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S O M E R E M A R K S O N T H E P R O P E R T Y (N) O F L U Z I N 

A . B . K H A R A Z I S H V I L I 

Abstract. We consider the classical property (N) of Luzin for various map
pings in connection with a measure extension problem. We give some exam
ples of Borel measurable mappings and of Lebesgue measurable mappings 
which transform all compact sets with measure zero into sets with measure 
zero but do not have the property (TV) of Luzin. 

Let E\ and E2 be two spaces equipped with a-finite measures /xi and / i 2 , 
respectively, and let / be a mapping from E\ into E%. According to a well 
known definition of Luzin (see [1]) this mapping has the property (JV) if for 
every set X C E\ with outer /zx-measure zero the image f{X) has outer fi2-
measure zero. Notice that Luzin himself considered this property only for 
continuous functions / acting from (R, A) into (R, A), where R is the real line 
and A is the standard Lebesgue measure on R. There are some interesting 
and important results in the theory of real functions concerning continuous 
functions having the property (N). Recall, for instance, the Banach-Zarecki 
theorem stating that a continuous real function / defined on a segment of R 
is absolutely continuous if and only if it has the property (N) and is of finite 
variation. Luzin proved in [1] that a sufficient condition for a continuous 
real function / denned on a segment of R to have the property (N) is the 
following one: for any compact subset X of R with X(X) = ft the set f(X) 
also satisfies the equality A(/(X)) = 0. From the point of view of modern 
mathematical analysis and measure theory this classical result of Luzin can 
be obtained as an easy consequence of Choquet's theorem on capacities or of 
the Kuratowski-Ryll-Nardzewski theorem on measurable selectors. In the 
present paper we shall consider the property (N) of Luzin for those mappings 
/ which are not necessarily continuous. In particular, we shall investigate 
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a question connected with a possibility of a generalization of Luzin's result 
mentioned above for mappings / which are measurable in various senses, for 
instance, Borel measurable or Lebesgue measurable. We shall see that this 
question is closely connected with the typical problem of measure theory: the 
problem on the existence of an extension of a measure, given on a subalgebra 
of a Borel rr-algebra, to a Borel measure. This problem plays the important 
role in several questions of analysis and probability theory. In the sequel we 
need an auxiliary result due to M.Ershov (see [2]) concerning that problem. 

LEMMA 1. Let E be a Polish topological space, let B(E) be a Borel cr-

algebra of E, let S be a countably generated cr-algebra contained in B(E) 

and let /* be a probability measure defined on S. Then there exists a Borel 

measure Jl on E extending t/ie original measure /t. 

Let us make some remarks concerning the lemma just formulated. The 
proof of this lemma is based on the well known properties of the so called 
Marczewski characteristic function of a countable family of sets and on a 
theorem about the existence of measurable selectors. In fact, it is sufficient to 
apply that version of the theorem about the existence of measurable selectors 
which is implied by Choquet's theorem on capacities (see, for instance, [3]). 
Notice also that simple examples show that if the given cr-algebra S is not 
countably generated then the conclusion of lemma is not true in general. On 
the other hand, the lemma is valid not only for a Polish topological space 
E and for a countably generated cr-algebra S C B(E) but also for every 
analytic space E and every countably generated cr-algebra S C B{E), since it 
is easy to see that the property of an extendability of a probability measures 
from a countably generated cr-subalgebras of a Borel cr-algebra to the whole 
Borel cr-algebra is preserved under surjective Borel mappings of topological 
spaces. So, in the further consideration we shall use the above lemma for 
analytic spaces. Finally, let us remark that for a coanalytic space E and 
for a countably generated cr-algebra S C B{E) the mentioned lemma fails 
in general. More exactly, if we assume Godel's Constructibility Axiom then 
there exist a coanalytic space E, a countably generated cr-algebra S C B(E) 
and a probability measure fi defined -on. 5 such that // cannot be extended 
to a Borel measiire Ji on the space E (see Example 1 below). Notice that 
this fact is of some independent interest because each coanalytic space E is a 
Radon topological space, and from the point of view of topological measure 
theory has rather good properties. 

Now, let us formulate the first proposition concerning the property (A) 
of Luzin. 

P R O P O S I T I O N 1. Let E\ be an analytic space equipped with a o-Hnite 

Borel measure fi\, let Ei be a metric space equipped with a a-Hnite Borel 
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measure ft2 and let f be a Borei mapping from E\ into E2. If for each 

compact set K C E\ with m{K) = 0 the image f{K) is of outer p2 -measure 
y.vro, then the mapping f has the property (N) of Luzin. 

PROOF. It is obvious that, without loss of generality, we may assume 
that both given measures /ij and /*2 are probability measures. We also may 
suppose that the space E2 is analytic (because the image f{E\) is a separable 
metric space and therefore f{E\) is an analytic subset of the completion of 
f{E\)). Now, let us suppose that there exists a set E C E\ with /ij-measure 
zero such that the set f(E) has a nonzero outer /^-measure. Of course, we 
can assume that EM the G^-subset of the space E\, and hence E is the 
analytic space, too. Denote by the symbol g the restriction of / to the set 
E, and consider the following family of sets 

S='{g-l(Z): ZeB(g(E))}. 

It is evident that .S' is a countably generated (r^algebra of subsets of E 
contained in the Borel cr-algebra B(E). Let us put 

,i(g-\Z)) = fl;(Z) (ZeB(g(E))), 

w i n i c fi",. as usual, denotes the outer measure associated with [i2. Hence we 
l u i v c ; i finite measure / f on the <r-algebra 5. According to Lemma 1, there 
exists a Borel measure Jl on the space E extending fi. As 

Ti(E) = n*2(g(E))>0, 

the measure Jl is not identically equal to zero. But for every compact set 
K C E there exists a set Z € B(g(E)) such that the inclusion g(K) C Z 
holds and 

/ł2*(Z)=//2*(5(/O) = 0. 

Hence we have 

W<) < (py(9-\9(i<))) < W{g-\z)) =_M( f l-1(Z)) = n*2{zy = 0. 

So, we see that the measure Jl vanishes on all compact subsets of E. But 
we know that every analytic space is a Radon space. This implies that our 
measure Jl must be identically equal to zero. The obtained contradiction 
completes the proof. • 

Notice that another proof of Proposition 1 can be made directly using 
Choquet's theorem on capacities. But here we prefer the proof based on 
measure extension theorem. The reason of this preference will be discussed 

• ' i ' 
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later. The following example shows that Proposition 1 is not true in general 
for a coanalytic space E\ and even for a continuous mapping / from E\ into 
the unit segment [0,1]. 

E X A M P L E 1. Assume Godel's Constructibility Axiom. Then, as it is well 
known, there exist a coanalytic set X C [0,1] and a continuous mapping cp 
from X into [0,1] such that the image <p(X) is a Vitali type subset of [0,1]. 
In particular, <fi{X) is A-nonmeasurable subset of [0,1], where A denotes the 
classical Lebesgue measure on the real line R. Let us take the segment [2,3] 
on R and let ^ be the identity transformation of this segment. Afterwards 
consider the coanalytic space E\ — X U [2,3] and equip this space with 
a diffused probability Borel measure p\ concentrated on the segment [2,3] 
and coinciding on this segment with the restriction of A to [2,3]. Let / be 
a common extension of the mappings <fi and ifr. Of course, we may consider 
/ as a continuous (hence, also as a Borel) mapping from the measure space 
(E\,Hi) into the measure space (R, A). Obviously, we have 

/ i i (X) = 0, A*(/PO)>O. 

Now, let K be any compact subset of E\ with fi\ (K) = 0. Then it is clear 
that K C\X is a compact subset of X and K CI [2,3] is a compact subset of 
[2,3]. We can write 

A(/(/0) = A < S / ( * n X)) + \{f(K n [2,3])). 

But it is evident that 

X(f(K n [2,3])) = \(K n [2,3]) = M # n [2,3]) J= 0. 

On the other hand, the set f(K (1 X) is a compact subset of a Vitali set 
<p{X). We know that any Lebesgue measurable subset of a Vitali set has 
measure zero. This immediately follows from the Steinhaus property of 
Lebesgue measurable sets with a strictly positive measure. Hence we also 
have \(f(K(lX)) = 0 and finally X(f(K)) = 0. So we see that a continuous 
mapping / transforms all compact subsets of E\ with jui-measure zero into 
sets of A-measure zero. But there exists a set X with fi\-measure zero whose 
image is of strictly positive outer A-measure. 

In particular, from this example immediately follows that the coanalytic 
space E\ considered above does not have the measure extension property, i.e. 
there exist a countably generated cr-algebra S C B(E\) and a probability 
measure /i on S such that ft can not be extended to a Borel measure on E%. 
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The next example shows that Proposition 1 is not true in general even for 
Polish topological spaces if we take Lebesgue measurable mappings instead 
of Borel mappings. 

E X A M P L E 2. Let E be any dense Gj-subset of the segment [0,1] with the 
Lebesgue measure equal to zero. Assume that the Continuum Hypothesis 
holds. Let {Ką : £ < w\} be the family of all compact subsets of [0,1] 
with the Lebesgue measure zero. Notice that each set is nowhere dense 
in [0,1], so the union of any countable family of these sets does not cover 
the residual set E C [0,1]. From this remark it follows that with the aid of 
transfinite recursion it can be constructed a family {a;̂  : £ < u>i} of points 
of E in such a way that 

(1) all points x$ are distinct; 
(2) if £ < C < <*>i then the point xc does not belong to K$. 

As soon as the family {xc : £ < u\} of points of E has been constructed 
let us put / 

X = {xĄ: £<u>i}. 

By construction, the set X is uncountable and (since X C E) it has the 
Lebesgue measure zero. Now, let Z be a subset of [0,1], either with a strictly 
positive Lebesgue measure or nonmeasurable in the Lebesgue sense, and let 
/ be a bijective mapping from X onto Z. Let us extend the mapping / to 
a mapping denned on the whole segment [0,1] putting 

/ ( [0 ,1] \X) = {0}. 

It is obvious that the extended mapping / coincides almost everywhere (in 
the sense of the Lebesgue measure A) with a constant mapping. Hence / is 
a Lebesgue measurable mapping. It is also easy to see, taking into account 
the construction of X, that for any compact set K C [0,1] with A(A") = 0 
the set X D K is at most countable, so the set f{K) is also at most countable 
and therefore has A-measure zero. On the other hand, the image f{X) of 
the set X of A-measure z^ro is not of A-measure zero. Moreover, f{X) may 
be a A-nonmeasurable subset of the segment [0,1]. 

It is not difficult to see that a similar example can be constructed if we 
assume only Martin's Axiom (much weaker than the Continuum Hypothe
sis). 

It is worth also to notice here that the property (N) of Luzin is closely 
connected with the class of those mappings which preserve measurable sets 
(i.e. the image of a measurable set is also a measurable set). From the theory 
of real functions it is well known that every continuous function from R into 
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R with the property (./V) of Luzin preserves the class of Lebesgue measurable 
sets. This fact can bo easily extended to a more general situation. Namely, 
we have the following result. 

P R O P O S I T I O N 2. Let E\ be a Hausdorff topological space equipped with 

a o—finite Radon measure let E2 be a metric space equipped with a o-

finite Borel measure 112 and let f be a mapping from E\ into E2 measurable 

with respect to the standard completion of the measure /tj. Finally, let f 

have the property (N) of Luzin. Then for each set X C E\ measurable with 

respect to the completion of ii\ the set f(X) is measurable with respect to 

the completion of p.2. 

The proof of Proposition 2 is not difficult. Indeed, without loss of gen
erality, we may assume that the space E2 is separable. Moreover, we may 
assume that E2 is a subspace of the unit segment [0,1]. So, the given mea
surable mapping / has the classical property (C) of Luzin, i.e. for each 
Borel set X C E\ and for each real number r > 0 there exists a compact set 

, K C X such that fi\ (X \ A') < r and the restriction of / to K is continuous. 
From these facts we easily obtain the required conclusion. 

Of course, in Proposition 2 the measurability of / is essential. The fol
lowing example shows that if / has the property (N) but is not measurable 
then pathological situations can happen. 

E X A M P L E 3. Let us recall that an uncdnuntable set X C [0,1] is a 
Sierpiński set on [0, 1] if for every Lebesgue measure zero set Y C [0, 1] the 
intersection X C\Y is at most countable. It is well known that if the Contin
uum Hypothesis holds then there exist Sierpiński subsets of [0,1]. Moreover, 
using the method of tranfinite recursion it is not difficult to construct (also 
under the Continuum Hypothesis) a Sierpiński set X C [0,1] with the fol
lowing additional property: for every Lebesgue measurable set Y C [0,1] 
with strictly positive A-measure the intersection X C\Y is of the cardinality 
continuum. Let us take such Sierpiński set X on [0,1]. Let / be the identity 
transformation of X. We can extend / to a mapping defined on the whole 
segment [0,1] putting 

/ ( [0,1] \X) = {0>. 

'It is easy to see that the extended mapping / from [0,1] into [0,1] satisfies 
the following two conditions: 

(1) for each Lebesgue measure zero set Y C [0,1] the image f(Y) is at 
most countable and hence is of Lebesgue measure zero; 

(2) for each Lebesgue measurable set Y C [0,1] with a stricjtly positive 
measure the image f(Y) is a Lebesgue nonmeasurable subset of [0,1]. 
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Notice that condition (2) follows from the fact that any uncountable sub
set of a Sierpiński set is also a Sierpiński set, and hence it is Lebesgue non-
measurable. So, we see that the mapping / has the property (AT) of Luzin 
in a very strong form. But at the same time / transforms all Lebesgue mea
surable sets with a strictly positive measure into Lebesgue nonmeasurable 
sets. 

Of course, a similar example can be constructed using Martin's Axiom 
and a generalized Sierpiński subset of [0,1]. 

In connection with Example 3 notice that if a mapping / from a measure 
space (Ei , into a measure space (E2,n2) transforms measurable sets into 
measurable sets (with respect to the completions of fi\ and /z2) then, as a 
rule, / has the property (N). In particular, this fact will be true in the case 
when every ^-measurable set with strictly positive /ti-measure contains a 
nonmeasurable subset with respect to the completion of fi2. But, of course, 
this fact is not true in general for all spaces (E2, / * 2 ) - For instance, if fi2 is a 
universal measure on E2, i.e. the domain of/f2 coincides with the family of all 
subsets of E2 then, obviously, every mapping / from E\ into E2 transforms 
/*i-measurable sets into /t2-measurable sets but / may be such that it does 
not have the property (N) of Luzin. Notice also that if /z2 is a <r-finite 
measure on E2 invariant (or, more generally, quasiinvariant) with respect to 
an uncountable group of transformations of the space JS2 acting freely ón 
E2, then each ^-measurable set with a strictly positive measure contains 
a nonmeasurable subset, so in this situation the property (N) follows from 
the property of preserving measurability (see [4]). 

Now let us consider the case where the given measure spaces (E\,fii) and 
(E2,fi2) a r e such that Z?i and E2 are projective spaces, i.e. E\ and E2 are 
homeomorphic to some projective subsets of the real line R, and fix and 
/ i 2 are probability (or tr-finite) Borel measures on E\ and E2, respectively. 
Example 1 shows that, if we want to preserve for such spaces the assertion 
of Proposition 1, we need some additional set-theoretic axioms. It turns 
out that the standard Axiom of Projective, Determinacy is sufficient for our 
purposes. In fact, we need the following three properties of projective sets: 

(a) every projective set is a Radon space, 
(b) every projective subset of the plane 7?2 admits a uniformization by 

a projective set, 
(c) every uncountable projective set contains an uncountable compact 

subset. 
These three properties are implied by the Axiom of Projective Determi

nacy (see [5]). Remark here that relation (a) is equivalent to the following 
one: every projective subset of R is universally measurable with respect to 
the class of all ^-finite Borel measures on R. Similarly, if relation (a) holds 
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then relation (c) is equivalent to the following one: every uncountable pro
jective subset of R is not a universally measure zero set with'respect to the 
class of all cr-finite diffused Borel measures on R. 

Taking these facts into account we can formulate an appropriate analogue 
of Lemma 1. 

L E M M A 2. Let the conditions fa) and (b) be satisfied, let E be a projective 

space, let S be a countably generated a-subalgebra of the Borel a-algebra 

B(E) and let p, be a probability measure defined on S. Then there exists a 

Borel measure /z on E extending p. 

P R O O F . The argument is quite similar to the proof of Lemma 1 (cf. [2]). 
Let (Xi)icu be a countable family of Borel subsets of E generating the cr-
algebra 5. Let <p be the characteristic function of this family. Obviously, <p 
is a Borel mapping from E into the Cantor space 2W and 

S = {<p~l(Z): ZeB(2")}. 

Let us define a Borel measure u on 2W by the formula 

u{Z)=p^~\Z)) (Z€B(2 W ) ) . 

Let us denote by the same symbol v the completion of this Borel measure 
on 2W. Let us consider the graph 

G — {(x,<p(x)) : x£E} 

of the mapping (p. It is not difficult to check that this graph is a projective 
subset of the product space E X 2W C fix 2W. Using the uniformization 
property (b), we can define a mapping h from p»"2(G) into E such that 

(1) the graph of K is a projective subset of 2W x R; 
(2) (<p o h)(y) = y for each point y € pr2(G). 

Using property (a) we see that the mapping h is j/-measurable. Now, let 
us put 

rtX) = v{h-\X)) ( X € B ( £ ) ) . 

Then it is not difficult to check that the measure ~pZ is the required extension 
of the original measure /x. • 

We need also the following auxiliary proposition. 

L E M M A 3. Let Ei be a projective space, let Ei be a metric space and 

let f be a Borel mapping ftom E\ into E^. If condition (c) holds then the 

image f(E\) is separable. 
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The proof of Lemma 3 is not difficult. Notice in connection with this 
lemma that if the inequality 2U/ < 2 W l holds, then a metrizable Borel image 
of a separable metric space is also separable. 

As soon as Lemmas 2 and 3 have been proved we can deduce from them 
the following proposition. 

P R O P O S I T I O N 3. Let (Ex,ni) be a projective space equipped with a 

0-finite Borel measure let (E2,H2) be a metric space equipped with a 

a-finite Borel measure fi2 and let f be a Borel mapping from E\ into E2. 

Suppose that the conditions (a), (b) and (c) hold and let for every compact 

set K C E\ with n\-measure zero the image f(K) be of outer ^-measure 

zero. Then the mapping f has the property (N) of Luzin. 

Notice that the proof of Proposition 3 is quite similar to the proof of 
Proposition 1. 

Finally, let us remark that in the case of projective spaces we cannot 
apply directly Choquet's theorem, so the approach to the property (N) of 
Luzin with the help of the measure extension theorem is more preferable. 
Of course, in concrete situations when we know of what projective class is 
the given space E\, we do not need the whole power of the properties (a), 
(b) and (c). For instance, if our space E\ is of the class T,\ then from an old 
result of Kondo we have the uniformization property for this class. Hence 
we do not need here the whole Axiom of Projective Determinacy but it is 
sufficiently, for instance, to assume the existence of a measurable cardinal 
(see [5]). From this additional set-theoretic assertion Lemmas 2 and 3 and 
Proposition 3 follow for all projective spaces of the class E 2 . 
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