STABILITY OF A SYSTEM OF GENERALIZED TRIGONOMETRIC EQUATIONS

Irena Fidytek

Abstract

Addition formulas for generalized trigonometric functions corresponding to a given symmetric bounded and convex planar set containing the origin as an inner point are derived. Connections with the theory of characters on (semi) groups are considered. Hyers-Ulam stability of a suitable system of functional equations is investigated. It is also shown that superstability phenomenon fails to hold for that system.

Let S be the boundary of a planar convex bounded set F, symmetric with respect to zero and such that $0 \in \operatorname{Int} F$. By Minkowski Theorem there exists a norm in \mathbb{R}^{2} such that S is the unit sphere corresponding to this norm. We denote that norm by $\|\cdot\|$. We define "new" trigonometric functions Cos and Sin in a way analogous to that used to define the usual functions cos and sin with the aid of the unit circle. Namely, we proceed as follows: since arbitrary half-line having the beginning in zero cuts the sphere S in exactly one point p, the first and second coordinate of p will be called the Cosinus and Sinus of the argument x of the point p, respectively. Now, we can find addition formulas for functions Cosinus and Sinus, which coincide with the well-known formulas in the case where S is the unit circle at the Euclidean plane.

In the sequel, we denote by $|\cdot|$ the usual Euclidean norm in \mathbf{R}^{2}. Obviously, both $\|\cdot\|$ and $|\cdot|$ norms are understood as norms in the linear space \mathbb{C} of all complex numbers over the field \mathbb{R} of reals. Moreover, (T, \cdot) will stand for the multiplicative group $\{z \in \mathbb{C}: z=1\}$.

By a character on a groupoid $(X,+)$ we mean any homomorphism between X and T.

1. Let $(X,+)$ be a groupoid with zero. In what follows, at first we shall consider a pair of real-valued functions f, g defined on X in place of the generalized Cos and Sin functions.

Theorem 1. Suppose that functions $f, g: X \rightarrow \mathbb{R}$ do not vanish simultaneously and $m: X \rightarrow \mathbb{C}$ is a function defined by the formula

$$
\begin{equation*}
m(x)=f(x)+i g(x) \tag{1}
\end{equation*}
$$

for all $x \in X$. Then the following conditions are equivalent:
(I) $\quad m(x) \in S$ and $\arg m(x+y)=\arg m(x)+\arg m(y)$ for all $x, y \in X$, (II) $\quad m(x) \in S$ for all $x \in X$ and f, g satisfy the following system of functional equations:

$$
\left\{\begin{array}{l}
f(x+y)=\frac{|m(x+y)| \operatorname{Re}(m(x) m(y))}{|m(x)||m(y)|}=\frac{|m(x+y)|(f(x) f(y)-g(x) g(y))}{|m(x)||m(y)|} \\
g(x+y)=\frac{|m(x+y)| \operatorname{Im}(m(x) m(y))}{|m(x)||m(y)|}=\frac{|m(x+y)|(f(x) g(y)+f(y) g(x))}{|m(x)||m(y)|}
\end{array}\right.
$$

for all $x, y \in X$;
(III) the pair (f, g) yields a solution to the system

$$
\left\{\begin{array}{l}
f(x+y)=\frac{\operatorname{Re}(m(x) m(y))}{\|m(x) m(y)\|} \\
g(x+y)=\frac{\operatorname{Im}(m(x) m(y))}{\|m(x) m(y)\|}
\end{array}\right.
$$

for all $x, y \in X$.
Proof. First we prove that condition (I) implies (1I). From (I) it follows that

$$
\begin{aligned}
m(x+y)= & |m(x+y)| \exp (i \arg m(x+y))= \\
& |m(x+y)| \exp (i \arg m(x)) \exp (i \arg m(y))= \\
& |m(x+y)| \frac{m(x)}{|m(x)|} \frac{m(y)}{|m(y)|}
\end{aligned}
$$

for all $x, y \in X$. Since $f(x+y)=\operatorname{Re} m(x+y)$ and $g(x+y)=\operatorname{Im} m(x+y)$ for all $x, y \in X$, we get condition (II).

Now assume that f, g satisfy condition (II). Since $m(x) \in S$ for all $x \in X$,
we have $\|m(x)\|=1$ for all $x \in X$. System (II) implies that

$$
\begin{aligned}
1= & \|m(x+y)\|=\|(f(x+y), g(x+y))\|= \\
& \left\|\left(\frac{|m(x+y)| \operatorname{Re}(m(x) m(y))}{|m(x) \| m(y)|}, \frac{|m(x+y)| \operatorname{Im}(m(x) m(y))}{|m(x) \| m(y)|}\right)\right\|= \\
& \frac{|m(x+y)|}{|m(x) \| m(y)|}\|(\operatorname{Re}(m(x) m(y)), \operatorname{Im}(m(x) m(y)))\|= \\
& \frac{|m(x+y)|}{|m(x) \| m(y)|}\|m(x) m(y)\|
\end{aligned}
$$

for all $x, y \in X$. Hence

$$
\frac{|m(x+y)|}{|m(x) \| m(y)|}=\frac{1}{\|m(x) m(y)\|}
$$

for all $x, y \in X$. Therefore f, g satisfy (III).
To prove implication (III) \Rightarrow (I), note that

$$
\begin{aligned}
\|m(x+y)\|= & \|(f(x+y), g(x+y))\|= \\
& \left\|\left(\frac{\operatorname{Re}(m(x) m(y))}{\|m(x) m(y)\|}, \frac{\operatorname{Im}(m(x) m(y))}{\|m(x) m(y)\|}\right)\right\|= \\
& \frac{1}{\|m(x) m(y)\|}\|(\operatorname{Re}(m(x) m(y)), \operatorname{Im}(m(x) m(y)))\|= \\
& \frac{1}{\|m(x) m(y)\|}\|m(x) m(y)\|=1
\end{aligned}
$$

for all $x, y \in X$. Putting $y=0$ we get $\|m(x)\|=1$ for all $x \in X$, whence $m(x) \in S$ for all $x \in X$. Moreover, system (III) implies that

$$
m(x+y)=\frac{1}{\|m(x) m(y)\|} m(x) m(y)_{m}^{m}
$$

for all $x, y \in X$. Hence

$$
\arg m(x+y)=\arg (m(x) m(y))=\arg m(x)+\arg m(y)
$$

for all $x, y \in X$.
This completes the proof.
Theorem 2. Suppose that functions $f, g: X \rightarrow \mathbf{R}$ do not vanish simultaneously and $m: X \rightarrow C$ is a function defined by formula (1). Then
functions f, g satisfy system (III) on X if and only if there exists a character $h: X \rightarrow T$ such that

$$
\begin{equation*}
f(x)=\frac{\operatorname{Re} h(x)}{\|h(x)\|}, \quad g(x)=\frac{\operatorname{Im} h(x)}{\|h(x)\|} \tag{2}
\end{equation*}
$$

for all $x \in X$.

Proof. Let f, g satisfy (III). By Theorem 1 we infer that f, g satisfy condition (II) of Theorem 1.

Let $h: X \rightarrow T$ be a function defined by the formula

$$
\begin{equation*}
h(x)=\frac{m(x)}{|m(x)|} \tag{3}
\end{equation*}
$$

for all $x \in X$, where $m: X \rightarrow \mathbb{C}$ is the function defined by formula (1). From system (II) it follows that h is a character on X. Moreover $m(x) \in S$ for all $x \in X$ and $m=|m| h$. Therefore

$$
1=\|m(x)\|=\|m(x)|h(x)\|=|m(x)|\| h(x) \|
$$

for all $x \in X$, whence

$$
|m(x)|=\frac{1}{\|h(x)\|}
$$

for all $x \in X$. Consequently

$$
m(x)=\frac{h(x)}{\|h(x)\|}
$$

for all $x \in X$ and, therefore,

$$
f(x)=\frac{\operatorname{Re} h(x)}{\|h(x)\|}, \quad g(x)=\frac{\operatorname{Im} h(x)}{\|h(x)\|}
$$

for all $x \in X$.
Now, assume that h is a character on X and f, g satisfy condition (2).

Let $m: X \rightarrow \mathbb{C}$ be defined by formula (1). Then

$$
\begin{aligned}
m(x) m(y)= & (f(x) g(y)-g(x) g(y))+i(f(x) g(y)+f(y) g(x))= \\
& \frac{\operatorname{Re} h(x) \operatorname{Re} h(y)-\operatorname{Im} h(x) \operatorname{Im} h(y)}{\|h(x)\|\|h(y)\|}+ \\
& i \frac{\operatorname{Re} h(x) \operatorname{Im} h(y)+\operatorname{Im} h(x) \operatorname{Re} h(y)}{\|h(x)\|\|h(y)\|}= \\
& \frac{\operatorname{Re} h(x+y)}{\|h(x)\|\|h(y)\|}+i \frac{\operatorname{Im} h(x+y)}{\|h(x)\|\|h(y)\|}= \\
& \frac{\|h(x+y)\|}{\|h(x)\|\|h(y)\|}\left(\frac{\operatorname{Re} h(x+y)}{\|h(x+y)\|}+i \frac{\operatorname{Im} h(x+y)}{\|h(x+y)\|}\right)= \\
& \frac{\|h(x+y)\|}{\|h(x)\|\|h(y)\|}(f(x+y)+i g(x+y))= \\
& \frac{\|h(x+y)\|}{\|h(x)\|\|h(y)\|} m(x+y)
\end{aligned}
$$

for all $x, y \in X$. Moreover

$$
\begin{gathered}
\|m(x)\|=\|(f(x), g(x))\|=\left\|\left(\frac{\operatorname{Re} h(x)}{\|h(x)\|}, \frac{\operatorname{Im} h(x)}{\|h(x)\|}\right)\right\|= \\
\frac{1}{\|h(x)\|}\|h(x)\|=1
\end{gathered}
$$

for all $x \in X$, which implies that

$$
\|m(x) m(y)\|=\frac{\|h(x+y)\|}{\|h(x)\|\|h(y)\|}\|m(x+y)\|=\frac{\|h(x+y)\|}{\|h(x)\|\|h(y)\|}
$$

for all $x, y \in X$. Hence

$$
m(x+y)=\frac{m(x) m(y)}{\|m(x) m(y)\|}
$$

for all $x, y \in X$ and, consequently, f, g satisfy system (III).
This finishes the proof.
Observe that in the case where X is the additive group of all real numbers and $f=\operatorname{Cos}, g=\operatorname{Sin}$, then f, g do not vanish simultaneously and satisfy condition (1) of Theorem 1. In fact, $m(x)=\operatorname{Cos} x+i \operatorname{Sin} x, x \in S$ and $\arg m(x)=\{x+2 k \pi: k \in \mathbb{Z}\}$ for all $x \in X$, where \mathbb{Z} stands for the set of all integers. Hence $\arg m(x+y)=\arg m(x)+\arg m(y)$ for all $x, y \in X$. Consequently, Cos and Sin satisfy systems (II) and (III). Moreover, if $S=T$
then $\|\cdot\|=|\cdot|$, Cos and Sin are the usual cos and sin functions, and system (III) reduces to the usual system of trigonometric equations. Therefore, in the sequel, real functions f, g defined on a groupid X with zero and satisfying system (III) will be called the generalized sine and cosine functions.

For example, we can consider the curve $S=\left\{(a, b) \in \mathbb{R}^{2}: a^{n}+b^{n}=1\right\}$, where n is an even positive integer. Then $\|(a, b)\|=\sqrt[n]{a^{n}+b^{n}}$; we have considered that case in [1].
2. In this section we shall consider the stability of system (III) of functional equations in the sense of Hyers and Ulam.

In what follows, λ, μ will denote two positive real numbers such that

$$
\begin{equation*}
\lambda|p| \leq\|p\| \leq \mu|p| \tag{4}
\end{equation*}
$$

for all $p \in \mathbb{R}^{2}$. Such numbers do exist since, obviously, the norms $\|\cdot\|$ and $|\cdot|$ are equivalent.

Let $\varepsilon>0$ be arbitrarily fixed. Suppose that functions $f, g: X \rightarrow \mathbf{R}$ do not vanish simultaneously and $m: X \rightarrow \mathbb{C}$ is the function defined by formula (1). We shall consider the following system of functional inequalities:

$$
\left\{\begin{array}{l}
\left|f(x+y)-\frac{\operatorname{Re}(m(x) m(y))}{\|m(x) m(y)\|}\right|<\varepsilon \tag{III}\\
\left|g(x+y)-\frac{\ln (m(x) m(y))}{\|m(x) m(y)\|}\right|<\varepsilon
\end{array}\right.
$$

for all $x, y \in X$.
Lemma 1. If functions $f, g: X \rightarrow \mathbf{R}$ do not vanish simultaneously and satisfy system (III) $)_{\varepsilon}$ of functional inequalities and $h: X \rightarrow T$ is the function defined by formula (3), then

$$
\begin{equation*}
|h(x+y)-h(x) h(y)|<2 \sqrt{2} \varepsilon \mu \tag{5}
\end{equation*}
$$

for all $x, y \in X$.
Proof. System (III) ${ }_{e}$ implies that

$$
\begin{aligned}
& |\|m(x) m(y)\| m(x+y)-m(x) m(y)|= \\
& \quad\left(|\|m(x) m(y)\| f(x+y)-\operatorname{Re}(m(x) m(y))|^{2}+\right. \\
& \left.|\|m(x) m(y)\| g(x+y)-\operatorname{Im}(m(x) m(y))|^{2}\right)^{\frac{1}{2}}< \\
& \quad\left(2\|m(x) m(y)\|^{2} \varepsilon^{2}\right)^{\frac{1}{2}}=\sqrt{2} \varepsilon\|m(x) m(y)\|
\end{aligned}
$$

for all $x, y \in X$. Thus, on account of condition (4), we get

$$
\begin{aligned}
&|h(x+y)-h(x) h(y)|=\left|\frac{m(x+y)}{|m(x+y)|}-\frac{m(x)}{|m(x)|} \frac{m(y)}{|m(y)|}\right| \leq \\
&\left|\frac{m(x+y)}{|m(x+y)|}-\frac{\|m(x) m(y)\| m(x+y)}{|m(x) \| m(y)|}\right|+ \\
&\left|\frac{\|m(x) m(y)\| m(x+y)}{|m(x) \| m(y)|}-\frac{m(x) m(y)}{|m(x)||m(y)|}\right|< \\
&|m(x+y)|\left|\frac{|m(x)\|m(y)|-| m(x+y)\| m(x) m(y) \|}{|m(x+y)||m(x) \| m(y)|}\right|+ \\
& \frac{\sqrt{2} \varepsilon\|m(x) m(y)\|}{|m(x) \| m(y)|} \leq \frac{|\|m(x) m(y)\| m(x+y)-m(x) m(y)|}{|m(x)||m(y)|}+ \\
& \frac{\sqrt{2} \varepsilon\|m(x) m(y)\|}{|m(x) \| m(y)|}<\frac{2 \sqrt{2} \varepsilon\|m(x) m(y)\|}{|m(x) \| m(y)|} \leq 2 \sqrt{2} \mu \varepsilon
\end{aligned}
$$

for all $x, y \in X$.
Lemma 2. Let H_{1}, H_{2} be two characters on X. If

$$
\left|H_{1}(x)-H_{2}(x)\right|<\sqrt{3}
$$

for all $x \in X$, then $H_{1}=H_{2}$.
Proof. Let $r: X \rightarrow T$ be a function defined by the formula:

$$
r(x)=\frac{H_{2}(x)}{H_{1}(x)}
$$

for all $x \in X$. Then r is a character of X, as well. Moreover

$$
|r(x)-1|=\left|\frac{H_{2}(x)}{H_{1}(x)}-1\right|=\frac{\left|H_{2}(x)-H_{1}(x)\right|}{\left|H_{1}(x)\right|}=\left|H_{2}(x)-H_{1}(x)\right|<\sqrt{3}
$$

for all $x \in X$. On the other hand

$$
|r(x)-1|^{2}=2-2 \cos \operatorname{Arg} r(x)
$$

for all $x \in X$. In this case $2-2 \cos \operatorname{Arg} r(x)<3$ for all $x \in X$ and therefore $\cos \operatorname{Arg} r(x)>-\frac{1}{2}$ for all $x \in X$. Hence

$$
\operatorname{Arg} r(x) \in\left(-\frac{2}{3} \pi, \frac{2}{3} \pi\right)
$$

for all $x \in X$.
Assume, that there exists an $x_{0} \in X$ such that $\operatorname{Arg} r\left(x_{0}\right) \neq 0$. If $\operatorname{Arg} r\left(x_{0}\right)>0$, then there exists a positive integer k such that

$$
\operatorname{Arg} r\left(x_{0}\right) \in\left\langle\frac{1}{k+1} \frac{2}{3} \pi, \frac{1}{k} \frac{2}{3} \pi\right)
$$

Since $r\left((k+1) x_{0}\right)=\left(r\left(x_{0}\right)\right)^{k+1}$, we have

$$
(k+1) \operatorname{Arg} r\left(x_{0}\right) \in \arg r\left((k+1) x_{0}\right) \subset\left(-\frac{2}{3} \pi, \frac{2}{3} \pi\right)+2 \pi \mathbb{Z}
$$

On the other hand one has

$$
(k+1) \operatorname{Arg} r\left(x_{0}\right) \in\left\langle\frac{2}{3} \pi, \frac{k+1}{k} \frac{2}{3} \pi\right) \subset\left\langle\frac{2}{3} \pi, \frac{4}{3} \pi\right)
$$

which is a contradiction.
Analogously, the assumption $\operatorname{Arg} r\left(x_{0}\right)<0$ leads to a contradiction.
Hence $\operatorname{Arg} r(x)=0$ for all $x \in X$ and therefore $r(x)=1$ for all $x \in X$. Consequently $H_{1}=H_{2}$ and the proof has been completed.

Remark 1. If $H_{1}, H_{2}: X \rightarrow T$ are two characters such that $\mid H_{1}(x)-$ $H_{2}(x) \mid \leq \sqrt{3}+\varepsilon$ for all $x \in X$, where $\varepsilon \geq 0$, then H_{1}, H_{2} may happen to be different as can be seen from the following

Example 1. Assume that $(X,+)=\mathbb{Z}_{3}$. Put $H_{1}=1, H_{2}(0)=1$, $H_{2}(1)=\exp \left(i \frac{2}{3} \pi\right), H_{2}(2)=\exp \left(-i \frac{2}{3} \pi\right)$. Then H_{1}, H_{2} are characters and $\left|H_{1}(x)-H_{2}(x)\right| \leq \sqrt{3}$ for all $x \in X$; clearly, $H_{1} \neq H_{2}$.

In the sequel we shall assume that $(X,+)$ is an Abelian group.
Lemma 3. Let $\varepsilon \in(0, \sqrt{2})$ be arbitrarily fixed. If a function $k: X \rightarrow T$ satisfies inequality:

$$
\begin{equation*}
|k(x+y)-k(x) k(y)|<\varepsilon \tag{6}
\end{equation*}
$$

for all $x, y \in X$, then there exists a pair of functions $H, r: X \rightarrow T$ such that

$$
\begin{equation*}
k(x)=H(x) r(x) \text { for all } x \in X \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
H \text { is a character of } X \tag{8}
\end{equation*}
$$

$$
\begin{gather*}
\operatorname{Arg} r(x) \in\left\langle-\arccos \left(1-\frac{\varepsilon^{2}}{2}\right), \arccos \left(1-\frac{\varepsilon^{2}}{2}\right)\right\rangle \subset\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \tag{9}\\
\text { for every } x \in X .
\end{gather*}
$$

Moreover, if $\varepsilon \in(0,1)$, then such a pair is unique and $\operatorname{Arg} r(x) \in\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$ for all $x \in X$.

Proof. Assumption (6) implies that

$$
\begin{align*}
& \varepsilon^{2}>|k(x+y)-k(x) k(y)|^{2}= \\
&(k(x+y)-k(x) k(y)(\overline{k(x+y)}-\overline{k(x)} \overline{k(y)})= \tag{10}\\
& \quad 2-2 \operatorname{Re}(k(x+y) \overline{k(x)} \overline{k(y)})
\end{align*}
$$

for all $x, y \in X$.
Let $t: X \rightarrow \mathbb{R}$ be a function such that

$$
t(x) \in \arg k(x)
$$

for all $x \in X$. Then

$$
k(x)=\exp (i t(x))
$$

for all $x \in X$ whence

$$
\begin{aligned}
\operatorname{Re}(k(x+y) \overline{k(x)} \overline{k(y)})= & \operatorname{Re} \exp (i(t(x+y)-t(x)-t(y)))- \\
& \cos (t(x+y)-t(x)-t(y))
\end{aligned}
$$

for all $x, y \in X$. This jointly with condition (10) implies that

$$
\varepsilon^{2}>2-2 \cos (t(x+y)-t(x)-t(y))
$$

for all $x, y \in X$. Consequently

$$
\begin{equation*}
\cos (t(x+y)-t(x)-t(y))>1-\frac{\varepsilon^{2}}{2} \tag{11}
\end{equation*}
$$

for all $x, y \in X$.
Put

$$
\delta=\arccos \left(1-\frac{\varepsilon^{2}}{2}\right)
$$

Condition (11) implies that

$$
\begin{equation*}
t(x+y)-t(x)-t(y) \in(-\delta, \delta)+2 \pi \mathbf{Z} \tag{12}
\end{equation*}
$$

for all $x, y \in X$.
Let $s: X \rightarrow \mathbb{R}$ be a function defined by the formula:

$$
s(x)=\frac{t(x)}{2 \pi}
$$

for all $x \in X$. Putting

$$
\eta=\frac{\delta}{2 \pi}
$$

we observe that $0<\eta<\frac{1}{4}$. Moreover, by (12)

$$
s(x+y)-s(x)-s(y) \in \mathbb{Z}+(-\eta, \eta)
$$

for all $x, y \in X$. By Corollary 3 in [2] it follows that there exists a function $p: X \rightarrow \mathbb{R}$ such that

$$
\begin{equation*}
p(x+y)-p(x)-p(y) \in \mathbb{Z} \quad \text { for all } \quad x, y \in X \tag{13}
\end{equation*}
$$

and

$$
\begin{equation*}
|s(x)-p(x)| \leq \eta \quad \text { for all } \quad x \in X . \tag{14}
\end{equation*}
$$

Let $q: X \rightarrow \mathbb{R}, H, r: X \rightarrow T$ be functions defined by the formulas:

$$
\begin{aligned}
& q(x)=s(x)-p(x) \\
& H(x)=\exp (i 2 \pi p(x)) \\
& r(x)=\exp (i 2 \pi q(x))
\end{aligned}
$$

for all $x \in X$. By (13) we get the equality

$$
\frac{H(x+y)}{H(x) H(y)}=\exp (i 2 \pi(p(x+y)-p(x)-p(y)))=1
$$

for all $x, y \in X$, which says that H is a character of X. However, condition (14) implies that

$$
|2 \pi q(x)| \leq 2 \pi \eta=\delta=\arccos \left(1-\frac{\varepsilon^{2}}{2}\right)<\frac{\pi}{2}
$$

for all $x \in X$. Consequently

$$
\operatorname{Arg} r(x) \in\left\langle-\arccos \left(1-\frac{\varepsilon^{2}}{2}\right), \arccos \left(1-\frac{\varepsilon^{2}}{2}\right)\right\rangle \subset\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

for all $x \in X$. Note that $\operatorname{Arg} r(x) \in\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$ for all $x \in X$, whereas $\varepsilon \in(0,1)$. Since

$$
t(x)=2 \pi s(x)=2 \pi p(x)+2 \pi q(x)
$$

for all $x \in X$, we have

$$
k(x)=\exp (i t(x))=\exp (i 2 \pi p(x)) \exp (i 2 \pi q(x))=H(x) r(x)
$$

for all $x \in X$.
Assume that $\varepsilon \in(0,1)$. Let $H_{1}, H_{2}, r_{1}, r_{2}: X \rightarrow T$ be functions such that both pairs (H_{1}, r_{1}), (H_{2}, r_{2}) satisfy conditions (7), (8) and (9). Then $\operatorname{Arg} r_{i}(x) \in\left(-\frac{\pi}{3}, \frac{\pi}{3}\right)$ for $i=1,2$ and for all $x \in X$. Therefore

$$
\operatorname{Arg} r_{1}(x)-\operatorname{Arg} \cdot r_{2}(x) \in\left(-\frac{2}{3} \pi ; \frac{2}{3} \pi\right)
$$

for all $x \in X$. Consequently

$$
\begin{aligned}
\left|H_{1}(x)-H_{2}(x)\right|^{2}= & \left|\frac{k(x)}{r_{1}(x)}-\frac{k(x)}{r_{2}(x)}\right|^{2}=\left|\frac{k(x)}{r_{1}(x)}\right|^{2}\left|1-\frac{r_{1}(x)}{r_{2}(x)}\right|^{2}= \\
& \left|1-\exp \left(i\left(\operatorname{Arg} r_{1}(x)-\operatorname{Arg} r_{2}(x)\right)\right)\right|^{2}= \\
& 2-2 \cos \left(\operatorname{Arg} r_{1}(x)-\operatorname{Arg} r_{2}(x)\right)<3
\end{aligned}
$$

for all $x \in X$, whence

$$
\left|H_{1}(x)-H_{2}(x)\right|<\sqrt{3}
$$

for all $x \in X$. By Lemma 2 we have $H_{1}=H_{2}$ and, consequently, $r_{1}=$ r_{2}. This finishes the proof of the uniqueness of the pair (H, r) satisfying conditions (7), (8), (9) and completes the proof.

In the sequel, if functions $f, g \in X \rightarrow \mathbf{R}$ do not vanish simultaneously and $m: X \rightarrow \mathbb{C}$ is the function defined by formula (1), then functions $f_{1}, g_{1}: X \rightarrow \mathbf{R}, m_{1}: X \rightarrow \mathbb{C}$ are defined by the formulas:

$$
\left\{\begin{array}{l}
f_{1}(x)=\frac{\operatorname{Re}(m(x) m(0))}{\|m(x) m(0)\|} \tag{15}\\
g_{1}(x)=\frac{\operatorname{Im}(m(x) m(0))}{\|m(x) m(0)\|}
\end{array}\right.
$$

$$
\begin{equation*}
m_{1}(x)=f_{1}(x)+i g_{1}(x) \tag{16}
\end{equation*}
$$

for all $x \in X$. Definitions (15) and (16) imply that

$$
\begin{equation*}
\left\|m_{1}(x)\right\|=1 \tag{17}
\end{equation*}
$$

for all $x \in X$. Consequently $m_{1}(x) \in S$ for all $x \in X$ and functions f_{1}, g_{1} are bounded.

Remark 2. If functions $f, g: X \rightarrow \mathbb{R}$ do not vanish simultaneously and satisfy system (III) $)_{\varepsilon}$ on X, then

$$
\begin{equation*}
\left|f(x)-f_{1}(x)\right|<\varepsilon \quad \text { and } \quad\left|g(x)-g_{1}(x)\right|<\varepsilon \tag{18}
\end{equation*}
$$

for all $x \in X, f, g$ are bounded and

$$
\begin{equation*}
|m(x)|<\sqrt{2} \varepsilon+\frac{1}{\lambda} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\|m(x)\|<\sqrt{2} \mu \varepsilon+1 \tag{20}
\end{equation*}
$$

for all $x \in X$.
Proof. Setting $y=0$ in system (III) $)_{\varepsilon}$ we obtain (18). In that case f, g are bounded because so are f_{1}, g_{1}. However (17) and (18) imply that

$$
\begin{aligned}
& |m(x)| \leq\left|m(x)-m_{1}(x)\right|+\left|m_{1}(x)\right| \leq \\
& \quad\left(\left|f(x)-f_{1}(x)\right|^{2}+\left|g(x)-g_{1}(x)\right|^{2}\right)^{\frac{1}{2}}+\frac{1}{\lambda}\left\|m_{1}(x)\right\|<\sqrt{2} \varepsilon+\frac{1}{\lambda}
\end{aligned}
$$

for all $x \in X$. On the other hand

$$
\begin{gathered}
\|m(x)\| \leq\left\|m(x)-m_{1}(x)\right\|+\left\|m_{1}(x)\right\| \leq \mu\left|m(x)-m_{1}(x)\right|+1< \\
\sqrt{2} \mu \varepsilon+1
\end{gathered}
$$

for all $x \in X$.
Theorem 3. Let $(X,+)$ be an Abelian group and let $\varepsilon \in\left(0, \frac{1}{2 \mu}\right)$ be arbitrarily fixed. If functions $f, g: X \rightarrow \mathbb{R}$ do not vanish simultaneously and satisfy system (lII) $)_{\varepsilon}$ on X, then there exists a pair of functions $F, G: X \rightarrow \mathbb{R}$ not vanishing simultaneously and satisfying system of functional equations (III) on X with $M=F+i G$ on X instead of m and such that

$$
\begin{equation*}
\|(F(x), G(x))-(f(x), g(x))\|<\sqrt{2} \mu(1+4 \delta) \varepsilon \tag{21}
\end{equation*}
$$

and

$$
\begin{equation*}
|(F(x), G(x))-(f(x), g(x))|<\sqrt{2} \delta(3+2 \delta) \varepsilon \tag{22}
\end{equation*}
$$

for all $x \in X$, where $\delta:=\frac{\mu}{\lambda}$. Moreover, if $\varepsilon<\sqrt{6}\left(4 \mu \delta(3+2 \delta)\left(1+\frac{\sqrt{2}}{2}+\delta\right)\right)^{-1}$, then such a pair (F, G) is unique.

Moreover, if $S=T$, and $\varepsilon \in\left(0, \frac{1}{2}\right)$ then

$$
\begin{equation*}
|(F(x), G(x))-(f(x), g(x))|<3 \sqrt{2} \varepsilon \tag{23}
\end{equation*}
$$

for all $x \in X$ and the pair (F, G) is unique provided that $\varepsilon<\frac{1}{2 \sqrt{6}}$.
Proof. Let $m: X \rightarrow \mathbb{C}, h: X \rightarrow T$ be the functions defined by formulas (1) and (3). By Lemma 1

$$
|h(x+y)-h(x) h(y)|<2 \sqrt{2} \mu \varepsilon
$$

for all $x, y \in X$. However Lemma 3 implies that there exist functions $H, r: X \rightarrow T$ such that

$$
\begin{equation*}
h(x)=H(x) r(x) \quad \text { for all } \quad x \in X ; \tag{24}
\end{equation*}
$$

$$
\begin{align*}
& \operatorname{Arg} r(x) \in\left\langle-\arccos \left(1-4 \mu^{2} \varepsilon^{2}\right), \arccos \left(1-4 \mu^{2} \varepsilon^{2}\right)\right\rangle \subset\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \tag{26}\\
& \text { for all } x \in X .
\end{align*}
$$

Let $F, G: X \rightarrow \mathbb{R}, M: X \rightarrow \mathbb{C}$ be functions defined by the formulas:

$$
\begin{equation*}
F(x)=\frac{\operatorname{Re} H(x)}{\|H(x)\|}, \quad G(x)=\frac{\operatorname{Im} H(x)}{\|H(x)\|} \tag{27}
\end{equation*}
$$

for all $x \in X$. Obviously

$$
\begin{equation*}
M(x)=\frac{H(x)}{\|H(x)\|} \tag{29}
\end{equation*}
$$

for all $x \in X$. Theorem 2 implies that F, G satisfy system (III) on X with m replaced by M. From condition (24) it follows that

$$
\arg h(x)=\arg H(x)+\operatorname{Arg} r(x)
$$

for all $x \in X$. This jointly with (26) implies that

$$
|h(x)-H(x)|^{2}=2-2 \cos \operatorname{Arg} r(x) \leq 2-2\left(1-4 \mu^{2} \varepsilon^{2}\right)=8 \mu^{2} \varepsilon^{2}
$$

for all $x \in X$, whence

$$
\begin{equation*}
|h(x)-H(x)| \leq 2 \sqrt{2} \mu \varepsilon \tag{30}
\end{equation*}
$$

for all $x \in X$.
Let $m_{0}: X \rightarrow \mathbb{C}$ be a function defined by the formula:

$$
\begin{equation*}
m_{0}(x)=\frac{h(x)}{\|h(x)\|} \tag{31}
\end{equation*}
$$

for all $x \in X$. Obviously $\left\|m_{0}(x)\right\|=1$ for all $x \in X$ and, consequently, $m_{0}(x) \in S$ for all $x \in X$. Moreover

$$
\begin{equation*}
\arg m_{0}(x)=\arg h(x)=\arg m(x) \tag{32}
\end{equation*}
$$

for all $x \in X$. Moreover, conditions (29), (30) and (31) imply that

$$
\begin{aligned}
&\left|m_{0}(x)-M(x)\right|=\left|\frac{h(x)}{\|h(x)\|}-\frac{H(x)}{\|H(x)\|}\right|= \\
& \frac{|\|H(x)\| h(x)-\|h(x)\| H(x)|}{\|h(x)\|\|H(x)\|} \leq \\
& \frac{\|H(x)\| h(x)-\|H(x)\| H(x)|+|\|H(x)\| H(x)-\|h(x)\| H(x)|}{\|h(x)\|\|H(x)\|}= \\
& \frac{\|H(x)\||h(x)-H(x)|+|H(x)|\|H(x)\|-\|h(x)\| \mid}{\|h(x)\|\|H(x)\|} \leq \\
& \frac{\|H(x)\||h(x)-H(x)|+\frac{1}{\lambda}\|H(x)\|\|H(x)-h(x)\|}{\|h(x)\|\|H(x)\|} \leq \\
& \frac{|h(x)-H(x)|+\frac{1}{\lambda} \mu|h(x)-H(x)|}{\lambda|h(x)|} \leq\left(1+\frac{\mu}{\lambda}\right) 2 \sqrt{2} \mu \varepsilon \lambda^{-1}
\end{aligned}
$$

for all $x \in X$. Putting

$$
\begin{equation*}
\delta=\frac{\mu}{\lambda} \tag{33}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
\left|m_{0}(x)-M(x)\right| \leq 2 \sqrt{2}(1+\delta) \delta \varepsilon \tag{34}
\end{equation*}
$$

for all $x \in X$. On the other hand, conditions (29), (30), (31) and (33) imply that

$$
\begin{aligned}
& \left\|m_{0}(x)-M(x)\right\|=\left\|\frac{h(x)}{\|h(x)\|}-\frac{H(x)}{\|H(x)\|}\right\|= \\
& \frac{\|\|H(x)\| h(x)-\| h(x)\|H(x)\|}{\|h(x)\|\|H(x)\|} \leq \\
& \frac{\|\|H(x)\| h(x)-\| H(x)\|H(x)\|+\| \| H(x)\|H(x)-\| h(x)\|H(x)\|}{\|h(x)\|\|H(x)\|} \leq \\
& \frac{\|H(x)\|\|h(x)-H(x)\|+\mid\|H(x)\|-\|h(x)\|\| \| H(x) \|}{\|h(x)\|\|H(x)\|} \leq \\
& \frac{2\|h(x)-H(x)\|}{\|h(x)\|} \leq \frac{2 \mu|h(x)-H(x)|}{\lambda|h(x)|} \leq 4 \sqrt{2} \delta \mu \varepsilon
\end{aligned}
$$

for all $x \in X$. We have

$$
\begin{equation*}
\left\|m_{0}(x)-M(x)\right\| \leq 4 \sqrt{2} \delta \mu \varepsilon \tag{35}
\end{equation*}
$$

for all $x \in X$.
Let $f_{1}, g_{1}: X \rightarrow \mathbb{R}, m_{1}: X \rightarrow \mathbb{C}$ be functions defined by formulas (15) and (16). In view of (18) we have

$$
\left|m(x)-m_{1}(x)\right|<\sqrt{2} \varepsilon
$$

for all $x \in X$ whence

$$
\begin{equation*}
\left\|m(x)-m_{1}(x)\right\|<\sqrt{2} \mu \varepsilon \tag{36}
\end{equation*}
$$

for all $x \in X$.
Now, we shall prove that

$$
\begin{equation*}
\left\|m(x)-m_{0}(x)\right\|<\sqrt{2} \mu \varepsilon \tag{37}
\end{equation*}
$$

for all $x \in X$.
Note that the equality $\left\|m_{0}(x)\right\|=1$ for all $x \in X$ and (32) imply that

$$
\begin{equation*}
\left\|m(x)-m_{0}(x)\right\|=|\|m(x)\|-1| \tag{38}
\end{equation*}
$$

for all $x \in X$.
Suppose that there exists a $y \in X$ such that

$$
\begin{equation*}
\left\|m(y)-m_{0}(y)\right\| \geq \sqrt{2} \mu \varepsilon \tag{39}
\end{equation*}
$$

If $\|m(y)\|<1$, then conditions (36), (38) and (39) imply that

$$
\left\|m_{1}(y)\right\| \leq\left\|m_{1}(y)-m(y)\right\|+\|m(y)\|<\sqrt{2} \mu \varepsilon+1-\left\|m(y)-m_{0}(y)\right\| \leq 1
$$

i.e. $\left\|m_{1}(y)\right\|<1$. However, by (17), we have $\left\|m_{1}(y)\right\|=1$, a contradiction.

Assume now that $\|m(y)\|>1$; then by (36), (38) and (39) we obtain

$$
\left\|m_{1}(y)\right\| \geq\|m(y)\|-\left\|m_{1}(y)-m(y)\right\|>\left\|m(y)-m_{0}(y)\right\|+1-\sqrt{2} \mu \varepsilon \geq 1
$$

a contradiction, again.
The, assumption $\|m(y)\|=1$ jointly with (38) implies that $\| m(y)-$ $m_{0}(y) \|=0$ which contradicts (39).

This finishes the proof of inequality (37).
Now, from (33) and (37) it follows that

$$
\begin{equation*}
\left|m(x)-m_{0}(x)\right|<\sqrt{2} \delta \varepsilon \tag{40}
\end{equation*}
$$

for all $x \in X$. Finally, conditions (34) and (40) imply that

$$
|m(x)-M(x)|<\sqrt{2} \delta \varepsilon+2 \sqrt{2}(1+\delta) \delta \dot{\varepsilon}=\sqrt{2} \delta(3+2 \delta) \varepsilon
$$

for all $x \in X$. Moreover, conditions (35) and (37) imply that

$$
\|m(x)-M(x)\|<\sqrt{2} \mu \varepsilon+4 \sqrt{2} \delta \mu \varepsilon=\sqrt{2} \mu(1+4 \delta) \varepsilon
$$

for all $x \in X$. This proves that the functions F, G satisfy conditions (21) and (22).

Let $\varepsilon \in\left(0, \sqrt{6}\left(4 \mu \delta(3+2 \delta)\left(1+\frac{\sqrt{2}}{2}+\delta\right)\right)^{-1}\right)$. We shall show that there exists exactly one pair $F, G: X \rightarrow \mathbb{R}^{2}$ of functions satisfying system (III) on X and conditions (21) and (22).

Let $\left(F_{1}, G_{1}\right),\left(F_{2}, G_{2}\right)$ be two pairs of real functions on X satisfying (III) on X along with (21) and (22).

Let

$$
M_{j}(x)=F_{j}(x)+i G_{j}(x)
$$

for all $x \in X$ and $j=1,2$. On account of Theorem 2, there exist characters $H_{1}, H_{2}: X \rightarrow T$ such that

$$
M_{j}(x)=\frac{H_{j}(x)}{\left\|H_{j}(x)\right\|}
$$

for all $x \in X, j=1,2$. Then

$$
\left\|M_{j}(x)\right\|=1 \quad \text { and } \quad\left|M_{j}(x)\right|=\frac{1}{\left\|H_{j}(x)\right\|}
$$

for all $x \in X, j=1,2$. Hence

$$
H_{j}(x)=\frac{M_{j}(x)}{\left|M_{j}(x)\right|}
$$

for all $x \in X, j=1,2$. Moreover, by (22),

$$
\left|M_{j}(x)-m(x)\right|<\sqrt{2} \delta(3+2 \delta) \varepsilon
$$

for all $x \in X, j=1,2$, and therefore,

$$
\begin{align*}
& \left|H_{1}(x)-H_{2}(x)\right|=\left|\frac{M_{1}(x)}{\left|M_{1}(x)\right|}-\frac{M_{2}(x)}{\left|M_{2}(x)\right|}\right| \leq \\
& \left|\frac{M_{1}(x)}{\left|M_{1}(x)\right|}-\frac{m(x)}{\left|M_{1}(x)\right|}\right|+\left|\frac{m(x)}{\left|M_{1}(x)\right|}-\frac{m(x)}{\left|M_{2}(x)\right|}\right|+ \\
& \left|\frac{m(x)}{\left|M_{2}(x)\right|}-\frac{M_{2}(x)}{\left|M_{2}(x)\right|}\right| \leq \frac{\mu\left|M_{1}(x)-m(x)\right|}{\left\|M_{1}(x)\right\|}+ \\
& |m(x)| \frac{\| M_{2}(x)\left|-M_{1}(x)\right| \mid \mu^{2}}{\left\|M_{1}(x)\right\|\left|\mid M_{2}(x) \|\right.}+\frac{\mu\left|M_{2}(x)-m(x)\right|}{\left\|M_{2}(x)\right\|}< \tag{41}\\
& 2 \sqrt{2} \delta(3+2 \delta) \mu \varepsilon+\mu^{2}\left|m(x) \| M_{2}(x)-M_{1}(x)\right| \leq \\
& 2 \sqrt{2} \delta(3+2 \delta) \mu \varepsilon+\mu^{2}|m(x)|\left(\left|M_{2}(x)-m(x)\right|+\left|m(x)-M_{1}(x)\right|\right)< \\
& 2 \sqrt{2} \delta(3+2 \delta) \mu \varepsilon+2 \sqrt{2} \delta(3+2 \delta) \mu^{2} \varepsilon|m(x)|= \\
& 2 \sqrt{2} \delta(3+2 \delta) \mu \varepsilon(1+\mu|m(x)|)
\end{align*}
$$

for all $x \in X$. Since $\varepsilon<\frac{1}{2 \mu}$, condition (19) implies that

$$
1+\mu|m(x)|<1+\mu\left(\sqrt{2} \varepsilon+\frac{1}{\lambda}\right)<1+\frac{\sqrt{2}}{2}+\delta
$$

for all $x \in X$. From here and from (41) we deduce that

$$
\left|H_{1}(x)-H_{2}(x)\right|<2 \sqrt{2} \delta(3+2 \delta)\left(1+\frac{\sqrt{2}}{2}+\delta\right) \mu \varepsilon<\sqrt{3}
$$

for all $x \in X$. By Lemma 2 one obtains the equality $H_{1}=H_{2}$ which implies that $\left(F_{1}, G_{1}\right)=\left(F_{2}, G_{2}\right)$.

Now, assume that $S=T$. Then $\|\cdot\|=|\cdot|$ as well as $\mu=\lambda=\delta=1$ and $\varepsilon \in\left(0, \frac{1}{2}\right)$. By (29) and (31) one has $M=H$ and $m_{0}=h$. Hence conditions (30) and (40) imply that

$$
\begin{aligned}
|M(x)-m(x)|= & |H(x)-m(x)| \leq|H(x)-h(x)|+\left|m_{0}(x)-m(x)\right|< \\
& 2 \sqrt{2} \varepsilon+\sqrt{2} \varepsilon=3 \sqrt{2} \varepsilon
\end{aligned}
$$

for all $x \in X$.
Let (F_{1}, G_{1}), (F_{2}, G_{2}) be two pairs of real functions on X satisfying (III) on X and such that

$$
\left|\left(F_{j}(x), G_{j}(x)\right)-(f(x), g(x))\right|<3 \sqrt{2} \varepsilon
$$

for all $x \in X, j=1,2$. By Theorem 2, there exist characters H_{1}, H_{2} of X such that $H_{j}(x)=F_{j}(x)+i G_{j}(x)$ for all $x \in X, j=1,2$. Then

$$
\left|H_{1}(x)-H_{2}(x)\right|<6 \sqrt{2} \varepsilon
$$

for all $x \in X$. If $\varepsilon<\frac{1}{2 \sqrt{6}}$, then $\left|H_{1}(x)-H_{2}(x)\right|<\sqrt{3}$ for all $x \in X$. By means of Lemma 2 we get $H_{1}=H_{2}$. Consequently $\left(F_{1}, G_{1}\right)=\left(F_{2}, G_{2}\right)$. which ends the proof.

Now, we shall show that system (III) is not superstable, i.e. there exists a solution of system (III) e_{ε} which deos not satisfy system (III). This is exhibited in the following.

Example 2. Suppose that functions $F, G: X \rightarrow \mathbb{R}$ do not vanish simultaneously and satisfy system of functional equations (III) and $\epsilon>0$ is fixed. If $c: X \rightarrow \mathbb{R}$ is a function satisfying the following conditions:

$$
\begin{gather*}
c(x)>0 \text { for all } x \in \dot{X} \text { or } c(x)<0 \text { for all } x \in X ; \tag{42}\\
0<|c(x)-1|<\lambda \varepsilon \text { for all } x \in X
\end{gather*}
$$

then the functions $f, g: X \rightarrow \mathbb{R}$ such that:

$$
\begin{equation*}
f(x)=c(x) F(x), \quad g(x)=c(x) G(x) \text { for all } x \in X \tag{44}
\end{equation*}
$$

satisfy the system of functional inequalities considered but fail to be solution of system (III). Moreover

$$
\begin{equation*}
|f(x)-F(x)|<\varepsilon \quad \text { and } \quad|g(x)-G(x)|<\varepsilon \tag{45}
\end{equation*}
$$

for all $x, y \in X$.
Proof. Let $m, M: X \rightarrow \mathbb{C}$ be functions defined by formulas (1) and (28), respectively. From (1), (28) and (44) it follows that

$$
\begin{equation*}
m(x)=c(x) M(x) \tag{46}
\end{equation*}
$$

for all $x \in X$. By Theorem 1 we get

$$
\begin{equation*}
\|M(x)\|=1 \tag{47}
\end{equation*}
$$

for all $x \in X$. Conditions (43), (46) and (47) imply that

$$
\begin{gathered}
|f(x)-F(x)|=|m(x)-M(x)|=|c(x) M(x)-M(x)|= \\
\left|M(x)\left\|c(x)-1 \left\lvert\,<\frac{1}{\lambda}\right.\right\| M(x) \| \lambda \varepsilon=\varepsilon\right.
\end{gathered}
$$

for all $x \in X$. Analogously,

$$
|g(x)-G(x)|<\varepsilon
$$

for all $x \in X$ which proves the validity of (45).
Now, we shall show that the functions f, g satisfy system (III) $)_{c}$.
Obviously, f, g do not vanish simultaneously. Since F, G satisfy system (III), then conditions (42), (43), (44), (46) and (47) imply that

$$
\begin{align*}
\mid f(x+y) & \left.-\frac{\operatorname{Re}(m(x) m(y))}{\|m(x) m(y)\|} \right\rvert\,= \\
& \left|\begin{array}{l}
\left.c(x+y) F(x+y)-\frac{\operatorname{Re}(c(x) c(y) M(x) M(y))}{\|c(x) c(y) M(x) M(y)\|} \right\rvert\,= \\
\\
\\
\\
\\
\\
\left|c(x+y) F(x+y)-\frac{c(x) c(y) \operatorname{Re}(M(x) M(y))}{c(x) c(y)\|M(x) M(y)\|}\right|= \\
\\
\\
|M(x+y) F(x+y)-F(x+y)|=|F(x+y) \| c(x+y)-1| \leq \\
\end{array}\right|=1<\frac{1}{\lambda}\|M(x+y)\| \lambda \varepsilon=\varepsilon
\end{align*}
$$

for all $x \in X$. Analogously,

$$
\begin{equation*}
\left|g(x+y)-\frac{\operatorname{Im}(m(x) m(y))}{\|m(x) m(y)\|}\right|=|G(x+y) \| c(x+y)-1|<\varepsilon \tag{49}
\end{equation*}
$$

for all $x, y \in X$. Hence f, g satisfy system (III) $)_{\varepsilon}$.
Finally, we shall prove that the equalities (III) fail to hold for every $(x, y) \in X^{2}$.

Assume the contrary, i.e. there exists a pair $(u, v) \in X^{2}$ such that system (III) holds true. From conditions (48) and (49) it follows that

$$
|F(u+v) \| c(u+v)-1|=0 \quad \text { and } \quad|G(u+v) \| c(u+v)-1|=0 .
$$

By (43) we get $F(u+v)=0$ and $G(u+v)=0$ which is a contradiction because F, G do not vanish simultaneously.

This finishes the proof.

References

[1] I. Adamaszek, On generalized sine and cosine functions, Demonstratio Mathematica, Vol. XXVIII, No 2, 1995.
[2] R. Ger and P. Semrl, On the stability of the exponential functions, Proceedings of the American Mathematical Society (to appear).

Instytut Matematyki
Wyższej Szkoly Pedagogicznej
ul. Armil Krajowej 13/ 15
42-201 Czestochowa, Poland

