~) 

R E M A R K 5. It follows easily that if X = R n , Y = R, K =? ]-oo, 0] and F 
is a (single-valued) function, our Corollary strictly contains the Proposition 
3 of [11 ], the Theorem 2 of [2] and the Theorem proved in [5]; moreover, it 
extends the Corollary 1 of [3]. r 
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