Prace Naukowe Uniwersytetu Śląskiego nr 1523

A DIRECT PROOF OF A THEOREM OF K. BARON

HOLGER GEBERT

Abstract. In his work on the Golab-Schinzel equation, K. Baron shows a theorem concerning continuous complex-valued solutions, defined on the complex plane. In this note, we will give a direct proof of this theorem, which does not use the form of the general solution of the Golab-Schinzel equation.

Among other things, K. Baron shows in [2] the following theorem, concerning continuous solutions of the Golab-Schinzel equation

(1) f(x + f(x)y) = f(x)f(y).

THEOREM. A function $f : \mathbb{C} \to \mathbb{C}$ with $f(\mathbb{C}) \not\subseteq \mathbb{R}$ is a continuous solution of (1) if and only if f has the form

(2)
$$f(x) = 1 + cx \qquad (x \in \mathbb{C}),$$

where c is a complex constant.

In his proof, K. Baron uses a theorem on the general solution of equation (1) (see for example [4]). We will give a direct proof that does not depend on this theorem.

Obviously, a function of form (2) is a continuous solution of (1). Therefore, let f be an arbitrary continuous solution of equation (1). The following relations hold:

- (a) $P := f^{-1}(\{1\})$ is the group of periods of f.
- (b) If $f(x) = f(y) \neq 0$, then $x y \in P$.
- (c) $G := f(\mathbb{C}) \setminus \{0\}$ is a multiplicative subgroup of $\mathbb{C} \setminus \{0\}$.
- (d) $G \cdot P = P$.

AMS (1991) subject classification: 39B32.

The first three properties are proved in [1], we will only show property (d). Let $p \in P$ and $f(y) \in G$. We get

$$f(y + f(y) p) = f(y)f(p) = f(y) \neq 0.$$

Property (b) implies $y + f(y) p - y = f(y) p \in P$, hence $G \cdot P \subseteq P$. The other inclusion is trivial.

Assume that P is not discrete. Then there is $z \in P$, $z \neq 0$, so that the straight line $\{sz \mid s \in \mathbb{R}\}$ is contained in P (see [3, VII F51.2, Prop. 3] [3]). As $f(\mathbb{C}) \not\subseteq \mathbb{R}$, there exists $x_0 \in \mathbb{C}$ with $z_0 = f(x_0) \in G \setminus \mathbb{R}$. Let z_1 be an arbitrary complex number. Considered as elements of \mathbb{R}^2 , z and z_0z are linearly independent, hence we get

$$z_1 = sz + tz_0 z$$

with some $s, t \in \mathbb{R}$. Property (d) implies $z_0 z \in P$, therefore we get $z_1 \in P$. It follows $P = \mathbb{C}$, meaning $f(x) \equiv 1$, which is a contradiction.

Now we will show that the discrete group P only consists of the number 0. Suppose $P \neq \{0\}$. Then Property (d) implies that $G = f(\mathbb{C}) \setminus \{0\}$ is discrete as well. On the other hand, $f(\mathbb{C})$ is connected, because f is continuous. Again, we arrive at a contradiction and $P = \{0\}$ is proved.

Now, we choose two arbitrary elements x, y of the set $A := \{x \in \mathbb{C} \mid f(x) \neq 0\}$. We get

$$f(x + f(x) y) = f(x)f(y) = f(y + f(y) x) \neq 0$$

and with (b)

$$x+f(x) y-(y+f(y) x) \in P.$$

 $P = \{0\}$ implies

$$x+f(x) y=y+f(y) x,$$

therefore

$$\frac{f(x)-1}{x}=\frac{f(y)-1}{y} \quad (x,y\in A\setminus\{0\}).$$

With $c := \frac{f(x)-1}{x}$ $(x \in A \setminus \{0\})$, f has the form

$$f(x) = \begin{cases} 1 + cx, & 1 + cx \in G \\ 0, & \text{otherwise} \end{cases}$$

Because of $f(\mathbb{C}) \not\subseteq \mathbb{R}$, $c \neq 0$ holds. Further, we argue as K. Baron did in his paper [2]. We have

$$f(x) = 0 \iff 1 + cx \notin G \iff x = \frac{g-1}{c}$$
 with $g \notin G$.

or

$$M := f^{-1}(\{0\}) = \left\{ \left. \frac{1}{c} (g-1) \right| g \notin G \right\} = \frac{1}{c} \left(G^C - 1 \right).$$

The set M is a closed subset of \mathbb{C} , therefore the sets cM and $1 + cM = G^C$ are closed as well. It follows that G is an open set. Observing that G is a multiplicative subgroup of $\mathbb{C} \setminus \{0\}$, we get $G = \mathbb{C} \setminus \{0\}$. That means, f has the form (2).

References

- [1] J. Aczél, Lectures on functional equations and their applications, Academic Press, New York-London, 1966.
- [2] K. Baron, On the continuous solutions of the Golgb-Schinzel equation, Aequationes Math. 38 (1989), 155-162.
- [3] N. Bourbaki, General Topology, Part 2, Addison-Wesley, Reading, Ma., 1966.
- [4] P. Javor, On the general solution of the functional equation f(x + yf(x)) = 3Df(x)f(y), Aequationes Math. 1 (1968), 235-238.

Holger Gebert Scherrstr. 22 D-76137 Karlsruhe Germany