A DIRECT PROOF OF A THEOREM OF K. BARON

Holger Gebert

Abstract

In his work on the Golab-Schinzel equation, K. Baron shows a theorem concerning continuous complex-valued solutions, defined on the complex plane. In this note, we will give a direct proof of this theorem, which does not use the form of the general solution of the Golab-Schinzel equation.

Among other things, K. Baron shows in [2] the following theorem, concerning continuous solutions of the Gołab-Schinzel equation

$$
\begin{equation*}
f(x+f(x) y)=f(x) f(y) \tag{1}
\end{equation*}
$$

Theorem. A function $f: \mathbb{C} \rightarrow \mathbb{C}$ with $f(\mathbb{C}) \nsubseteq \mathbb{R}$ is a continuous solution of (1) if and only if f has the form

$$
\begin{equation*}
f(x)=1+c x \quad(x \in \mathbb{C}) \tag{2}
\end{equation*}
$$

where c is a complex constant.
In his proof, K. Baron uses a theorem on the general solution of equation (1) (see for example [4]). We will give a direct proof that does not depend on this theorem.

Obviously, a function of form (2) is a continuous solution of (1). Therefore, let f be an arbitrary continuous solution of equation (1). The following relations hold:
(a) $P:=f^{-1}(\{1\})$ is the group of periods of f.
(b) If $f(x)=f(y) \neq 0$, then $x-y \in P$.
(c) $G:=f(\mathbf{C}) \backslash\{0\}$ is a multiplicative subgroup of $\mathbf{C} \backslash\{0\}$.
(d) $G \cdot P=P$.

AMS (1991) subject classification: 39B32.

The first three properties are proved in [1], we will only show property (d). Let $p \in P$ and $f(y) \in G$. We get

$$
f(y+f(y) p)=f(y) f(p)=f(y) \neq 0
$$

Property (b) implies $y+f(y) p-y=f(y) p \in P$, hence $G \cdot P \subseteq P$. The other inclusion is trivial.

Assume that P is not discrete. Then there is $z \in P, z \neq 0$, so that the straight line $\{s z \mid s \in \mathbb{R}\}$ is contained in P (see [3, VII F51.2, Prop. 3] [3]). As $f(\mathbb{C}) \not \subset \mathbb{R}$, there exists $x_{0} \in \mathbb{C}$ with $z_{0}=f\left(x_{0}\right) \in G \backslash \mathbb{R}$. Let z_{1} be an arbitrary complex number. Considered as elements of \mathbb{R}^{2}, z and $z_{0} z$ are linearly independent, hence we get

$$
z_{1}=s z+t z_{0} z
$$

with some $s, t \in \mathbb{R}$. Property (d) implies $z_{0} z \in P$, therefore we get $z_{1} \in P$. It follows $P=\mathbb{C}$, meaning $f(x) \equiv 1$, which is a contradiction.

Now we will show that the discrete group P only consists of the number 0 . Suppose $P \neq\{0\}$. Then Property (d) implies that $G=f(\mathbb{C}) \backslash\{0\}$ is discrete as well. On the other hand, $f(\mathbb{C})$ is connected, because f is continuous. Again, we arrive at a contradiction and $P=\{0\}$ is proved.

Now, we choose two arbitrary elements x, y of the set $A:=$ $\{x \in \mathbb{C} \mid f(x) \neq 0\}$. We get

$$
f(x+f(x) y)=f(x) f(y)=f(y+f(y) x) \neq 0
$$

and with (b)

$$
x+f(x) y-(y+f(y) x) \in P .
$$

$P=\{0\}$ implies

$$
x+f(x) y=y+f(y) x,
$$

therefore

$$
\frac{f(x)-1}{x}=\frac{f(y)-1}{y} \quad(x, y \in A \backslash\{0\}) .
$$

With $c:=\frac{f(x)-1}{x} \quad(x \in A \backslash\{0\}), f$ has the form

$$
f(x)=\left\{\begin{array}{cl}
1+c x, & 1+c x \in G \\
0, & \text { otherwise }
\end{array}\right.
$$

Because of $f(\mathbb{C}) \notin \mathbb{R}, c \neq 0$ holds. Further, we argue as K. Baron did in his paper [2]. We have

$$
f(x)=0 \Longleftrightarrow 1+c x \notin G \Longleftrightarrow x=\frac{g-1}{c} \quad \text { with } \quad g \notin G .
$$

or

$$
M:=f^{-1}(\{0\})=\left\{\left.\frac{1}{c}(g-1) \right\rvert\, g \notin G\right\}=\frac{1}{c}\left(G^{C}-1\right)
$$

The set M is a closed subset of \mathbb{C}, therefore the sets $c M$ and $1+c M=G^{C}$ are closed as well. It follows that G is an open set. Observing that G is a multiplicative subgroup of $\mathbb{C} \backslash\{0\}$, we get $G=\mathbb{C} \backslash\{0\}$. That means, f has the form (2).

References

[1] J. Aczél, Lectures on functional equations and their applications, Academic Press, New York-London, 1966.
[2] K. Baron, On the continuous solutions of the Golgb-Schinzel equation, Aequationes Math. 38 (1989), 155-162.
[3] N. Bourbaki, General Topology, Part 2, Addison-Wesley, Reading, Ma., 1966.
[4] P. Javor, On the general solution of the functional equation $f(x+y f(x))=$ $3 D f(x) f(y)$, Aequationes Math. 1 (1968), 235-238.

Holger Gebert
Scherrstr. 22
D-76137 Karlsruhe
Germany

